![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantrrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
adantrrr | ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylanr2 683 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: zorn2lem6 10539 addsrmo 11111 mulsrmo 11112 lemul12b 12122 lt2mul2div 12144 lediv12a 12159 tgcl 22992 neissex 23151 alexsublem 24068 alexsubALTlem4 24074 iscmet3 25341 mulsuniflem 28190 ablo4 30579 shscli 31346 mdslmd3i 32361 brab2d 32627 cvmliftmolem2 35267 mblfinlem4 37647 heibor 37808 ablo4pnp 37867 crngm4 37990 cvratlem 39404 ps-2 39461 cdlemftr3 40548 mzpcompact2lem 42739 |
Copyright terms: Public domain | W3C validator |