Proof of Theorem neissex
| Step | Hyp | Ref
| Expression |
| 1 | | neii2 23116 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁)) |
| 2 | | opnneiss 23126 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) |
| 3 | 2 | 3expb 1121 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) |
| 4 | 3 | adantrrr 725 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) |
| 5 | 4 | adantlr 715 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) |
| 6 | | simplll 775 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁)) ∧ 𝑦 ⊆ 𝑥) → 𝐽 ∈ Top) |
| 7 | | simpll 767 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝐽) → 𝐽 ∈ Top) |
| 8 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐽) |
| 9 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 10 | 9 | neii1 23114 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ ∪ 𝐽) |
| 11 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝐽) → 𝑁 ⊆ ∪ 𝐽) |
| 12 | 9 | opnssneib 23123 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑁 ⊆ ∪ 𝐽) → (𝑥 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑥))) |
| 13 | 7, 8, 11, 12 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝐽) → (𝑥 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑥))) |
| 14 | 13 | biimpa 476 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥 ∈ 𝐽) ∧ 𝑥 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑥)) |
| 15 | 14 | anasss 466 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑥)) |
| 16 | 15 | adantr 480 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁)) ∧ 𝑦 ⊆ 𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑥)) |
| 17 | | simpr 484 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁)) ∧ 𝑦 ⊆ 𝑥) → 𝑦 ⊆ 𝑥) |
| 18 | | neiss 23117 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑥) ∧ 𝑦 ⊆ 𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑦)) |
| 19 | 6, 16, 17, 18 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁)) ∧ 𝑦 ⊆ 𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑦)) |
| 20 | 19 | ex 412 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝑁)) → (𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |
| 21 | 20 | adantrrl 724 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁))) → (𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |
| 22 | 21 | alrimiv 1927 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁))) → ∀𝑦(𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |
| 23 | 1, 5, 22 | reximssdv 3173 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) |