MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanr2 Structured version   Visualization version   GIF version

Theorem sylanr2 683
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.)
Hypotheses
Ref Expression
sylanr2.1 (𝜑𝜃)
sylanr2.2 ((𝜓 ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
sylanr2 ((𝜓 ∧ (𝜒𝜑)) → 𝜏)

Proof of Theorem sylanr2
StepHypRef Expression
1 sylanr2.1 . . 3 (𝜑𝜃)
21anim2i 617 . 2 ((𝜒𝜑) → (𝜒𝜃))
3 sylanr2.2 . 2 ((𝜓 ∧ (𝜒𝜃)) → 𝜏)
42, 3sylan2 593 1 ((𝜓 ∧ (𝜒𝜑)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  adantrrl  724  adantrrr  725  unfi  9091  isfin7-2  10298  mulsub  11571  fzsubel  13467  expsub  14024  ramlb  16938  0ram  16939  ressmplvsca  21977  tgcl  22904  fgss2  23809  nmoid  24677  madebdaylemlrcut  27864  numclwwlkqhash  30376  chirredlem4  32394  pibt2  37534  lindsadd  37726  poimirlem28  37761  pridlc3  38186  stoweidlem34  46194
  Copyright terms: Public domain W3C validator