MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantrrr Structured version   Visualization version   GIF version

Theorem adantrrr 723
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
adantrrr ((𝜑 ∧ (𝜓 ∧ (𝜒𝜏))) → 𝜃)

Proof of Theorem adantrrr
StepHypRef Expression
1 simpl 483 . 2 ((𝜒𝜏) → 𝜒)
2 adantr2.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylanr2 681 1 ((𝜑 ∧ (𝜓 ∧ (𝜒𝜏))) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  zorn2lem6  10498  addsrmo  11070  mulsrmo  11071  lemul12b  12073  lt2mul2div  12094  lediv12a  12109  tgcl  22479  neissex  22638  alexsublem  23555  alexsubALTlem4  23561  iscmet3  24817  mulsuniflem  27614  ablo4  29841  shscli  30608  mdslmd3i  31623  cvmliftmolem2  34342  mblfinlem4  36614  heibor  36775  ablo4pnp  36834  crngm4  36957  cvratlem  38378  ps-2  38435  cdlemftr3  39522  mzpcompact2lem  41571
  Copyright terms: Public domain W3C validator