| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantrrr | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantr2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| adantrrr | ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
| 2 | adantr2.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylanr2 683 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜏))) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: zorn2lem6 10389 addsrmo 10961 mulsrmo 10962 lemul12b 11975 lt2mul2div 11997 lediv12a 12012 tgcl 22882 neissex 23040 alexsublem 23957 alexsubALTlem4 23963 iscmet3 25218 mulsuniflem 28086 ablo4 30525 shscli 31292 mdslmd3i 32307 brab2d 32583 cvmliftmolem2 35314 mblfinlem4 37699 heibor 37860 ablo4pnp 37919 crngm4 38042 cvratlem 39459 ps-2 39516 cdlemftr3 40603 mzpcompact2lem 42783 |
| Copyright terms: Public domain | W3C validator |