MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul12a Structured version   Visualization version   GIF version

Theorem ltmul12a 11174
Description: Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
ltmul12a ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))

Proof of Theorem ltmul12a
StepHypRef Expression
1 simplll 782 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → 𝐴 ∈ ℝ)
2 simpllr 784 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → 𝐵 ∈ ℝ)
3 simpll 774 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷)) → 𝐶 ∈ ℝ)
4 simprl 778 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷)) → 0 ≤ 𝐶)
53, 4jca 503 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷)) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
65ad2ant2l 743 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
7 ltle 10421 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
87imp 395 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
98adantrl 698 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐴𝐵)
109ad2ant2r 744 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → 𝐴𝐵)
11 lemul1a 11172 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
121, 2, 6, 10, 11syl31anc 1485 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
13 simplrl 786 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐶 ∈ ℝ)
14 simplrr 787 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐷 ∈ ℝ)
15 simpllr 784 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐵 ∈ ℝ)
16 0re 10337 . . . . . . . . . 10 0 ∈ ℝ
17 lelttr 10423 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 0 < 𝐵))
1816, 17mp3an1 1565 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 0 < 𝐵))
1918imp 395 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 0 < 𝐵)
2019adantlr 697 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 0 < 𝐵)
21 ltmul2 11169 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 < 𝐷 ↔ (𝐵 · 𝐶) < (𝐵 · 𝐷)))
2213, 14, 15, 20, 21syl112anc 1486 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐶 < 𝐷 ↔ (𝐵 · 𝐶) < (𝐵 · 𝐷)))
2322biimpa 464 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ 𝐶 < 𝐷) → (𝐵 · 𝐶) < (𝐵 · 𝐷))
2423anasss 454 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ 𝐶 < 𝐷)) → (𝐵 · 𝐶) < (𝐵 · 𝐷))
2524adantrrl 706 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐵 · 𝐶) < (𝐵 · 𝐷))
26 remulcl 10316 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
2726ad2ant2r 744 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐶) ∈ ℝ)
28 remulcl 10316 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
2928ad2ant2lr 745 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℝ)
30 remulcl 10316 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 · 𝐷) ∈ ℝ)
3130ad2ant2l 743 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐷) ∈ ℝ)
32 lelttr 10423 . . . . 5 (((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐷) ∈ ℝ) → (((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ∧ (𝐵 · 𝐶) < (𝐵 · 𝐷)) → (𝐴 · 𝐶) < (𝐵 · 𝐷)))
3327, 29, 31, 32syl3anc 1483 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ∧ (𝐵 · 𝐶) < (𝐵 · 𝐷)) → (𝐴 · 𝐶) < (𝐵 · 𝐷)))
3433adantr 468 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ∧ (𝐵 · 𝐶) < (𝐵 · 𝐷)) → (𝐴 · 𝐶) < (𝐵 · 𝐷)))
3512, 25, 34mp2and 682 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
3635an4s 642 1 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wcel 2157   class class class wbr 4855  (class class class)co 6884  cr 10230  0cc0 10231   · cmul 10236   < clt 10369  cle 10370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5232  df-po 5245  df-so 5246  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-er 7989  df-en 8203  df-dom 8204  df-sdom 8205  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564
This theorem is referenced by:  ltmul12ad  11260  hgt750lem2  31078  expmordi  38031  tgblthelfgott  42296  tgoldbach  42298
  Copyright terms: Public domain W3C validator