| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanr2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
| Ref | Expression |
|---|---|
| sylanr2.1 | ⊢ (𝜑 → 𝜃) |
| sylanr2.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanr2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanr2.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | anim2i 617 | . 2 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜃)) |
| 3 | sylanr2.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantrrl 724 adantrrr 725 unfi 9141 isfin7-2 10356 mulsub 11628 fzsubel 13528 expsub 14082 ramlb 16997 0ram 16998 ressmplvsca 21945 tgcl 22863 fgss2 23768 nmoid 24637 madebdaylemlrcut 27817 numclwwlkqhash 30311 chirredlem4 32329 pibt2 37412 lindsadd 37614 poimirlem28 37649 pridlc3 38074 stoweidlem34 46039 |
| Copyright terms: Public domain | W3C validator |