Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-2 Structured version   Visualization version   GIF version

Theorem ps-2 39481
Description: Lattice analogue for the projective geometry axiom, "if a line intersects two sides of a triangle at different points then it also intersects the third side." Projective space condition PS2 in [MaedaMaeda] p. 68 and part of Theorem 16.4 in [MaedaMaeda] p. 69. (Contributed by NM, 1-Dec-2011.)
Hypotheses
Ref Expression
ps1.l = (le‘𝐾)
ps1.j = (join‘𝐾)
ps1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ps-2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
Distinct variable groups:   𝑢,𝐴   𝑢,   𝑢,𝐾   𝑢,   𝑢,𝑃   𝑢,𝑄   𝑢,𝑅   𝑢,𝑆   𝑢,𝑇

Proof of Theorem ps-2
StepHypRef Expression
1 simpl21 1251 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → 𝑃𝐴)
2 simp1 1136 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ HL)
3 simp21 1206 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃𝐴)
4 simp23 1208 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑅𝐴)
5 ps1.l . . . . . . . 8 = (le‘𝐾)
6 ps1.j . . . . . . . 8 = (join‘𝐾)
7 ps1.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatlej1 39377 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → 𝑃 (𝑃 𝑅))
92, 3, 4, 8syl3anc 1372 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃 (𝑃 𝑅))
109adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → 𝑃 (𝑃 𝑅))
11 simp3r 1202 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑇𝐴)
125, 6, 7hlatlej1 39377 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑇𝐴) → 𝑃 (𝑃 𝑇))
132, 3, 11, 12syl3anc 1372 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃 (𝑃 𝑇))
14 oveq1 7439 . . . . . . . 8 (𝑆 = 𝑃 → (𝑆 𝑇) = (𝑃 𝑇))
1514breq2d 5154 . . . . . . 7 (𝑆 = 𝑃 → (𝑃 (𝑆 𝑇) ↔ 𝑃 (𝑃 𝑇)))
1613, 15syl5ibrcom 247 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑆 = 𝑃𝑃 (𝑆 𝑇)))
1716imp 406 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → 𝑃 (𝑆 𝑇))
18 breq1 5145 . . . . . . 7 (𝑢 = 𝑃 → (𝑢 (𝑃 𝑅) ↔ 𝑃 (𝑃 𝑅)))
19 breq1 5145 . . . . . . 7 (𝑢 = 𝑃 → (𝑢 (𝑆 𝑇) ↔ 𝑃 (𝑆 𝑇)))
2018, 19anbi12d 632 . . . . . 6 (𝑢 = 𝑃 → ((𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)) ↔ (𝑃 (𝑃 𝑅) ∧ 𝑃 (𝑆 𝑇))))
2120rspcev 3621 . . . . 5 ((𝑃𝐴 ∧ (𝑃 (𝑃 𝑅) ∧ 𝑃 (𝑆 𝑇))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
221, 10, 17, 21syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
2322a1d 25 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆 = 𝑃) → (((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
24 hlop 39364 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ OP)
25243ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ OP)
26 eqid 2736 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
27 eqid 2736 . . . . . . . . . . . . . . . . . 18 (0.‘𝐾) = (0.‘𝐾)
2826, 27op0cl 39186 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
2925, 28syl 17 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾) ∈ (Base‘𝐾))
3026, 7atbase 39291 . . . . . . . . . . . . . . . . 17 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
313, 30syl 17 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃 ∈ (Base‘𝐾))
32 eqid 2736 . . . . . . . . . . . . . . . . . 18 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3327, 32, 7atcvr0 39290 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
342, 3, 33syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
35 eqid 2736 . . . . . . . . . . . . . . . . 17 (lt‘𝐾) = (lt‘𝐾)
3626, 35, 32cvrlt 39272 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑃) → (0.‘𝐾)(lt‘𝐾)𝑃)
372, 29, 31, 34, 36syl31anc 1374 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾)(lt‘𝐾)𝑃)
38 hlpos 39368 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ Poset)
39383ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ Poset)
40 hllat 39365 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ Lat)
41403ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ Lat)
4226, 7atbase 39291 . . . . . . . . . . . . . . . . . 18 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
434, 42syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑅 ∈ (Base‘𝐾))
4426, 6latjcl 18485 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4541, 31, 43, 44syl3anc 1372 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4626, 5, 35pltletr 18389 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑃𝑃 (𝑃 𝑅)) → (0.‘𝐾)(lt‘𝐾)(𝑃 𝑅)))
4739, 29, 31, 45, 46syl13anc 1373 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((0.‘𝐾)(lt‘𝐾)𝑃𝑃 (𝑃 𝑅)) → (0.‘𝐾)(lt‘𝐾)(𝑃 𝑅)))
4837, 9, 47mp2and 699 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾)(lt‘𝐾)(𝑃 𝑅))
4935pltne 18380 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑃 𝑅) → (0.‘𝐾) ≠ (𝑃 𝑅)))
502, 29, 45, 49syl3anc 1372 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((0.‘𝐾)(lt‘𝐾)(𝑃 𝑅) → (0.‘𝐾) ≠ (𝑃 𝑅)))
5148, 50mpd 15 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (0.‘𝐾) ≠ (𝑃 𝑅))
5251necomd 2995 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑅) ≠ (0.‘𝐾))
5352adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑃 𝑅) ≠ (0.‘𝐾))
54 hlatl 39362 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
55543ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ AtLat)
56 simp3l 1201 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑆𝐴)
575, 7atncmp 39314 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ AtLat ∧ 𝑆𝐴𝑃𝐴) → (¬ 𝑆 𝑃𝑆𝑃))
5855, 56, 3, 57syl3anc 1372 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑆 𝑃𝑆𝑃))
59 simp22 1207 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑄𝐴)
6026, 5, 6, 7hlexch1 39385 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑄𝐴𝑃 ∈ (Base‘𝐾)) ∧ ¬ 𝑆 𝑃) → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆)))
61603expia 1121 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑄𝐴𝑃 ∈ (Base‘𝐾))) → (¬ 𝑆 𝑃 → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆))))
622, 56, 59, 31, 61syl13anc 1373 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑆 𝑃 → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆))))
6358, 62sylbird 260 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑆𝑃 → (𝑆 (𝑃 𝑄) → 𝑄 (𝑃 𝑆))))
6463imp32 418 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃𝑆 (𝑃 𝑄))) → 𝑄 (𝑃 𝑆))
6526, 7atbase 39291 . . . . . . . . . . . . . . . . . 18 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
6659, 65syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑄 ∈ (Base‘𝐾))
6726, 7atbase 39291 . . . . . . . . . . . . . . . . . . 19 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
6856, 67syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑆 ∈ (Base‘𝐾))
6926, 6latjcl 18485 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 𝑆) ∈ (Base‘𝐾))
7041, 31, 68, 69syl3anc 1372 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
7126, 5, 6latjlej1 18499 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → (𝑄 (𝑃 𝑆) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅)))
7241, 66, 70, 43, 71syl13anc 1373 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑄 (𝑃 𝑆) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅)))
7372adantr 480 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃𝑆 (𝑃 𝑄))) → (𝑄 (𝑃 𝑆) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅)))
7464, 73mpd 15 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃𝑆 (𝑃 𝑄))) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅))
7574adantrrr 725 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑄 𝑅) ((𝑃 𝑆) 𝑅))
7626, 7atbase 39291 . . . . . . . . . . . . . . . . . 18 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
7711, 76syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑇 ∈ (Base‘𝐾))
7826, 6latjcl 18485 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
7941, 66, 43, 78syl3anc 1372 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
8026, 6latjcl 18485 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑅) ∈ (Base‘𝐾))
8141, 70, 43, 80syl3anc 1372 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑆) 𝑅) ∈ (Base‘𝐾))
8226, 5lattr 18490 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) 𝑅) ∈ (Base‘𝐾))) → ((𝑇 (𝑄 𝑅) ∧ (𝑄 𝑅) ((𝑃 𝑆) 𝑅)) → 𝑇 ((𝑃 𝑆) 𝑅)))
8341, 77, 79, 81, 82syl13anc 1373 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑇 (𝑄 𝑅) ∧ (𝑄 𝑅) ((𝑃 𝑆) 𝑅)) → 𝑇 ((𝑃 𝑆) 𝑅)))
8483expdimp 452 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑇 (𝑄 𝑅)) → ((𝑄 𝑅) ((𝑃 𝑆) 𝑅) → 𝑇 ((𝑃 𝑆) 𝑅)))
8584adantrl 716 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ((𝑄 𝑅) ((𝑃 𝑆) 𝑅) → 𝑇 ((𝑃 𝑆) 𝑅)))
8685adantrl 716 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑄 𝑅) ((𝑃 𝑆) 𝑅) → 𝑇 ((𝑃 𝑆) 𝑅)))
8775, 86mpd 15 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑇 ((𝑃 𝑆) 𝑅))
886, 7hlatj32 39374 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑅𝐴)) → ((𝑃 𝑆) 𝑅) = ((𝑃 𝑅) 𝑆))
892, 3, 56, 4, 88syl13anc 1373 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑆) 𝑅) = ((𝑃 𝑅) 𝑆))
9089breq2d 5154 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑇 ((𝑃 𝑆) 𝑅) ↔ 𝑇 ((𝑃 𝑅) 𝑆)))
9190adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (𝑇 ((𝑃 𝑆) 𝑅) ↔ 𝑇 ((𝑃 𝑅) 𝑆)))
9287, 91mpbid 232 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → 𝑇 ((𝑃 𝑅) 𝑆))
9353, 92jca 511 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)))
9493adantrrl 724 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (𝑆𝑃 ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))))) → ((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)))
9594ex 412 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑆𝑃 ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆))))
9626, 5, 6, 27, 7cvrat4 39446 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝑃 𝑅) ∈ (Base‘𝐾) ∧ 𝑇𝐴𝑆𝐴)) → (((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢))))
972, 45, 11, 56, 96syl13anc 1373 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((𝑃 𝑅) ≠ (0.‘𝐾) ∧ 𝑇 ((𝑃 𝑅) 𝑆)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢))))
9895, 97syld 47 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑆𝑃 ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢))))
9998impl 455 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)))
10099adantrlr 723 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)))
1015, 7atncmp 39314 . . . . . . . . . . . . . . 15 ((𝐾 ∈ AtLat ∧ 𝑇𝐴𝑆𝐴) → (¬ 𝑇 𝑆𝑇𝑆))
10255, 11, 56, 101syl3anc 1372 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑇 𝑆𝑇𝑆))
103 necom 2993 . . . . . . . . . . . . . 14 (𝑇𝑆𝑆𝑇)
104102, 103bitrdi 287 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (¬ 𝑇 𝑆𝑆𝑇))
105104adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → (¬ 𝑇 𝑆𝑆𝑇))
106 simpl1 1191 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝐾 ∈ HL)
107 simpl3r 1229 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝑇𝐴)
108 simpr 484 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝑢𝐴)
10968adantr 480 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → 𝑆 ∈ (Base‘𝐾))
11026, 5, 6, 7hlexch1 39385 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑢𝐴𝑆 ∈ (Base‘𝐾)) ∧ ¬ 𝑇 𝑆) → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇)))
1111103expia 1121 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑢𝐴𝑆 ∈ (Base‘𝐾))) → (¬ 𝑇 𝑆 → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇))))
112106, 107, 108, 109, 111syl13anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → (¬ 𝑇 𝑆 → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇))))
113105, 112sylbird 260 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) → (𝑆𝑇 → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇))))
114113imp 406 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑢𝐴) ∧ 𝑆𝑇) → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇)))
115114an32s 652 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑇) ∧ 𝑢𝐴) → (𝑇 (𝑆 𝑢) → 𝑢 (𝑆 𝑇)))
116115anim2d 612 . . . . . . . 8 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑇) ∧ 𝑢𝐴) → ((𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
117116reximdva 3167 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑇) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
118117ad2ant2rl 749 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ (¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇)) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
119118adantrr 717 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → (∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑇 (𝑆 𝑢)) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
120100, 119mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
121120ex 412 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ 𝑆𝑃) → (((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
12223, 121pm2.61dane 3028 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇))))
123122imp 406 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ∃𝑢𝐴 (𝑢 (𝑃 𝑅) ∧ 𝑢 (𝑆 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wrex 3069   class class class wbr 5142  cfv 6560  (class class class)co 7432  Basecbs 17248  lecple 17305  Posetcpo 18354  ltcplt 18355  joincjn 18358  0.cp0 18469  Latclat 18477  OPcops 39174  ccvr 39264  Atomscatm 39265  AtLatcal 39266  HLchlt 39352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-lat 18478  df-clat 18545  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353
This theorem is referenced by:  ps-2b  39485  paddasslem3  39825
  Copyright terms: Public domain W3C validator