MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neissex Structured version   Visualization version   GIF version

Theorem neissex 23035
Description: For any neighborhood 𝑁 of 𝑆, there is a neighborhood 𝑥 of 𝑆 such that 𝑁 is a neighborhood of all subsets of 𝑥. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
neissex ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦

Proof of Theorem neissex
StepHypRef Expression
1 neii2 23016 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥𝐽 (𝑆𝑥𝑥𝑁))
2 opnneiss 23026 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑆𝑥) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
323expb 1120 . . . 4 ((𝐽 ∈ Top ∧ (𝑥𝐽𝑆𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
43adantrrr 725 . . 3 ((𝐽 ∈ Top ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
54adantlr 715 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
6 simplll 774 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝐽 ∈ Top)
7 simpll 766 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → 𝐽 ∈ Top)
8 simpr 484 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → 𝑥𝐽)
9 eqid 2730 . . . . . . . . . . . 12 𝐽 = 𝐽
109neii1 23014 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 𝐽)
1110adantr 480 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → 𝑁 𝐽)
129opnssneib 23023 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑁 𝐽) → (𝑥𝑁𝑁 ∈ ((nei‘𝐽)‘𝑥)))
137, 8, 11, 12syl3anc 1373 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) → (𝑥𝑁𝑁 ∈ ((nei‘𝐽)‘𝑥)))
1413biimpa 476 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝑥𝐽) ∧ 𝑥𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑥))
1514anasss 466 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑥))
1615adantr 480 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑥))
17 simpr 484 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝑦𝑥)
18 neiss 23017 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑥) ∧ 𝑦𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑦))
196, 16, 17, 18syl3anc 1373 . . . . 5 ((((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) ∧ 𝑦𝑥) → 𝑁 ∈ ((nei‘𝐽)‘𝑦))
2019ex 412 . . . 4 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽𝑥𝑁)) → (𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
2120adantrrl 724 . . 3 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → (𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
2221alrimiv 1928 . 2 (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑥𝐽 ∧ (𝑆𝑥𝑥𝑁))) → ∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
231, 5, 22reximssdv 3148 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wcel 2110  wrex 3054  wss 3900   cuni 4857  cfv 6477  Topctop 22801  neicnei 23005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-top 22802  df-nei 23006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator