Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanr2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
Ref | Expression |
---|---|
sylanr2.1 | ⊢ (𝜑 → 𝜃) |
sylanr2.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
sylanr2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr2.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | anim2i 616 | . 2 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜃)) |
3 | sylanr2.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
4 | 2, 3 | sylan2 592 | 1 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: adantrrl 720 adantrrr 721 unfi 8917 isfin7-2 10083 mulsub 11348 fzsubel 13221 expsub 13759 ramlb 16648 0ram 16649 ressmplvsca 21142 tgcl 22027 fgss2 22933 nmoid 23812 numclwwlkqhash 28640 chirredlem4 30656 madebdaylemlrcut 34006 pibt2 35515 lindsadd 35697 poimirlem28 35732 pridlc3 36158 stoweidlem34 43465 |
Copyright terms: Public domain | W3C validator |