MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantrrr Structured version   Visualization version   GIF version

Theorem adantrrr 722
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
adantrrr ((𝜑 ∧ (𝜓 ∧ (𝜒𝜏))) → 𝜃)

Proof of Theorem adantrrr
StepHypRef Expression
1 simpl 483 . 2 ((𝜒𝜏) → 𝜒)
2 adantr2.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylanr2 680 1 ((𝜑 ∧ (𝜓 ∧ (𝜒𝜏))) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  zorn2lem6  10257  addsrmo  10829  mulsrmo  10830  lemul12b  11832  lt2mul2div  11853  lediv12a  11868  tgcl  22119  neissex  22278  alexsublem  23195  alexsubALTlem4  23201  iscmet3  24457  ablo4  28912  shscli  29679  mdslmd3i  30694  cvmliftmolem2  33244  mblfinlem4  35817  heibor  35979  ablo4pnp  36038  crngm4  36161  cvratlem  37435  ps-2  37492  cdlemftr3  38579  mzpcompact2lem  40573
  Copyright terms: Public domain W3C validator