MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcfb Structured version   Visualization version   GIF version

Theorem 1stcfb 22949
Description: For any point 𝐴 in a first-countable topology, there is a function 𝑓:ℕ⟶𝐽 enumerating neighborhoods of 𝐴 which is decreasing and forms a local base. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
1stcclb.1 𝑋 = 𝐽
Assertion
Ref Expression
1stcfb ((𝐽 ∈ 1stω ∧ 𝐴𝑋) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
Distinct variable groups:   𝑓,𝑘,𝑦,𝐴   𝑓,𝐽,𝑘,𝑦   𝑘,𝑋,𝑦
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem 1stcfb
Dummy variables 𝑎 𝑔 𝑛 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stcclb.1 . . 3 𝑋 = 𝐽
211stcclb 22948 . 2 ((𝐽 ∈ 1stω ∧ 𝐴𝑋) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))
3 simplr 768 . . . . . . . . 9 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝐴𝑋)
4 eleq2 2823 . . . . . . . . . . 11 (𝑧 = 𝑋 → (𝐴𝑧𝐴𝑋))
5 sseq2 4009 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → (𝑤𝑧𝑤𝑋))
65anbi2d 630 . . . . . . . . . . . 12 (𝑧 = 𝑋 → ((𝐴𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝑋)))
76rexbidv 3179 . . . . . . . . . . 11 (𝑧 = 𝑋 → (∃𝑤𝑥 (𝐴𝑤𝑤𝑧) ↔ ∃𝑤𝑥 (𝐴𝑤𝑤𝑋)))
84, 7imbi12d 345 . . . . . . . . . 10 (𝑧 = 𝑋 → ((𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)) ↔ (𝐴𝑋 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑋))))
9 simprrr 781 . . . . . . . . . 10 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)))
10 1stctop 22947 . . . . . . . . . . . 12 (𝐽 ∈ 1stω → 𝐽 ∈ Top)
1110ad2antrr 725 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝐽 ∈ Top)
121topopn 22408 . . . . . . . . . . 11 (𝐽 ∈ Top → 𝑋𝐽)
1311, 12syl 17 . . . . . . . . . 10 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝑋𝐽)
148, 9, 13rspcdva 3614 . . . . . . . . 9 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → (𝐴𝑋 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑋)))
153, 14mpd 15 . . . . . . . 8 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑤𝑥 (𝐴𝑤𝑤𝑋))
16 simpl 484 . . . . . . . . 9 ((𝐴𝑤𝑤𝑋) → 𝐴𝑤)
1716reximi 3085 . . . . . . . 8 (∃𝑤𝑥 (𝐴𝑤𝑤𝑋) → ∃𝑤𝑥 𝐴𝑤)
1815, 17syl 17 . . . . . . 7 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑤𝑥 𝐴𝑤)
19 eleq2w 2818 . . . . . . . 8 (𝑤 = 𝑎 → (𝐴𝑤𝐴𝑎))
2019cbvrexvw 3236 . . . . . . 7 (∃𝑤𝑥 𝐴𝑤 ↔ ∃𝑎𝑥 𝐴𝑎)
2118, 20sylib 217 . . . . . 6 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑎𝑥 𝐴𝑎)
22 rabn0 4386 . . . . . 6 ({𝑎𝑥𝐴𝑎} ≠ ∅ ↔ ∃𝑎𝑥 𝐴𝑎)
2321, 22sylibr 233 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → {𝑎𝑥𝐴𝑎} ≠ ∅)
24 vex 3479 . . . . . . 7 𝑥 ∈ V
2524rabex 5333 . . . . . 6 {𝑎𝑥𝐴𝑎} ∈ V
26250sdom 9107 . . . . 5 (∅ ≺ {𝑎𝑥𝐴𝑎} ↔ {𝑎𝑥𝐴𝑎} ≠ ∅)
2723, 26sylibr 233 . . . 4 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∅ ≺ {𝑎𝑥𝐴𝑎})
28 ssrab2 4078 . . . . . 6 {𝑎𝑥𝐴𝑎} ⊆ 𝑥
29 ssdomg 8996 . . . . . 6 (𝑥 ∈ V → ({𝑎𝑥𝐴𝑎} ⊆ 𝑥 → {𝑎𝑥𝐴𝑎} ≼ 𝑥))
3024, 28, 29mp2 9 . . . . 5 {𝑎𝑥𝐴𝑎} ≼ 𝑥
31 simprrl 780 . . . . . 6 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝑥 ≼ ω)
32 nnenom 13945 . . . . . . 7 ℕ ≈ ω
3332ensymi 9000 . . . . . 6 ω ≈ ℕ
34 domentr 9009 . . . . . 6 ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ)
3531, 33, 34sylancl 587 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝑥 ≼ ℕ)
36 domtr 9003 . . . . 5 (({𝑎𝑥𝐴𝑎} ≼ 𝑥𝑥 ≼ ℕ) → {𝑎𝑥𝐴𝑎} ≼ ℕ)
3730, 35, 36sylancr 588 . . . 4 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → {𝑎𝑥𝐴𝑎} ≼ ℕ)
38 fodomr 9128 . . . 4 ((∅ ≺ {𝑎𝑥𝐴𝑎} ∧ {𝑎𝑥𝐴𝑎} ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})
3927, 37, 38syl2anc 585 . . 3 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑔 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})
4010ad3antrrr 729 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → 𝐽 ∈ Top)
41 imassrn 6071 . . . . . . . . . 10 (𝑔 “ (1...𝑛)) ⊆ ran 𝑔
42 forn 6809 . . . . . . . . . . . . 13 (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → ran 𝑔 = {𝑎𝑥𝐴𝑎})
4342ad2antll 728 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ran 𝑔 = {𝑎𝑥𝐴𝑎})
44 simprll 778 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → 𝑥 ∈ 𝒫 𝐽)
4544elpwid 4612 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → 𝑥𝐽)
4628, 45sstrid 3994 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → {𝑎𝑥𝐴𝑎} ⊆ 𝐽)
4743, 46eqsstrd 4021 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ran 𝑔𝐽)
4847adantr 482 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → ran 𝑔𝐽)
4941, 48sstrid 3994 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ⊆ 𝐽)
50 fz1ssnn 13532 . . . . . . . . . . . . . 14 (1...𝑛) ⊆ ℕ
51 fof 6806 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → 𝑔:ℕ⟶{𝑎𝑥𝐴𝑎})
5251ad2antll 728 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → 𝑔:ℕ⟶{𝑎𝑥𝐴𝑎})
5352fdmd 6729 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → dom 𝑔 = ℕ)
5450, 53sseqtrrid 4036 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (1...𝑛) ⊆ dom 𝑔)
5554adantr 482 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ dom 𝑔)
56 sseqin2 4216 . . . . . . . . . . . 12 ((1...𝑛) ⊆ dom 𝑔 ↔ (dom 𝑔 ∩ (1...𝑛)) = (1...𝑛))
5755, 56sylib 217 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (dom 𝑔 ∩ (1...𝑛)) = (1...𝑛))
58 elfz1end 13531 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (1...𝑛))
59 ne0i 4335 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑛) → (1...𝑛) ≠ ∅)
6059adantl 483 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ (1...𝑛)) → (1...𝑛) ≠ ∅)
6158, 60sylan2b 595 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ≠ ∅)
6257, 61eqnetrd 3009 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (dom 𝑔 ∩ (1...𝑛)) ≠ ∅)
63 imadisj 6080 . . . . . . . . . . 11 ((𝑔 “ (1...𝑛)) = ∅ ↔ (dom 𝑔 ∩ (1...𝑛)) = ∅)
6463necon3bii 2994 . . . . . . . . . 10 ((𝑔 “ (1...𝑛)) ≠ ∅ ↔ (dom 𝑔 ∩ (1...𝑛)) ≠ ∅)
6562, 64sylibr 233 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ≠ ∅)
66 fzfid 13938 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
6752ffund 6722 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → Fun 𝑔)
68 fores 6816 . . . . . . . . . . 11 ((Fun 𝑔 ∧ (1...𝑛) ⊆ dom 𝑔) → (𝑔 ↾ (1...𝑛)):(1...𝑛)–onto→(𝑔 “ (1...𝑛)))
6967, 55, 68syl2an2r 684 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 ↾ (1...𝑛)):(1...𝑛)–onto→(𝑔 “ (1...𝑛)))
70 fofi 9338 . . . . . . . . . 10 (((1...𝑛) ∈ Fin ∧ (𝑔 ↾ (1...𝑛)):(1...𝑛)–onto→(𝑔 “ (1...𝑛))) → (𝑔 “ (1...𝑛)) ∈ Fin)
7166, 69, 70syl2anc 585 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ∈ Fin)
72 fiinopn 22403 . . . . . . . . . 10 (𝐽 ∈ Top → (((𝑔 “ (1...𝑛)) ⊆ 𝐽 ∧ (𝑔 “ (1...𝑛)) ≠ ∅ ∧ (𝑔 “ (1...𝑛)) ∈ Fin) → (𝑔 “ (1...𝑛)) ∈ 𝐽))
7372imp 408 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((𝑔 “ (1...𝑛)) ⊆ 𝐽 ∧ (𝑔 “ (1...𝑛)) ≠ ∅ ∧ (𝑔 “ (1...𝑛)) ∈ Fin)) → (𝑔 “ (1...𝑛)) ∈ 𝐽)
7440, 49, 65, 71, 73syl13anc 1373 . . . . . . . 8 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ∈ 𝐽)
7574fmpttd 7115 . . . . . . 7 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))):ℕ⟶𝐽)
76 imassrn 6071 . . . . . . . . . . . . 13 (𝑔 “ (1...𝑘)) ⊆ ran 𝑔
7743adantr 482 . . . . . . . . . . . . 13 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ran 𝑔 = {𝑎𝑥𝐴𝑎})
7876, 77sseqtrid 4035 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ⊆ {𝑎𝑥𝐴𝑎})
79 id 22 . . . . . . . . . . . . . 14 (𝐴𝑛𝐴𝑛)
8079rgenw 3066 . . . . . . . . . . . . 13 𝑛𝑥 (𝐴𝑛𝐴𝑛)
81 eleq2w 2818 . . . . . . . . . . . . . 14 (𝑎 = 𝑛 → (𝐴𝑎𝐴𝑛))
8281ralrab 3690 . . . . . . . . . . . . 13 (∀𝑛 ∈ {𝑎𝑥𝐴𝑎}𝐴𝑛 ↔ ∀𝑛𝑥 (𝐴𝑛𝐴𝑛))
8380, 82mpbir 230 . . . . . . . . . . . 12 𝑛 ∈ {𝑎𝑥𝐴𝑎}𝐴𝑛
84 ssralv 4051 . . . . . . . . . . . 12 ((𝑔 “ (1...𝑘)) ⊆ {𝑎𝑥𝐴𝑎} → (∀𝑛 ∈ {𝑎𝑥𝐴𝑎}𝐴𝑛 → ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴𝑛))
8578, 83, 84mpisyl 21 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴𝑛)
86 elintg 4959 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴 (𝑔 “ (1...𝑘)) ↔ ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴𝑛))
8786ad3antlr 730 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝐴 (𝑔 “ (1...𝑘)) ↔ ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴𝑛))
8885, 87mpbird 257 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → 𝐴 (𝑔 “ (1...𝑘)))
89 eqid 2733 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))
90 oveq2 7417 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1...𝑛) = (1...𝑘))
9190imaeq2d 6060 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑔 “ (1...𝑛)) = (𝑔 “ (1...𝑘)))
9291inteqd 4956 . . . . . . . . . . 11 (𝑛 = 𝑘 (𝑔 “ (1...𝑛)) = (𝑔 “ (1...𝑘)))
93 simpr 486 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
9474ralrimiva 3147 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∀𝑛 ∈ ℕ (𝑔 “ (1...𝑛)) ∈ 𝐽)
9592eleq1d 2819 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ( (𝑔 “ (1...𝑛)) ∈ 𝐽 (𝑔 “ (1...𝑘)) ∈ 𝐽))
9695rspccva 3612 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ (𝑔 “ (1...𝑛)) ∈ 𝐽𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ∈ 𝐽)
9794, 96sylan 581 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ∈ 𝐽)
9889, 92, 93, 97fvmptd3 7022 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) = (𝑔 “ (1...𝑘)))
9988, 98eleqtrrd 2837 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))
100 fzssp1 13544 . . . . . . . . . . . 12 (1...𝑘) ⊆ (1...(𝑘 + 1))
101 imass2 6102 . . . . . . . . . . . 12 ((1...𝑘) ⊆ (1...(𝑘 + 1)) → (𝑔 “ (1...𝑘)) ⊆ (𝑔 “ (1...(𝑘 + 1))))
102100, 101mp1i 13 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ⊆ (𝑔 “ (1...(𝑘 + 1))))
103 intss 4974 . . . . . . . . . . 11 ((𝑔 “ (1...𝑘)) ⊆ (𝑔 “ (1...(𝑘 + 1))) → (𝑔 “ (1...(𝑘 + 1))) ⊆ (𝑔 “ (1...𝑘)))
104102, 103syl 17 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...(𝑘 + 1))) ⊆ (𝑔 “ (1...𝑘)))
105 oveq2 7417 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → (1...𝑛) = (1...(𝑘 + 1)))
106105imaeq2d 6060 . . . . . . . . . . . 12 (𝑛 = (𝑘 + 1) → (𝑔 “ (1...𝑛)) = (𝑔 “ (1...(𝑘 + 1))))
107106inteqd 4956 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝑔 “ (1...𝑛)) = (𝑔 “ (1...(𝑘 + 1))))
108 peano2nn 12224 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
109108adantl 483 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
110107eleq1d 2819 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → ( (𝑔 “ (1...𝑛)) ∈ 𝐽 (𝑔 “ (1...(𝑘 + 1))) ∈ 𝐽))
111110rspccva 3612 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ (𝑔 “ (1...𝑛)) ∈ 𝐽 ∧ (𝑘 + 1) ∈ ℕ) → (𝑔 “ (1...(𝑘 + 1))) ∈ 𝐽)
11294, 108, 111syl2an 597 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...(𝑘 + 1))) ∈ 𝐽)
11389, 107, 109, 112fvmptd3 7022 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) = (𝑔 “ (1...(𝑘 + 1))))
114104, 113, 983sstr4d 4030 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))
11599, 114jca 513 . . . . . . . 8 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)))
116115ralrimiva 3147 . . . . . . 7 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)))
117 simprlr 779 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)))
118 eleq2w 2818 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
119 sseq2 4009 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑤𝑧𝑤𝑦))
120119anbi2d 630 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝐴𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝑦)))
121120rexbidv 3179 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (∃𝑤𝑥 (𝐴𝑤𝑤𝑧) ↔ ∃𝑤𝑥 (𝐴𝑤𝑤𝑦)))
122118, 121imbi12d 345 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)) ↔ (𝐴𝑦 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑦))))
123122rspccva 3612 . . . . . . . . . . 11 ((∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)) ∧ 𝑦𝐽) → (𝐴𝑦 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑦)))
124117, 123sylan 581 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (𝐴𝑦 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑦)))
125 eleq2w 2818 . . . . . . . . . . . 12 (𝑎 = 𝑤 → (𝐴𝑎𝐴𝑤))
126125rexrab 3693 . . . . . . . . . . 11 (∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦 ↔ ∃𝑤𝑥 (𝐴𝑤𝑤𝑦))
12743rexeqdv 3327 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (∃𝑤 ∈ ran 𝑔 𝑤𝑦 ↔ ∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦))
128 fofn 6808 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → 𝑔 Fn ℕ)
129128ad2antll 728 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → 𝑔 Fn ℕ)
130 sseq1 4008 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑔𝑘) → (𝑤𝑦 ↔ (𝑔𝑘) ⊆ 𝑦))
131130rexrn 7089 . . . . . . . . . . . . . . 15 (𝑔 Fn ℕ → (∃𝑤 ∈ ran 𝑔 𝑤𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦))
132129, 131syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (∃𝑤 ∈ ran 𝑔 𝑤𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦))
133127, 132bitr3d 281 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦))
134133adantr 482 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦))
135 elfz1end 13531 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (1...𝑘))
136 fz1ssnn 13532 . . . . . . . . . . . . . . . . . 18 (1...𝑘) ⊆ ℕ
13753adantr 482 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → dom 𝑔 = ℕ)
138136, 137sseqtrrid 4036 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (1...𝑘) ⊆ dom 𝑔)
139 funfvima2 7233 . . . . . . . . . . . . . . . . 17 ((Fun 𝑔 ∧ (1...𝑘) ⊆ dom 𝑔) → (𝑘 ∈ (1...𝑘) → (𝑔𝑘) ∈ (𝑔 “ (1...𝑘))))
14067, 138, 139syl2an2r 684 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (𝑘 ∈ (1...𝑘) → (𝑔𝑘) ∈ (𝑔 “ (1...𝑘))))
141140imp 408 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) ∧ 𝑘 ∈ (1...𝑘)) → (𝑔𝑘) ∈ (𝑔 “ (1...𝑘)))
142135, 141sylan2b 595 . . . . . . . . . . . . . 14 (((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) ∧ 𝑘 ∈ ℕ) → (𝑔𝑘) ∈ (𝑔 “ (1...𝑘)))
143 intss1 4968 . . . . . . . . . . . . . 14 ((𝑔𝑘) ∈ (𝑔 “ (1...𝑘)) → (𝑔 “ (1...𝑘)) ⊆ (𝑔𝑘))
144 sstr2 3990 . . . . . . . . . . . . . 14 ( (𝑔 “ (1...𝑘)) ⊆ (𝑔𝑘) → ((𝑔𝑘) ⊆ 𝑦 (𝑔 “ (1...𝑘)) ⊆ 𝑦))
145142, 143, 1443syl 18 . . . . . . . . . . . . 13 (((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑔𝑘) ⊆ 𝑦 (𝑔 “ (1...𝑘)) ⊆ 𝑦))
146145reximdva 3169 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
147134, 146sylbid 239 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦 → ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
148126, 147biimtrrid 242 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑤𝑥 (𝐴𝑤𝑤𝑦) → ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
149124, 148syld 47 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
15098sseq1d 4014 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦 (𝑔 “ (1...𝑘)) ⊆ 𝑦))
151150rexbidva 3177 . . . . . . . . . 10 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
152151adantr 482 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
153149, 152sylibrd 259 . . . . . . . 8 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))
154153ralrimiva 3147 . . . . . . 7 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))
155 nnex 12218 . . . . . . . . 9 ℕ ∈ V
156155mptex 7225 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) ∈ V
157 feq1 6699 . . . . . . . . 9 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (𝑓:ℕ⟶𝐽 ↔ (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))):ℕ⟶𝐽))
158 fveq1 6891 . . . . . . . . . . . 12 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (𝑓𝑘) = ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))
159158eleq2d 2820 . . . . . . . . . . 11 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (𝐴 ∈ (𝑓𝑘) ↔ 𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)))
160 fveq1 6891 . . . . . . . . . . . 12 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (𝑓‘(𝑘 + 1)) = ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)))
161160, 158sseq12d 4016 . . . . . . . . . . 11 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘) ↔ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)))
162159, 161anbi12d 632 . . . . . . . . . 10 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ↔ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))))
163162ralbidv 3178 . . . . . . . . 9 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ↔ ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))))
164158sseq1d 4014 . . . . . . . . . . . 12 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝑓𝑘) ⊆ 𝑦 ↔ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))
165164rexbidv 3179 . . . . . . . . . . 11 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))
166165imbi2d 341 . . . . . . . . . 10 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦) ↔ (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦)))
167166ralbidv 3178 . . . . . . . . 9 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦) ↔ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦)))
168157, 163, 1673anbi123d 1437 . . . . . . . 8 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)) ↔ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))):ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))))
169156, 168spcev 3597 . . . . . . 7 (((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))):ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦)) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
17075, 116, 154, 169syl3anc 1372 . . . . . 6 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
171170expr 458 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)))) → (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦))))
172171adantrrl 723 . . . 4 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦))))
173172exlimdv 1937 . . 3 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → (∃𝑔 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦))))
17439, 173mpd 15 . 2 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
1752, 174rexlimddv 3162 1 ((𝐽 ∈ 1stω ∧ 𝐴𝑋) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wne 2941  wral 3062  wrex 3071  {crab 3433  Vcvv 3475  cin 3948  wss 3949  c0 4323  𝒫 cpw 4603   cuni 4909   cint 4951   class class class wbr 5149  cmpt 5232  dom cdm 5677  ran crn 5678  cres 5679  cima 5680  Fun wfun 6538   Fn wfn 6539  wf 6540  ontowfo 6542  cfv 6544  (class class class)co 7409  ωcom 7855  cen 8936  cdom 8937  csdm 8938  Fincfn 8939  1c1 11111   + caddc 11113  cn 12212  ...cfz 13484  Topctop 22395  1stωc1stc 22941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-top 22396  df-1stc 22943
This theorem is referenced by:  1stcelcls  22965
  Copyright terms: Public domain W3C validator