Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adantrrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
adantrrr | ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylanr2 680 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: zorn2lem6 10350 addsrmo 10922 mulsrmo 10923 lemul12b 11925 lt2mul2div 11946 lediv12a 11961 tgcl 22217 neissex 22376 alexsublem 23293 alexsubALTlem4 23299 iscmet3 24555 ablo4 29113 shscli 29880 mdslmd3i 30895 cvmliftmolem2 33456 mblfinlem4 35915 heibor 36077 ablo4pnp 36136 crngm4 36259 cvratlem 37682 ps-2 37739 cdlemftr3 38826 mzpcompact2lem 40823 |
Copyright terms: Public domain | W3C validator |