| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanr2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
| Ref | Expression |
|---|---|
| sylanr2.1 | ⊢ (𝜑 → 𝜃) |
| sylanr2.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanr2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanr2.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | anim2i 617 | . 2 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜃)) |
| 3 | sylanr2.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantrrl 724 adantrrr 725 unfi 9112 isfin7-2 10325 mulsub 11597 fzsubel 13497 expsub 14051 ramlb 16966 0ram 16967 ressmplvsca 21914 tgcl 22832 fgss2 23737 nmoid 24606 madebdaylemlrcut 27786 numclwwlkqhash 30277 chirredlem4 32295 pibt2 37378 lindsadd 37580 poimirlem28 37615 pridlc3 38040 stoweidlem34 46005 |
| Copyright terms: Public domain | W3C validator |