MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantrrr Structured version   Visualization version   GIF version

Theorem adantrrr 723
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
adantrrr ((𝜑 ∧ (𝜓 ∧ (𝜒𝜏))) → 𝜃)

Proof of Theorem adantrrr
StepHypRef Expression
1 simpl 483 . 2 ((𝜒𝜏) → 𝜒)
2 adantr2.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylanr2 681 1 ((𝜑 ∧ (𝜓 ∧ (𝜒𝜏))) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  zorn2lem6  10498  addsrmo  11070  mulsrmo  11071  lemul12b  12075  lt2mul2div  12096  lediv12a  12111  tgcl  22692  neissex  22851  alexsublem  23768  alexsubALTlem4  23774  iscmet3  25034  mulsuniflem  27831  ablo4  30058  shscli  30825  mdslmd3i  31840  cvmliftmolem2  34559  mblfinlem4  36831  heibor  36992  ablo4pnp  37051  crngm4  37174  cvratlem  38595  ps-2  38652  cdlemftr3  39739  mzpcompact2lem  41791
  Copyright terms: Public domain W3C validator