MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcfb Structured version   Visualization version   GIF version

Theorem 1stcfb 23468
Description: For any point 𝐴 in a first-countable topology, there is a function 𝑓:ℕ⟶𝐽 enumerating neighborhoods of 𝐴 which is decreasing and forms a local base. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
1stcclb.1 𝑋 = 𝐽
Assertion
Ref Expression
1stcfb ((𝐽 ∈ 1stω ∧ 𝐴𝑋) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
Distinct variable groups:   𝑓,𝑘,𝑦,𝐴   𝑓,𝐽,𝑘,𝑦   𝑘,𝑋,𝑦
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem 1stcfb
Dummy variables 𝑎 𝑔 𝑛 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stcclb.1 . . 3 𝑋 = 𝐽
211stcclb 23467 . 2 ((𝐽 ∈ 1stω ∧ 𝐴𝑋) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))
3 simplr 769 . . . . . . . . 9 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝐴𝑋)
4 eleq2 2827 . . . . . . . . . . 11 (𝑧 = 𝑋 → (𝐴𝑧𝐴𝑋))
5 sseq2 4021 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → (𝑤𝑧𝑤𝑋))
65anbi2d 630 . . . . . . . . . . . 12 (𝑧 = 𝑋 → ((𝐴𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝑋)))
76rexbidv 3176 . . . . . . . . . . 11 (𝑧 = 𝑋 → (∃𝑤𝑥 (𝐴𝑤𝑤𝑧) ↔ ∃𝑤𝑥 (𝐴𝑤𝑤𝑋)))
84, 7imbi12d 344 . . . . . . . . . 10 (𝑧 = 𝑋 → ((𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)) ↔ (𝐴𝑋 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑋))))
9 simprrr 782 . . . . . . . . . 10 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)))
10 1stctop 23466 . . . . . . . . . . . 12 (𝐽 ∈ 1stω → 𝐽 ∈ Top)
1110ad2antrr 726 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝐽 ∈ Top)
121topopn 22927 . . . . . . . . . . 11 (𝐽 ∈ Top → 𝑋𝐽)
1311, 12syl 17 . . . . . . . . . 10 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝑋𝐽)
148, 9, 13rspcdva 3622 . . . . . . . . 9 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → (𝐴𝑋 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑋)))
153, 14mpd 15 . . . . . . . 8 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑤𝑥 (𝐴𝑤𝑤𝑋))
16 simpl 482 . . . . . . . . 9 ((𝐴𝑤𝑤𝑋) → 𝐴𝑤)
1716reximi 3081 . . . . . . . 8 (∃𝑤𝑥 (𝐴𝑤𝑤𝑋) → ∃𝑤𝑥 𝐴𝑤)
1815, 17syl 17 . . . . . . 7 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑤𝑥 𝐴𝑤)
19 eleq2w 2822 . . . . . . . 8 (𝑤 = 𝑎 → (𝐴𝑤𝐴𝑎))
2019cbvrexvw 3235 . . . . . . 7 (∃𝑤𝑥 𝐴𝑤 ↔ ∃𝑎𝑥 𝐴𝑎)
2118, 20sylib 218 . . . . . 6 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑎𝑥 𝐴𝑎)
22 rabn0 4394 . . . . . 6 ({𝑎𝑥𝐴𝑎} ≠ ∅ ↔ ∃𝑎𝑥 𝐴𝑎)
2321, 22sylibr 234 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → {𝑎𝑥𝐴𝑎} ≠ ∅)
24 vex 3481 . . . . . . 7 𝑥 ∈ V
2524rabex 5344 . . . . . 6 {𝑎𝑥𝐴𝑎} ∈ V
26250sdom 9145 . . . . 5 (∅ ≺ {𝑎𝑥𝐴𝑎} ↔ {𝑎𝑥𝐴𝑎} ≠ ∅)
2723, 26sylibr 234 . . . 4 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∅ ≺ {𝑎𝑥𝐴𝑎})
28 ssrab2 4089 . . . . . 6 {𝑎𝑥𝐴𝑎} ⊆ 𝑥
29 ssdomg 9038 . . . . . 6 (𝑥 ∈ V → ({𝑎𝑥𝐴𝑎} ⊆ 𝑥 → {𝑎𝑥𝐴𝑎} ≼ 𝑥))
3024, 28, 29mp2 9 . . . . 5 {𝑎𝑥𝐴𝑎} ≼ 𝑥
31 simprrl 781 . . . . . 6 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝑥 ≼ ω)
32 nnenom 14017 . . . . . . 7 ℕ ≈ ω
3332ensymi 9042 . . . . . 6 ω ≈ ℕ
34 domentr 9051 . . . . . 6 ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ)
3531, 33, 34sylancl 586 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝑥 ≼ ℕ)
36 domtr 9045 . . . . 5 (({𝑎𝑥𝐴𝑎} ≼ 𝑥𝑥 ≼ ℕ) → {𝑎𝑥𝐴𝑎} ≼ ℕ)
3730, 35, 36sylancr 587 . . . 4 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → {𝑎𝑥𝐴𝑎} ≼ ℕ)
38 fodomr 9166 . . . 4 ((∅ ≺ {𝑎𝑥𝐴𝑎} ∧ {𝑎𝑥𝐴𝑎} ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})
3927, 37, 38syl2anc 584 . . 3 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑔 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})
4010ad3antrrr 730 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → 𝐽 ∈ Top)
41 imassrn 6090 . . . . . . . . . 10 (𝑔 “ (1...𝑛)) ⊆ ran 𝑔
42 forn 6823 . . . . . . . . . . . . 13 (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → ran 𝑔 = {𝑎𝑥𝐴𝑎})
4342ad2antll 729 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ran 𝑔 = {𝑎𝑥𝐴𝑎})
44 simprll 779 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → 𝑥 ∈ 𝒫 𝐽)
4544elpwid 4613 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → 𝑥𝐽)
4628, 45sstrid 4006 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → {𝑎𝑥𝐴𝑎} ⊆ 𝐽)
4743, 46eqsstrd 4033 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ran 𝑔𝐽)
4847adantr 480 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → ran 𝑔𝐽)
4941, 48sstrid 4006 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ⊆ 𝐽)
50 fz1ssnn 13591 . . . . . . . . . . . . . 14 (1...𝑛) ⊆ ℕ
51 fof 6820 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → 𝑔:ℕ⟶{𝑎𝑥𝐴𝑎})
5251ad2antll 729 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → 𝑔:ℕ⟶{𝑎𝑥𝐴𝑎})
5352fdmd 6746 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → dom 𝑔 = ℕ)
5450, 53sseqtrrid 4048 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (1...𝑛) ⊆ dom 𝑔)
5554adantr 480 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ dom 𝑔)
56 sseqin2 4230 . . . . . . . . . . . 12 ((1...𝑛) ⊆ dom 𝑔 ↔ (dom 𝑔 ∩ (1...𝑛)) = (1...𝑛))
5755, 56sylib 218 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (dom 𝑔 ∩ (1...𝑛)) = (1...𝑛))
58 elfz1end 13590 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (1...𝑛))
59 ne0i 4346 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑛) → (1...𝑛) ≠ ∅)
6059adantl 481 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ (1...𝑛)) → (1...𝑛) ≠ ∅)
6158, 60sylan2b 594 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ≠ ∅)
6257, 61eqnetrd 3005 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (dom 𝑔 ∩ (1...𝑛)) ≠ ∅)
63 imadisj 6099 . . . . . . . . . . 11 ((𝑔 “ (1...𝑛)) = ∅ ↔ (dom 𝑔 ∩ (1...𝑛)) = ∅)
6463necon3bii 2990 . . . . . . . . . 10 ((𝑔 “ (1...𝑛)) ≠ ∅ ↔ (dom 𝑔 ∩ (1...𝑛)) ≠ ∅)
6562, 64sylibr 234 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ≠ ∅)
66 fzfid 14010 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
6752ffund 6740 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → Fun 𝑔)
68 fores 6830 . . . . . . . . . . 11 ((Fun 𝑔 ∧ (1...𝑛) ⊆ dom 𝑔) → (𝑔 ↾ (1...𝑛)):(1...𝑛)–onto→(𝑔 “ (1...𝑛)))
6967, 55, 68syl2an2r 685 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 ↾ (1...𝑛)):(1...𝑛)–onto→(𝑔 “ (1...𝑛)))
70 fofi 9348 . . . . . . . . . 10 (((1...𝑛) ∈ Fin ∧ (𝑔 ↾ (1...𝑛)):(1...𝑛)–onto→(𝑔 “ (1...𝑛))) → (𝑔 “ (1...𝑛)) ∈ Fin)
7166, 69, 70syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ∈ Fin)
72 fiinopn 22922 . . . . . . . . . 10 (𝐽 ∈ Top → (((𝑔 “ (1...𝑛)) ⊆ 𝐽 ∧ (𝑔 “ (1...𝑛)) ≠ ∅ ∧ (𝑔 “ (1...𝑛)) ∈ Fin) → (𝑔 “ (1...𝑛)) ∈ 𝐽))
7372imp 406 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((𝑔 “ (1...𝑛)) ⊆ 𝐽 ∧ (𝑔 “ (1...𝑛)) ≠ ∅ ∧ (𝑔 “ (1...𝑛)) ∈ Fin)) → (𝑔 “ (1...𝑛)) ∈ 𝐽)
7440, 49, 65, 71, 73syl13anc 1371 . . . . . . . 8 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ∈ 𝐽)
7574fmpttd 7134 . . . . . . 7 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))):ℕ⟶𝐽)
76 imassrn 6090 . . . . . . . . . . . . 13 (𝑔 “ (1...𝑘)) ⊆ ran 𝑔
7743adantr 480 . . . . . . . . . . . . 13 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ran 𝑔 = {𝑎𝑥𝐴𝑎})
7876, 77sseqtrid 4047 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ⊆ {𝑎𝑥𝐴𝑎})
79 id 22 . . . . . . . . . . . . . 14 (𝐴𝑛𝐴𝑛)
8079rgenw 3062 . . . . . . . . . . . . 13 𝑛𝑥 (𝐴𝑛𝐴𝑛)
81 eleq2w 2822 . . . . . . . . . . . . . 14 (𝑎 = 𝑛 → (𝐴𝑎𝐴𝑛))
8281ralrab 3701 . . . . . . . . . . . . 13 (∀𝑛 ∈ {𝑎𝑥𝐴𝑎}𝐴𝑛 ↔ ∀𝑛𝑥 (𝐴𝑛𝐴𝑛))
8380, 82mpbir 231 . . . . . . . . . . . 12 𝑛 ∈ {𝑎𝑥𝐴𝑎}𝐴𝑛
84 ssralv 4063 . . . . . . . . . . . 12 ((𝑔 “ (1...𝑘)) ⊆ {𝑎𝑥𝐴𝑎} → (∀𝑛 ∈ {𝑎𝑥𝐴𝑎}𝐴𝑛 → ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴𝑛))
8578, 83, 84mpisyl 21 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴𝑛)
86 elintg 4958 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴 (𝑔 “ (1...𝑘)) ↔ ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴𝑛))
8786ad3antlr 731 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝐴 (𝑔 “ (1...𝑘)) ↔ ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴𝑛))
8885, 87mpbird 257 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → 𝐴 (𝑔 “ (1...𝑘)))
89 eqid 2734 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))
90 oveq2 7438 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1...𝑛) = (1...𝑘))
9190imaeq2d 6079 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑔 “ (1...𝑛)) = (𝑔 “ (1...𝑘)))
9291inteqd 4955 . . . . . . . . . . 11 (𝑛 = 𝑘 (𝑔 “ (1...𝑛)) = (𝑔 “ (1...𝑘)))
93 simpr 484 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
9474ralrimiva 3143 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∀𝑛 ∈ ℕ (𝑔 “ (1...𝑛)) ∈ 𝐽)
9592eleq1d 2823 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ( (𝑔 “ (1...𝑛)) ∈ 𝐽 (𝑔 “ (1...𝑘)) ∈ 𝐽))
9695rspccva 3620 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ (𝑔 “ (1...𝑛)) ∈ 𝐽𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ∈ 𝐽)
9794, 96sylan 580 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ∈ 𝐽)
9889, 92, 93, 97fvmptd3 7038 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) = (𝑔 “ (1...𝑘)))
9988, 98eleqtrrd 2841 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))
100 fzssp1 13603 . . . . . . . . . . . 12 (1...𝑘) ⊆ (1...(𝑘 + 1))
101 imass2 6122 . . . . . . . . . . . 12 ((1...𝑘) ⊆ (1...(𝑘 + 1)) → (𝑔 “ (1...𝑘)) ⊆ (𝑔 “ (1...(𝑘 + 1))))
102100, 101mp1i 13 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ⊆ (𝑔 “ (1...(𝑘 + 1))))
103 intss 4973 . . . . . . . . . . 11 ((𝑔 “ (1...𝑘)) ⊆ (𝑔 “ (1...(𝑘 + 1))) → (𝑔 “ (1...(𝑘 + 1))) ⊆ (𝑔 “ (1...𝑘)))
104102, 103syl 17 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...(𝑘 + 1))) ⊆ (𝑔 “ (1...𝑘)))
105 oveq2 7438 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → (1...𝑛) = (1...(𝑘 + 1)))
106105imaeq2d 6079 . . . . . . . . . . . 12 (𝑛 = (𝑘 + 1) → (𝑔 “ (1...𝑛)) = (𝑔 “ (1...(𝑘 + 1))))
107106inteqd 4955 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝑔 “ (1...𝑛)) = (𝑔 “ (1...(𝑘 + 1))))
108 peano2nn 12275 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
109108adantl 481 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
110107eleq1d 2823 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → ( (𝑔 “ (1...𝑛)) ∈ 𝐽 (𝑔 “ (1...(𝑘 + 1))) ∈ 𝐽))
111110rspccva 3620 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ (𝑔 “ (1...𝑛)) ∈ 𝐽 ∧ (𝑘 + 1) ∈ ℕ) → (𝑔 “ (1...(𝑘 + 1))) ∈ 𝐽)
11294, 108, 111syl2an 596 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...(𝑘 + 1))) ∈ 𝐽)
11389, 107, 109, 112fvmptd3 7038 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) = (𝑔 “ (1...(𝑘 + 1))))
114104, 113, 983sstr4d 4042 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))
11599, 114jca 511 . . . . . . . 8 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)))
116115ralrimiva 3143 . . . . . . 7 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)))
117 simprlr 780 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)))
118 eleq2w 2822 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
119 sseq2 4021 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑤𝑧𝑤𝑦))
120119anbi2d 630 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝐴𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝑦)))
121120rexbidv 3176 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (∃𝑤𝑥 (𝐴𝑤𝑤𝑧) ↔ ∃𝑤𝑥 (𝐴𝑤𝑤𝑦)))
122118, 121imbi12d 344 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)) ↔ (𝐴𝑦 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑦))))
123122rspccva 3620 . . . . . . . . . . 11 ((∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)) ∧ 𝑦𝐽) → (𝐴𝑦 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑦)))
124117, 123sylan 580 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (𝐴𝑦 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑦)))
125 eleq2w 2822 . . . . . . . . . . . 12 (𝑎 = 𝑤 → (𝐴𝑎𝐴𝑤))
126125rexrab 3704 . . . . . . . . . . 11 (∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦 ↔ ∃𝑤𝑥 (𝐴𝑤𝑤𝑦))
12743rexeqdv 3324 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (∃𝑤 ∈ ran 𝑔 𝑤𝑦 ↔ ∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦))
128 fofn 6822 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → 𝑔 Fn ℕ)
129128ad2antll 729 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → 𝑔 Fn ℕ)
130 sseq1 4020 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑔𝑘) → (𝑤𝑦 ↔ (𝑔𝑘) ⊆ 𝑦))
131130rexrn 7106 . . . . . . . . . . . . . . 15 (𝑔 Fn ℕ → (∃𝑤 ∈ ran 𝑔 𝑤𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦))
132129, 131syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (∃𝑤 ∈ ran 𝑔 𝑤𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦))
133127, 132bitr3d 281 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦))
134133adantr 480 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦))
135 elfz1end 13590 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (1...𝑘))
136 fz1ssnn 13591 . . . . . . . . . . . . . . . . . 18 (1...𝑘) ⊆ ℕ
13753adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → dom 𝑔 = ℕ)
138136, 137sseqtrrid 4048 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (1...𝑘) ⊆ dom 𝑔)
139 funfvima2 7250 . . . . . . . . . . . . . . . . 17 ((Fun 𝑔 ∧ (1...𝑘) ⊆ dom 𝑔) → (𝑘 ∈ (1...𝑘) → (𝑔𝑘) ∈ (𝑔 “ (1...𝑘))))
14067, 138, 139syl2an2r 685 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (𝑘 ∈ (1...𝑘) → (𝑔𝑘) ∈ (𝑔 “ (1...𝑘))))
141140imp 406 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) ∧ 𝑘 ∈ (1...𝑘)) → (𝑔𝑘) ∈ (𝑔 “ (1...𝑘)))
142135, 141sylan2b 594 . . . . . . . . . . . . . 14 (((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) ∧ 𝑘 ∈ ℕ) → (𝑔𝑘) ∈ (𝑔 “ (1...𝑘)))
143 intss1 4967 . . . . . . . . . . . . . 14 ((𝑔𝑘) ∈ (𝑔 “ (1...𝑘)) → (𝑔 “ (1...𝑘)) ⊆ (𝑔𝑘))
144 sstr2 4001 . . . . . . . . . . . . . 14 ( (𝑔 “ (1...𝑘)) ⊆ (𝑔𝑘) → ((𝑔𝑘) ⊆ 𝑦 (𝑔 “ (1...𝑘)) ⊆ 𝑦))
145142, 143, 1443syl 18 . . . . . . . . . . . . 13 (((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑔𝑘) ⊆ 𝑦 (𝑔 “ (1...𝑘)) ⊆ 𝑦))
146145reximdva 3165 . . . . . . . . . . . 12 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
147134, 146sylbid 240 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦 → ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
148126, 147biimtrrid 243 . . . . . . . . . 10 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑤𝑥 (𝐴𝑤𝑤𝑦) → ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
149124, 148syld 47 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
15098sseq1d 4026 . . . . . . . . . . 11 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦 (𝑔 “ (1...𝑘)) ⊆ 𝑦))
151150rexbidva 3174 . . . . . . . . . 10 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
152151adantr 480 . . . . . . . . 9 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
153149, 152sylibrd 259 . . . . . . . 8 ((((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))
154153ralrimiva 3143 . . . . . . 7 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))
155 nnex 12269 . . . . . . . . 9 ℕ ∈ V
156155mptex 7242 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) ∈ V
157 feq1 6716 . . . . . . . . 9 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (𝑓:ℕ⟶𝐽 ↔ (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))):ℕ⟶𝐽))
158 fveq1 6905 . . . . . . . . . . . 12 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (𝑓𝑘) = ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))
159158eleq2d 2824 . . . . . . . . . . 11 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (𝐴 ∈ (𝑓𝑘) ↔ 𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)))
160 fveq1 6905 . . . . . . . . . . . 12 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (𝑓‘(𝑘 + 1)) = ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)))
161160, 158sseq12d 4028 . . . . . . . . . . 11 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘) ↔ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)))
162159, 161anbi12d 632 . . . . . . . . . 10 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ↔ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))))
163162ralbidv 3175 . . . . . . . . 9 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ↔ ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))))
164158sseq1d 4026 . . . . . . . . . . . 12 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝑓𝑘) ⊆ 𝑦 ↔ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))
165164rexbidv 3176 . . . . . . . . . . 11 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))
166165imbi2d 340 . . . . . . . . . 10 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦) ↔ (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦)))
167166ralbidv 3175 . . . . . . . . 9 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦) ↔ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦)))
168157, 163, 1673anbi123d 1435 . . . . . . . 8 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)) ↔ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))):ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))))
169156, 168spcev 3605 . . . . . . 7 (((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))):ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦)) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
17075, 116, 154, 169syl3anc 1370 . . . . . 6 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
171170expr 456 . . . . 5 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)))) → (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦))))
172171adantrrl 724 . . . 4 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦))))
173172exlimdv 1930 . . 3 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → (∃𝑔 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦))))
17439, 173mpd 15 . 2 (((𝐽 ∈ 1stω ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
1752, 174rexlimddv 3158 1 ((𝐽 ∈ 1stω ∧ 𝐴𝑋) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  cin 3961  wss 3962  c0 4338  𝒫 cpw 4604   cuni 4911   cint 4950   class class class wbr 5147  cmpt 5230  dom cdm 5688  ran crn 5689  cres 5690  cima 5691  Fun wfun 6556   Fn wfn 6557  wf 6558  ontowfo 6560  cfv 6562  (class class class)co 7430  ωcom 7886  cen 8980  cdom 8981  csdm 8982  Fincfn 8983  1c1 11153   + caddc 11155  cn 12263  ...cfz 13543  Topctop 22914  1stωc1stc 23460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-top 22915  df-1stc 23462
This theorem is referenced by:  1stcelcls  23484
  Copyright terms: Public domain W3C validator