Step | Hyp | Ref
| Expression |
1 | | 1stcclb.1 |
. . 3
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | 1stcclb 22503 |
. 2
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
3 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → 𝐴 ∈ 𝑋) |
4 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑋 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑋)) |
5 | | sseq2 3943 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑋 → (𝑤 ⊆ 𝑧 ↔ 𝑤 ⊆ 𝑋)) |
6 | 5 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑋 → ((𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋))) |
7 | 6 | rexbidv 3225 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑋 → (∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋))) |
8 | 4, 7 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑋 → ((𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ (𝐴 ∈ 𝑋 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋)))) |
9 | | simprrr 778 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
10 | | 1stctop 22502 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ 1stω
→ 𝐽 ∈
Top) |
11 | 10 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → 𝐽 ∈ Top) |
12 | 1 | topopn 21963 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
13 | 11, 12 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → 𝑋 ∈ 𝐽) |
14 | 8, 9, 13 | rspcdva 3554 |
. . . . . . . . 9
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → (𝐴 ∈ 𝑋 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋))) |
15 | 3, 14 | mpd 15 |
. . . . . . . 8
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋)) |
16 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋) → 𝐴 ∈ 𝑤) |
17 | 16 | reximi 3174 |
. . . . . . . 8
⊢
(∃𝑤 ∈
𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋) → ∃𝑤 ∈ 𝑥 𝐴 ∈ 𝑤) |
18 | 15, 17 | syl 17 |
. . . . . . 7
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → ∃𝑤 ∈ 𝑥 𝐴 ∈ 𝑤) |
19 | | eleq2w 2822 |
. . . . . . . 8
⊢ (𝑤 = 𝑎 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑎)) |
20 | 19 | cbvrexvw 3373 |
. . . . . . 7
⊢
(∃𝑤 ∈
𝑥 𝐴 ∈ 𝑤 ↔ ∃𝑎 ∈ 𝑥 𝐴 ∈ 𝑎) |
21 | 18, 20 | sylib 217 |
. . . . . 6
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → ∃𝑎 ∈ 𝑥 𝐴 ∈ 𝑎) |
22 | | rabn0 4316 |
. . . . . 6
⊢ ({𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ≠ ∅ ↔ ∃𝑎 ∈ 𝑥 𝐴 ∈ 𝑎) |
23 | 21, 22 | sylibr 233 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ≠ ∅) |
24 | | vex 3426 |
. . . . . . 7
⊢ 𝑥 ∈ V |
25 | 24 | rabex 5251 |
. . . . . 6
⊢ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ∈ V |
26 | 25 | 0sdom 8844 |
. . . . 5
⊢ (∅
≺ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ↔ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ≠ ∅) |
27 | 23, 26 | sylibr 233 |
. . . 4
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → ∅ ≺ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}) |
28 | | ssrab2 4009 |
. . . . . 6
⊢ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ⊆ 𝑥 |
29 | | ssdomg 8741 |
. . . . . 6
⊢ (𝑥 ∈ V → ({𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ⊆ 𝑥 → {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ≼ 𝑥)) |
30 | 24, 28, 29 | mp2 9 |
. . . . 5
⊢ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ≼ 𝑥 |
31 | | simprrl 777 |
. . . . . 6
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → 𝑥 ≼ ω) |
32 | | nnenom 13628 |
. . . . . . 7
⊢ ℕ
≈ ω |
33 | 32 | ensymi 8745 |
. . . . . 6
⊢ ω
≈ ℕ |
34 | | domentr 8754 |
. . . . . 6
⊢ ((𝑥 ≼ ω ∧ ω
≈ ℕ) → 𝑥
≼ ℕ) |
35 | 31, 33, 34 | sylancl 585 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → 𝑥 ≼ ℕ) |
36 | | domtr 8748 |
. . . . 5
⊢ (({𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ≼ 𝑥 ∧ 𝑥 ≼ ℕ) → {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ≼ ℕ) |
37 | 30, 35, 36 | sylancr 586 |
. . . 4
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ≼ ℕ) |
38 | | fodomr 8864 |
. . . 4
⊢ ((∅
≺ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ∧ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}) |
39 | 27, 37, 38 | syl2anc 583 |
. . 3
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → ∃𝑔 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}) |
40 | 10 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ ℕ) → 𝐽 ∈ Top) |
41 | | imassrn 5969 |
. . . . . . . . . 10
⊢ (𝑔 “ (1...𝑛)) ⊆ ran 𝑔 |
42 | | forn 6675 |
. . . . . . . . . . . . 13
⊢ (𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} → ran 𝑔 = {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}) |
43 | 42 | ad2antll 725 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → ran 𝑔 = {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}) |
44 | | simprll 775 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → 𝑥 ∈ 𝒫 𝐽) |
45 | 44 | elpwid 4541 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → 𝑥 ⊆ 𝐽) |
46 | 28, 45 | sstrid 3928 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} ⊆ 𝐽) |
47 | 43, 46 | eqsstrd 3955 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → ran 𝑔 ⊆ 𝐽) |
48 | 47 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ ℕ) → ran 𝑔 ⊆ 𝐽) |
49 | 41, 48 | sstrid 3928 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ⊆ 𝐽) |
50 | | fz1ssnn 13216 |
. . . . . . . . . . . . . 14
⊢
(1...𝑛) ⊆
ℕ |
51 | | fof 6672 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} → 𝑔:ℕ⟶{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}) |
52 | 51 | ad2antll 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → 𝑔:ℕ⟶{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}) |
53 | 52 | fdmd 6595 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → dom 𝑔 = ℕ) |
54 | 50, 53 | sseqtrrid 3970 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → (1...𝑛) ⊆ dom 𝑔) |
55 | 54 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ dom 𝑔) |
56 | | sseqin2 4146 |
. . . . . . . . . . . 12
⊢
((1...𝑛) ⊆ dom
𝑔 ↔ (dom 𝑔 ∩ (1...𝑛)) = (1...𝑛)) |
57 | 55, 56 | sylib 217 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ ℕ) → (dom 𝑔 ∩ (1...𝑛)) = (1...𝑛)) |
58 | | elfz1end 13215 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈ (1...𝑛)) |
59 | | ne0i 4265 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (1...𝑛) → (1...𝑛) ≠ ∅) |
60 | 59 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ (1...𝑛)) → (1...𝑛) ≠ ∅) |
61 | 58, 60 | sylan2b 593 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ≠ ∅) |
62 | 57, 61 | eqnetrd 3010 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ ℕ) → (dom 𝑔 ∩ (1...𝑛)) ≠ ∅) |
63 | | imadisj 5977 |
. . . . . . . . . . 11
⊢ ((𝑔 “ (1...𝑛)) = ∅ ↔ (dom 𝑔 ∩ (1...𝑛)) = ∅) |
64 | 63 | necon3bii 2995 |
. . . . . . . . . 10
⊢ ((𝑔 “ (1...𝑛)) ≠ ∅ ↔ (dom 𝑔 ∩ (1...𝑛)) ≠ ∅) |
65 | 62, 64 | sylibr 233 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ≠ ∅) |
66 | | fzfid 13621 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin) |
67 | 52 | ffund 6588 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → Fun 𝑔) |
68 | | fores 6682 |
. . . . . . . . . . 11
⊢ ((Fun
𝑔 ∧ (1...𝑛) ⊆ dom 𝑔) → (𝑔 ↾ (1...𝑛)):(1...𝑛)–onto→(𝑔 “ (1...𝑛))) |
69 | 67, 55, 68 | syl2an2r 681 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 ↾ (1...𝑛)):(1...𝑛)–onto→(𝑔 “ (1...𝑛))) |
70 | | fofi 9035 |
. . . . . . . . . 10
⊢
(((1...𝑛) ∈ Fin
∧ (𝑔 ↾ (1...𝑛)):(1...𝑛)–onto→(𝑔 “ (1...𝑛))) → (𝑔 “ (1...𝑛)) ∈ Fin) |
71 | 66, 69, 70 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ∈ Fin) |
72 | | fiinopn 21958 |
. . . . . . . . . 10
⊢ (𝐽 ∈ Top → (((𝑔 “ (1...𝑛)) ⊆ 𝐽 ∧ (𝑔 “ (1...𝑛)) ≠ ∅ ∧ (𝑔 “ (1...𝑛)) ∈ Fin) → ∩ (𝑔
“ (1...𝑛)) ∈
𝐽)) |
73 | 72 | imp 406 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ ((𝑔 “ (1...𝑛)) ⊆ 𝐽 ∧ (𝑔 “ (1...𝑛)) ≠ ∅ ∧ (𝑔 “ (1...𝑛)) ∈ Fin)) → ∩ (𝑔
“ (1...𝑛)) ∈
𝐽) |
74 | 40, 49, 65, 71, 73 | syl13anc 1370 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑛 ∈ ℕ) → ∩ (𝑔
“ (1...𝑛)) ∈
𝐽) |
75 | 74 | fmpttd 6971 |
. . . . . . 7
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))):ℕ⟶𝐽) |
76 | | imassrn 5969 |
. . . . . . . . . . . . 13
⊢ (𝑔 “ (1...𝑘)) ⊆ ran 𝑔 |
77 | 43 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → ran 𝑔 = {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}) |
78 | 76, 77 | sseqtrid 3969 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ⊆ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}) |
79 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑛 → 𝐴 ∈ 𝑛) |
80 | 79 | rgenw 3075 |
. . . . . . . . . . . . 13
⊢
∀𝑛 ∈
𝑥 (𝐴 ∈ 𝑛 → 𝐴 ∈ 𝑛) |
81 | | eleq2w 2822 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑛 → (𝐴 ∈ 𝑎 ↔ 𝐴 ∈ 𝑛)) |
82 | 81 | ralrab 3623 |
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}𝐴 ∈ 𝑛 ↔ ∀𝑛 ∈ 𝑥 (𝐴 ∈ 𝑛 → 𝐴 ∈ 𝑛)) |
83 | 80, 82 | mpbir 230 |
. . . . . . . . . . . 12
⊢
∀𝑛 ∈
{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}𝐴 ∈ 𝑛 |
84 | | ssralv 3983 |
. . . . . . . . . . . 12
⊢ ((𝑔 “ (1...𝑘)) ⊆ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} → (∀𝑛 ∈ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}𝐴 ∈ 𝑛 → ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴 ∈ 𝑛)) |
85 | 78, 83, 84 | mpisyl 21 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴 ∈ 𝑛) |
86 | | elintg 4884 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ ∩ (𝑔 “ (1...𝑘)) ↔ ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴 ∈ 𝑛)) |
87 | 86 | ad3antlr 727 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ∩ (𝑔 “ (1...𝑘)) ↔ ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴 ∈ 𝑛)) |
88 | 85, 87 | mpbird 256 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ∩ (𝑔 “ (1...𝑘))) |
89 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) |
90 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (1...𝑛) = (1...𝑘)) |
91 | 90 | imaeq2d 5958 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑔 “ (1...𝑛)) = (𝑔 “ (1...𝑘))) |
92 | 91 | inteqd 4881 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ∩ (𝑔 “ (1...𝑛)) = ∩ (𝑔 “ (1...𝑘))) |
93 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
94 | 74 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → ∀𝑛 ∈ ℕ ∩
(𝑔 “ (1...𝑛)) ∈ 𝐽) |
95 | 92 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (∩ (𝑔 “ (1...𝑛)) ∈ 𝐽 ↔ ∩ (𝑔 “ (1...𝑘)) ∈ 𝐽)) |
96 | 95 | rspccva 3551 |
. . . . . . . . . . . 12
⊢
((∀𝑛 ∈
ℕ ∩ (𝑔 “ (1...𝑛)) ∈ 𝐽 ∧ 𝑘 ∈ ℕ) → ∩ (𝑔
“ (1...𝑘)) ∈
𝐽) |
97 | 94, 96 | sylan 579 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → ∩ (𝑔
“ (1...𝑘)) ∈
𝐽) |
98 | 89, 92, 93, 97 | fvmptd3 6880 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) = ∩ (𝑔 “ (1...𝑘))) |
99 | 88, 98 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘)) |
100 | | fzssp1 13228 |
. . . . . . . . . . . 12
⊢
(1...𝑘) ⊆
(1...(𝑘 +
1)) |
101 | | imass2 5999 |
. . . . . . . . . . . 12
⊢
((1...𝑘) ⊆
(1...(𝑘 + 1)) → (𝑔 “ (1...𝑘)) ⊆ (𝑔 “ (1...(𝑘 + 1)))) |
102 | 100, 101 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ⊆ (𝑔 “ (1...(𝑘 + 1)))) |
103 | | intss 4897 |
. . . . . . . . . . 11
⊢ ((𝑔 “ (1...𝑘)) ⊆ (𝑔 “ (1...(𝑘 + 1))) → ∩
(𝑔 “ (1...(𝑘 + 1))) ⊆ ∩ (𝑔
“ (1...𝑘))) |
104 | 102, 103 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → ∩ (𝑔
“ (1...(𝑘 + 1)))
⊆ ∩ (𝑔 “ (1...𝑘))) |
105 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑘 + 1) → (1...𝑛) = (1...(𝑘 + 1))) |
106 | 105 | imaeq2d 5958 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑘 + 1) → (𝑔 “ (1...𝑛)) = (𝑔 “ (1...(𝑘 + 1)))) |
107 | 106 | inteqd 4881 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑘 + 1) → ∩
(𝑔 “ (1...𝑛)) = ∩ (𝑔
“ (1...(𝑘 +
1)))) |
108 | | peano2nn 11915 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
109 | 108 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ) |
110 | 107 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑘 + 1) → (∩
(𝑔 “ (1...𝑛)) ∈ 𝐽 ↔ ∩ (𝑔 “ (1...(𝑘 + 1))) ∈ 𝐽)) |
111 | 110 | rspccva 3551 |
. . . . . . . . . . . 12
⊢
((∀𝑛 ∈
ℕ ∩ (𝑔 “ (1...𝑛)) ∈ 𝐽 ∧ (𝑘 + 1) ∈ ℕ) → ∩ (𝑔
“ (1...(𝑘 + 1)))
∈ 𝐽) |
112 | 94, 108, 111 | syl2an 595 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → ∩ (𝑔
“ (1...(𝑘 + 1)))
∈ 𝐽) |
113 | 89, 107, 109, 112 | fvmptd3 6880 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘(𝑘 + 1)) = ∩ (𝑔 “ (1...(𝑘 + 1)))) |
114 | 104, 113,
98 | 3sstr4d 3964 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘)) |
115 | 99, 114 | jca 511 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘))) |
116 | 115 | ralrimiva 3107 |
. . . . . . 7
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘))) |
117 | | simprlr 776 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
118 | | eleq2w 2822 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑦 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑦)) |
119 | | sseq2 3943 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → (𝑤 ⊆ 𝑧 ↔ 𝑤 ⊆ 𝑦)) |
120 | 119 | anbi2d 628 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑦 → ((𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦))) |
121 | 120 | rexbidv 3225 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑦 → (∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦))) |
122 | 118, 121 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → ((𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ (𝐴 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦)))) |
123 | 122 | rspccva 3551 |
. . . . . . . . . . 11
⊢
((∀𝑧 ∈
𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ∧ 𝑦 ∈ 𝐽) → (𝐴 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦))) |
124 | 117, 123 | sylan 579 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) → (𝐴 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦))) |
125 | | eleq2w 2822 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑤 → (𝐴 ∈ 𝑎 ↔ 𝐴 ∈ 𝑤)) |
126 | 125 | rexrab 3626 |
. . . . . . . . . . 11
⊢
(∃𝑤 ∈
{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}𝑤 ⊆ 𝑦 ↔ ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦)) |
127 | 43 | rexeqdv 3340 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → (∃𝑤 ∈ ran 𝑔 𝑤 ⊆ 𝑦 ↔ ∃𝑤 ∈ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}𝑤 ⊆ 𝑦)) |
128 | | fofn 6674 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} → 𝑔 Fn ℕ) |
129 | 128 | ad2antll 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → 𝑔 Fn ℕ) |
130 | | sseq1 3942 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = (𝑔‘𝑘) → (𝑤 ⊆ 𝑦 ↔ (𝑔‘𝑘) ⊆ 𝑦)) |
131 | 130 | rexrn 6945 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 Fn ℕ → (∃𝑤 ∈ ran 𝑔 𝑤 ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑦)) |
132 | 129, 131 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → (∃𝑤 ∈ ran 𝑔 𝑤 ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑦)) |
133 | 127, 132 | bitr3d 280 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → (∃𝑤 ∈ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}𝑤 ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑦)) |
134 | 133 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) → (∃𝑤 ∈ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}𝑤 ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑦)) |
135 | | elfz1end 13215 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (1...𝑘)) |
136 | | fz1ssnn 13216 |
. . . . . . . . . . . . . . . . . 18
⊢
(1...𝑘) ⊆
ℕ |
137 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) → dom 𝑔 = ℕ) |
138 | 136, 137 | sseqtrrid 3970 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) → (1...𝑘) ⊆ dom 𝑔) |
139 | | funfvima2 7089 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝑔 ∧ (1...𝑘) ⊆ dom 𝑔) → (𝑘 ∈ (1...𝑘) → (𝑔‘𝑘) ∈ (𝑔 “ (1...𝑘)))) |
140 | 67, 138, 139 | syl2an2r 681 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) → (𝑘 ∈ (1...𝑘) → (𝑔‘𝑘) ∈ (𝑔 “ (1...𝑘)))) |
141 | 140 | imp 406 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) ∧ 𝑘 ∈ (1...𝑘)) → (𝑔‘𝑘) ∈ (𝑔 “ (1...𝑘))) |
142 | 135, 141 | sylan2b 593 |
. . . . . . . . . . . . . 14
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) ∧ 𝑘 ∈ ℕ) → (𝑔‘𝑘) ∈ (𝑔 “ (1...𝑘))) |
143 | | intss1 4891 |
. . . . . . . . . . . . . 14
⊢ ((𝑔‘𝑘) ∈ (𝑔 “ (1...𝑘)) → ∩ (𝑔 “ (1...𝑘)) ⊆ (𝑔‘𝑘)) |
144 | | sstr2 3924 |
. . . . . . . . . . . . . 14
⊢ (∩ (𝑔
“ (1...𝑘)) ⊆
(𝑔‘𝑘) → ((𝑔‘𝑘) ⊆ 𝑦 → ∩ (𝑔 “ (1...𝑘)) ⊆ 𝑦)) |
145 | 142, 143,
144 | 3syl 18 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
1stω ∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑔‘𝑘) ⊆ 𝑦 → ∩ (𝑔 “ (1...𝑘)) ⊆ 𝑦)) |
146 | 145 | reximdva 3202 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) → (∃𝑘 ∈ ℕ (𝑔‘𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ℕ ∩
(𝑔 “ (1...𝑘)) ⊆ 𝑦)) |
147 | 134, 146 | sylbid 239 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) → (∃𝑤 ∈ {𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎}𝑤 ⊆ 𝑦 → ∃𝑘 ∈ ℕ ∩
(𝑔 “ (1...𝑘)) ⊆ 𝑦)) |
148 | 126, 147 | syl5bir 242 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) → (∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦) → ∃𝑘 ∈ ℕ ∩
(𝑔 “ (1...𝑘)) ⊆ 𝑦)) |
149 | 124, 148 | syld 47 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) → (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ ∩
(𝑔 “ (1...𝑘)) ⊆ 𝑦)) |
150 | 98 | sseq1d 3948 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ⊆ 𝑦 ↔ ∩ (𝑔 “ (1...𝑘)) ⊆ 𝑦)) |
151 | 150 | rexbidva 3224 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → (∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ ∩
(𝑔 “ (1...𝑘)) ⊆ 𝑦)) |
152 | 151 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) → (∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ ∩
(𝑔 “ (1...𝑘)) ⊆ 𝑦)) |
153 | 149, 152 | sylibrd 258 |
. . . . . . . 8
⊢ ((((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) ∧ 𝑦 ∈ 𝐽) → (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ⊆ 𝑦)) |
154 | 153 | ralrimiva 3107 |
. . . . . . 7
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ⊆ 𝑦)) |
155 | | nnex 11909 |
. . . . . . . . 9
⊢ ℕ
∈ V |
156 | 155 | mptex 7081 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) ∈
V |
157 | | feq1 6565 |
. . . . . . . . 9
⊢ (𝑓 = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) →
(𝑓:ℕ⟶𝐽 ↔ (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))):ℕ⟶𝐽)) |
158 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) →
(𝑓‘𝑘) = ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘)) |
159 | 158 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) →
(𝐴 ∈ (𝑓‘𝑘) ↔ 𝐴 ∈ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘))) |
160 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) →
(𝑓‘(𝑘 + 1)) = ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘(𝑘 + 1))) |
161 | 160, 158 | sseq12d 3950 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) →
((𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘) ↔ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘))) |
162 | 159, 161 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) →
((𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ↔ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘)))) |
163 | 162 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑓 = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) →
(∀𝑘 ∈ ℕ
(𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ↔ ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘)))) |
164 | 158 | sseq1d 3948 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) →
((𝑓‘𝑘) ⊆ 𝑦 ↔ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ⊆ 𝑦)) |
165 | 164 | rexbidv 3225 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) →
(∃𝑘 ∈ ℕ
(𝑓‘𝑘) ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ⊆ 𝑦)) |
166 | 165 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) →
((𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦) ↔ (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ⊆ 𝑦))) |
167 | 166 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑓 = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) →
(∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦) ↔ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ⊆ 𝑦))) |
168 | 157, 163,
167 | 3anbi123d 1434 |
. . . . . . . 8
⊢ (𝑓 = (𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))) →
((𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦)) ↔ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))):ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ⊆ 𝑦)))) |
169 | 156, 168 | spcev 3535 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛))):ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ ∩ (𝑔
“ (1...𝑛)))‘𝑘) ⊆ 𝑦)) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦))) |
170 | 75, 116, 154, 169 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ∧ 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎})) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦))) |
171 | 170 | expr 456 |
. . . . 5
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) → (𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦)))) |
172 | 171 | adantrrl 720 |
. . . 4
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → (𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦)))) |
173 | 172 | exlimdv 1937 |
. . 3
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → (∃𝑔 𝑔:ℕ–onto→{𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎} → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦)))) |
174 | 39, 173 | mpd 15 |
. 2
⊢ (((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → ∃𝑤 ∈ 𝑥 (𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦))) |
175 | 2, 174 | rexlimddv 3219 |
1
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦))) |