MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanr2 Structured version   Visualization version   GIF version

Theorem sylanr2 683
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.)
Hypotheses
Ref Expression
sylanr2.1 (𝜑𝜃)
sylanr2.2 ((𝜓 ∧ (𝜒𝜃)) → 𝜏)
Assertion
Ref Expression
sylanr2 ((𝜓 ∧ (𝜒𝜑)) → 𝜏)

Proof of Theorem sylanr2
StepHypRef Expression
1 sylanr2.1 . . 3 (𝜑𝜃)
21anim2i 617 . 2 ((𝜒𝜑) → (𝜒𝜃))
3 sylanr2.2 . 2 ((𝜓 ∧ (𝜒𝜃)) → 𝜏)
42, 3sylan2 593 1 ((𝜓 ∧ (𝜒𝜑)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  adantrrl  724  adantrrr  725  unfi  9095  isfin7-2  10309  mulsub  11582  fzsubel  13482  expsub  14036  ramlb  16950  0ram  16951  ressmplvsca  21955  tgcl  22873  fgss2  23778  nmoid  24647  madebdaylemlrcut  27832  numclwwlkqhash  30338  chirredlem4  32356  pibt2  37410  lindsadd  37612  poimirlem28  37647  pridlc3  38072  stoweidlem34  46035
  Copyright terms: Public domain W3C validator