| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanr2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
| Ref | Expression |
|---|---|
| sylanr2.1 | ⊢ (𝜑 → 𝜃) |
| sylanr2.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanr2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanr2.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | anim2i 617 | . 2 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜃)) |
| 3 | sylanr2.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantrrl 724 adantrrr 725 unfi 9075 isfin7-2 10282 mulsub 11555 fzsubel 13455 expsub 14012 ramlb 16926 0ram 16927 ressmplvsca 21961 tgcl 22879 fgss2 23784 nmoid 24652 madebdaylemlrcut 27839 numclwwlkqhash 30347 chirredlem4 32365 pibt2 37451 lindsadd 37653 poimirlem28 37688 pridlc3 38113 stoweidlem34 46072 |
| Copyright terms: Public domain | W3C validator |