| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantrrr | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| adantrrr | ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
| 2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylanr2 683 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: zorn2lem6 10515 addsrmo 11087 mulsrmo 11088 lemul12b 12098 lt2mul2div 12120 lediv12a 12135 tgcl 22907 neissex 23065 alexsublem 23982 alexsubALTlem4 23988 iscmet3 25245 mulsuniflem 28104 ablo4 30531 shscli 31298 mdslmd3i 32313 brab2d 32587 cvmliftmolem2 35304 mblfinlem4 37684 heibor 37845 ablo4pnp 37904 crngm4 38027 cvratlem 39440 ps-2 39497 cdlemftr3 40584 mzpcompact2lem 42774 |
| Copyright terms: Public domain | W3C validator |