MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantrrr Structured version   Visualization version   GIF version

Theorem adantrrr 725
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
adantrrr ((𝜑 ∧ (𝜓 ∧ (𝜒𝜏))) → 𝜃)

Proof of Theorem adantrrr
StepHypRef Expression
1 simpl 482 . 2 ((𝜒𝜏) → 𝜒)
2 adantr2.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylanr2 683 1 ((𝜑 ∧ (𝜓 ∧ (𝜒𝜏))) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  zorn2lem6  10454  addsrmo  11026  mulsrmo  11027  lemul12b  12039  lt2mul2div  12061  lediv12a  12076  tgcl  22856  neissex  23014  alexsublem  23931  alexsubALTlem4  23937  iscmet3  25193  mulsuniflem  28052  ablo4  30479  shscli  31246  mdslmd3i  32261  brab2d  32535  cvmliftmolem2  35269  mblfinlem4  37654  heibor  37815  ablo4pnp  37874  crngm4  37997  cvratlem  39415  ps-2  39472  cdlemftr3  40559  mzpcompact2lem  42739
  Copyright terms: Public domain W3C validator