![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantrrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
adantrrr | ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylanr2 681 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: zorn2lem6 10498 addsrmo 11070 mulsrmo 11071 lemul12b 12073 lt2mul2div 12094 lediv12a 12109 tgcl 22479 neissex 22638 alexsublem 23555 alexsubALTlem4 23561 iscmet3 24817 mulsuniflem 27614 ablo4 29841 shscli 30608 mdslmd3i 31623 cvmliftmolem2 34342 mblfinlem4 36614 heibor 36775 ablo4pnp 36834 crngm4 36957 cvratlem 38378 ps-2 38435 cdlemftr3 39522 mzpcompact2lem 41571 |
Copyright terms: Public domain | W3C validator |