Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adantrrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
adantrrr | ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylanr2 679 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: zorn2lem6 10188 addsrmo 10760 mulsrmo 10761 lemul12b 11762 lt2mul2div 11783 lediv12a 11798 tgcl 22027 neissex 22186 alexsublem 23103 alexsubALTlem4 23109 iscmet3 24362 ablo4 28813 shscli 29580 mdslmd3i 30595 cvmliftmolem2 33144 mblfinlem4 35744 heibor 35906 ablo4pnp 35965 crngm4 36088 cvratlem 37362 ps-2 37419 cdlemftr3 38506 mzpcompact2lem 40489 |
Copyright terms: Public domain | W3C validator |