Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-2 Structured version   Visualization version   GIF version

Theorem ps-2 39460
Description: Lattice analogue for the projective geometry axiom, "if a line intersects two sides of a triangle at different points then it also intersects the third side." Projective space condition PS2 in [MaedaMaeda] p. 68 and part of Theorem 16.4 in [MaedaMaeda] p. 69. (Contributed by NM, 1-Dec-2011.)
Hypotheses
Ref Expression
ps1.l = (le‘𝐾)
ps1.j = (join‘𝐾)
ps1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ps-2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
Distinct variable groups:   𝑢,𝐴   𝑢,   𝑢,𝐾   𝑢,   𝑢,𝑃   𝑢,𝑄   𝑢,𝑅   𝑢,𝑆   𝑢,𝑇

Proof of Theorem ps-2
StepHypRef Expression
1 simpl21 1252 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → 𝑃𝐴)
2 simp1 1136 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ HL)
3 simp21 1207 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃𝐴)
4 simp23 1209 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑅𝐴)
5 ps1.l . . . . . . . 8 = (le‘𝐾)
6 ps1.j . . . . . . . 8 = (join‘𝐾)
7 ps1.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatlej1 39356 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → 𝑃 (𝑃 𝑅))
92, 3, 4, 8syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃 (𝑃 𝑅))
109adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → 𝑃 (𝑃 𝑅))
11 simp3r 1203 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑇𝐴)
125, 6, 7hlatlej1 39356 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) → 𝑃 (𝑃 𝑇))
132, 3, 11, 12syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃 (𝑃 𝑇))
14 oveq1 7360 . . . . . . . 8 (𝑆 = 𝑃 → (𝑆 𝑇) = (𝑃 𝑇))
1514breq2d 5107 . . . . . . 7 (𝑆 = 𝑃 → (𝑃 (𝑆 𝑇) ↔ 𝑃 (𝑃 𝑇)))
1613, 15syl5ibrcom 247 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑆 = 𝑃𝑃 (𝑆 𝑇)))
1716imp 406 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → 𝑃 (𝑆 𝑇))
18 breq1 5098 . . . . . . 7 (𝑢 = 𝑃 → (𝑢 (𝑃 𝑅) ↔ 𝑃 (𝑃 𝑅)))
19 breq1 5098 . . . . . . 7 (𝑢 = 𝑃 → (𝑢 (𝑆 𝑇) ↔ 𝑃 (𝑆 𝑇)))
2018, 19anbi12d 632 . . . . . 6 (𝑢 = 𝑃 → ((𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)) ↔ (𝑃 (𝑃 𝑅) ∧ 𝑃 (𝑆 𝑇))))
2120rspcev 3579 . . . . 5 ((𝑃𝐴 ∧ (𝑃 (𝑃 𝑅) ∧ 𝑃 (𝑆 𝑇))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
221, 10, 17, 21syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
2322a1d 25 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → (((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
24 hlop 39343 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ OP)
25243ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ OP)
26 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
27 eqid 2729 . . . . . . . . . . . . . . . . . 18 (0.‘𝐾) = (0.‘𝐾)
2826, 27op0cl 39165 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
2925, 28syl 17 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾) ∈ (Base‘𝐾))
3026, 7atbase 39270 . . . . . . . . . . . . . . . . 17 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
313, 30syl 17 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃 ∈ (Base‘𝐾))
32 eqid 2729 . . . . . . . . . . . . . . . . . 18 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3327, 32, 7atcvr0 39269 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
342, 3, 33syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
35 eqid 2729 . . . . . . . . . . . . . . . . 17 (lt‘𝐾) = (lt‘𝐾)
3626, 35, 32cvrlt 39251 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃) → (0.‘𝐾)(lt‘𝐾)𝑃)
372, 29, 31, 34, 36syl31anc 1375 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾)(lt‘𝐾)𝑃)
38 hlpos 39347 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ Poset)
39383ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ Poset)
40 hllat 39344 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ Lat)
41403ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ Lat)
4226, 7atbase 39270 . . . . . . . . . . . . . . . . . 18 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
434, 42syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑅 ∈ (Base‘𝐾))
4426, 6latjcl 18363 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4541, 31, 43, 44syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4626, 5, 35pltletr 18265 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑃𝑃 (𝑃 𝑅)) → (0.‘𝐾)(lt‘𝐾)(𝑃 𝑅)))
4739, 29, 31, 45, 46syl13anc 1374 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((0.‘𝐾)(lt‘𝐾)𝑃𝑃 (𝑃 𝑅)) → (0.‘𝐾)(lt‘𝐾)(𝑃 𝑅)))
4837, 9, 47mp2and 699 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾)(lt‘𝐾)(𝑃 𝑅))
4935pltne 18256 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑃 𝑅) → (0.‘𝐾) ≠ (𝑃 𝑅)))
502, 29, 45, 49syl3anc 1373 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((0.‘𝐾)(lt‘𝐾)(𝑃 𝑅) → (0.‘𝐾) ≠ (𝑃 𝑅)))
5148, 50mpd 15 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾) ≠ (𝑃 𝑅))
5251necomd 2980 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑅) ≠ (0.‘𝐾))
5352adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑃 𝑅) ≠ (0.‘𝐾))
54 hlatl 39341 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
55543ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ AtLat)
56 simp3l 1202 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑆𝐴)
575, 7atncmp 39293 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ AtLat ∧ 𝑆𝐴𝑃𝐴) → (¬ 𝑆 𝑃𝑆𝑃))
5855, 56, 3, 57syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑆 𝑃𝑆𝑃))
59 simp22 1208 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑄𝐴)
6026, 5, 6, 7hlexch1 39364 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑄𝐴𝑃 ∈ (Base‘𝐾)) ∧ ¬ 𝑆 𝑃) → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆)))
61603expia 1121 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑄𝐴𝑃 ∈ (Base‘𝐾))) → (¬ 𝑆 𝑃 → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆))))
622, 56, 59, 31, 61syl13anc 1374 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑆 𝑃 → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆))))
6358, 62sylbird 260 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑆𝑃 → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆))))
6463imp32 418 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃𝑆 (𝑃 𝑄))) → 𝑄 (𝑃 𝑆))
6526, 7atbase 39270 . . . . . . . . . . . . . . . . . 18 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
6659, 65syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑄 ∈ (Base‘𝐾))
6726, 7atbase 39270 . . . . . . . . . . . . . . . . . . 19 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
6856, 67syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑆 ∈ (Base‘𝐾))
6926, 6latjcl 18363 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 𝑆) ∈ (Base‘𝐾))
7041, 31, 68, 69syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
7126, 5, 6latjlej1 18377 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑆) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅)))
7241, 66, 70, 43, 71syl13anc 1374 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑄 (𝑃 𝑆) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅)))
7372adantr 480 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃𝑆 (𝑃 𝑄))) → (𝑄 (𝑃 𝑆) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅)))
7464, 73mpd 15 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃𝑆 (𝑃 𝑄))) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅))
7574adantrrr 725 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅))
7626, 7atbase 39270 . . . . . . . . . . . . . . . . . 18 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
7711, 76syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑇 ∈ (Base‘𝐾))
7826, 6latjcl 18363 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
7941, 66, 43, 78syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
8026, 6latjcl 18363 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑅) ∈ (Base‘𝐾))
8141, 70, 43, 80syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑆) 𝑅) ∈ (Base‘𝐾))
8226, 5lattr 18368 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑅) ∈ (Base‘𝐾))) → ((𝑇 (𝑄 𝑅) ∧ (𝑄 𝑅) ((𝑃 𝑆) 𝑅)) → 𝑇 ((𝑃 𝑆) 𝑅)))
8341, 77, 79, 81, 82syl13anc 1374 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑇 (𝑄 𝑅) ∧ (𝑄 𝑅) ((𝑃 𝑆) 𝑅)) → 𝑇 ((𝑃 𝑆) 𝑅)))
8483expdimp 452 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑇 (𝑄 𝑅)) → ((𝑄 𝑅) ((𝑃 𝑆) 𝑅) → 𝑇 ((𝑃 𝑆) 𝑅)))
8584adantrl 716 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ((𝑄 𝑅) ((𝑃 𝑆) 𝑅) → 𝑇 ((𝑃 𝑆) 𝑅)))
8685adantrl 716 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑄 𝑅) ((𝑃 𝑆) 𝑅) → 𝑇 ((𝑃 𝑆) 𝑅)))
8775, 86mpd 15 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑇 ((𝑃 𝑆) 𝑅))
886, 7hlatj32 39353 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑅𝐴)) → ((𝑃 𝑆) 𝑅) = ((𝑃 𝑅) 𝑆))
892, 3, 56, 4, 88syl13anc 1374 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑆) 𝑅) = ((𝑃 𝑅) 𝑆))
9089breq2d 5107 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑇 ((𝑃 𝑆) 𝑅) ↔ 𝑇 ((𝑃 𝑅) 𝑆)))
9190adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑇 ((𝑃 𝑆) 𝑅) ↔ 𝑇 ((𝑃 𝑅) 𝑆)))
9287, 91mpbid 232 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑇 ((𝑃 𝑅) 𝑆))
9353, 92jca 511 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)))
9493adantrrl 724 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))))) → ((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)))
9594ex 412 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑆𝑃 ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆))))
9626, 5, 6, 27, 7cvrat4 39425 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑇𝐴𝑆𝐴)) → (((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢))))
972, 45, 11, 56, 96syl13anc 1374 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢))))
9895, 97syld 47 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑆𝑃 ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢))))
9998impl 455 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)))
10099adantrlr 723 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)))
1015, 7atncmp 39293 . . . . . . . . . . . . . . 15 ((𝐾 ∈ AtLat ∧ 𝑇𝐴𝑆𝐴) → (¬ 𝑇 𝑆𝑇𝑆))
10255, 11, 56, 101syl3anc 1373 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑇 𝑆𝑇𝑆))
103 necom 2978 . . . . . . . . . . . . . 14 (𝑇𝑆𝑆𝑇)
104102, 103bitrdi 287 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑇 𝑆𝑆𝑇))
105104adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → (¬ 𝑇 𝑆𝑆𝑇))
106 simpl1 1192 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝐾 ∈ HL)
107 simpl3r 1230 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝑇𝐴)
108 simpr 484 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝑢𝐴)
10968adantr 480 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝑆 ∈ (Base‘𝐾))
11026, 5, 6, 7hlexch1 39364 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑢𝐴𝑆 ∈ (Base‘𝐾)) ∧ ¬ 𝑇 𝑆) → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇)))
1111103expia 1121 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑢𝐴𝑆 ∈ (Base‘𝐾))) → (¬ 𝑇 𝑆 → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇))))
112106, 107, 108, 109, 111syl13anc 1374 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → (¬ 𝑇 𝑆 → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇))))
113105, 112sylbird 260 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → (𝑆𝑇 → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇))))
114113imp 406 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) ∧ 𝑆𝑇) → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇)))
115114an32s 652 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑇) ∧ 𝑢𝐴) → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇)))
116115anim2d 612 . . . . . . . 8 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑇) ∧ 𝑢𝐴) → ((𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
117116reximdva 3142 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑇) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
118117ad2ant2rl 749 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇)) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
119118adantrr 717 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
120100, 119mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
121120ex 412 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) → (((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
12223, 121pm2.61dane 3012 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
123122imp 406 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  Posetcpo 18231  ltcplt 18232  joincjn 18235  0.cp0 18345  Latclat 18355  OPcops 39153  ccvr 39243  Atomscatm 39244  AtLatcal 39245  HLchlt 39331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332
This theorem is referenced by:  ps-2b  39464  paddasslem3  39804
  Copyright terms: Public domain W3C validator