| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantrrr | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| adantrrr | ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
| 2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylanr2 683 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: zorn2lem6 10461 addsrmo 11033 mulsrmo 11034 lemul12b 12046 lt2mul2div 12068 lediv12a 12083 tgcl 22863 neissex 23021 alexsublem 23938 alexsubALTlem4 23944 iscmet3 25200 mulsuniflem 28059 ablo4 30486 shscli 31253 mdslmd3i 32268 brab2d 32542 cvmliftmolem2 35276 mblfinlem4 37661 heibor 37822 ablo4pnp 37881 crngm4 38004 cvratlem 39422 ps-2 39479 cdlemftr3 40566 mzpcompact2lem 42746 |
| Copyright terms: Public domain | W3C validator |