MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantrrr Structured version   Visualization version   GIF version

Theorem adantrrr 724
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
adantrrr ((𝜑 ∧ (𝜓 ∧ (𝜒𝜏))) → 𝜃)

Proof of Theorem adantrrr
StepHypRef Expression
1 simpl 482 . 2 ((𝜒𝜏) → 𝜒)
2 adantr2.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylanr2 682 1 ((𝜑 ∧ (𝜓 ∧ (𝜒𝜏))) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  zorn2lem6  10570  addsrmo  11142  mulsrmo  11143  lemul12b  12151  lt2mul2div  12173  lediv12a  12188  tgcl  22997  neissex  23156  alexsublem  24073  alexsubALTlem4  24079  iscmet3  25346  mulsuniflem  28193  ablo4  30582  shscli  31349  mdslmd3i  32364  brab2d  32629  cvmliftmolem2  35250  mblfinlem4  37620  heibor  37781  ablo4pnp  37840  crngm4  37963  cvratlem  39378  ps-2  39435  cdlemftr3  40522  mzpcompact2lem  42707
  Copyright terms: Public domain W3C validator