MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neissex Structured version   Visualization version   GIF version

Theorem neissex 23021
Description: For any neighborhood 𝑁 of 𝑆, there is a neighborhood 𝑥 of 𝑆 such that 𝑁 is a neighborhood of all subsets of 𝑥. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
neissex ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦

Proof of Theorem neissex
StepHypRef Expression
1 neii2 23002 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥𝐽 (𝑆𝑥𝑥𝑁))
2 opnneiss 23012 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑆𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
323expb 1120 . . . 4 ((𝐽 ∈ Top ∧ (𝑥𝐽𝑆𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
43adantrrr 725 . . 3 ((𝐽 ∈ Top ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
54adantlr 715 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
6 simplll 774 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝐽 ∈ Top)
7 simpll 766 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → 𝐽 ∈ Top)
8 simpr 484 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → 𝑥𝐽)
9 eqid 2730 . . . . . . . . . . . 12 𝐽 = 𝐽
109neii1 23000 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 𝐽)
1110adantr 480 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → 𝑁 𝐽)
129opnssneib 23009 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑁 𝐽) → (𝑥𝑁𝑁 ∈ ((nei‘𝐽)‘𝑥)))
137, 8, 11, 12syl3anc 1373 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → (𝑥𝑁𝑁 ∈ ((nei‘𝐽)‘𝑥)))
1413biimpa 476 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) ∧ 𝑥𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑥))
1514anasss 466 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑥))
1615adantr 480 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑥))
17 simpr 484 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝑦𝑥)
18 neiss 23003 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑥) ∧ 𝑦𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑦))
196, 16, 17, 18syl3anc 1373 . . . . 5 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑦))
2019ex 412 . . . 4 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) → (𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
2120adantrrl 724 . . 3 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → (𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
2221alrimiv 1927 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → ∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
231, 5, 22reximssdv 3152 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  wrex 3054  wss 3917   cuni 4874  cfv 6514  Topctop 22787  neicnei 22991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-top 22788  df-nei 22992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator