Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanr2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
Ref | Expression |
---|---|
sylanr2.1 | ⊢ (𝜑 → 𝜃) |
sylanr2.2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
sylanr2 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr2.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | anim2i 617 | . 2 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜃)) |
3 | sylanr2.2 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: adantrrl 721 adantrrr 722 unfi 8935 isfin7-2 10151 mulsub 11416 fzsubel 13289 expsub 13827 ramlb 16716 0ram 16717 ressmplvsca 21228 tgcl 22115 fgss2 23021 nmoid 23902 numclwwlkqhash 28733 chirredlem4 30749 madebdaylemlrcut 34073 pibt2 35582 lindsadd 35764 poimirlem28 35799 pridlc3 36225 stoweidlem34 43544 |
Copyright terms: Public domain | W3C validator |