![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantrrr | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
adantrrr | ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylanr2 682 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: zorn2lem6 10570 addsrmo 11142 mulsrmo 11143 lemul12b 12151 lt2mul2div 12173 lediv12a 12188 tgcl 22997 neissex 23156 alexsublem 24073 alexsubALTlem4 24079 iscmet3 25346 mulsuniflem 28193 ablo4 30582 shscli 31349 mdslmd3i 32364 brab2d 32629 cvmliftmolem2 35250 mblfinlem4 37620 heibor 37781 ablo4pnp 37840 crngm4 37963 cvratlem 39378 ps-2 39435 cdlemftr3 40522 mzpcompact2lem 42707 |
Copyright terms: Public domain | W3C validator |