![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanr2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
Ref | Expression |
---|---|
sylanr2.1 | ⊢ (𝜑 → 𝜃) |
sylanr2.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
sylanr2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr2.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | anim2i 616 | . 2 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜃)) |
3 | sylanr2.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
4 | 2, 3 | sylan2 592 | 1 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: adantrrl 723 adantrrr 724 unfi 9238 isfin7-2 10465 mulsub 11733 fzsubel 13620 expsub 14161 ramlb 17066 0ram 17067 ressmplvsca 22072 tgcl 22997 fgss2 23903 nmoid 24784 madebdaylemlrcut 27955 numclwwlkqhash 30407 chirredlem4 32425 pibt2 37383 lindsadd 37573 poimirlem28 37608 pridlc3 38033 stoweidlem34 45955 |
Copyright terms: Public domain | W3C validator |