![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantrrl | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
adantrrl | ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜏 ∧ 𝜒))) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . 2 ⊢ ((𝜏 ∧ 𝜒) → 𝜒) | |
2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylanr2 681 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜏 ∧ 𝜒))) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: zorn2lem6 10534 ltmul12a 12110 mndind 18794 neiint 23036 neissex 23059 1stcfb 23377 1stcrest 23385 grporcan 30356 mdslmd3i 32170 colineardim1 35698 cvratlem 38934 ps-2 38991 fsuppssind 41875 |
Copyright terms: Public domain | W3C validator |