MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantrrl Structured version   Visualization version   GIF version

Theorem adantrrl 724
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
adantrrl ((𝜑 ∧ (𝜓 ∧ (𝜏𝜒))) → 𝜃)

Proof of Theorem adantrrl
StepHypRef Expression
1 simpr 488 . 2 ((𝜏𝜒) → 𝜒)
2 adantr2.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylanr2 683 1 ((𝜑 ∧ (𝜓 ∧ (𝜏𝜒))) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  zorn2lem6  10115  ltmul12a  11688  mndind  18254  neiint  22001  neissex  22024  1stcfb  22342  1stcrest  22350  grporcan  28599  mdslmd3i  30413  colineardim1  34100  cvratlem  37172  ps-2  37229  fsuppssind  39992
  Copyright terms: Public domain W3C validator