MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcfb Structured version   Visualization version   GIF version

Theorem 1stcfb 21757
Description: For any point 𝐴 in a first-countable topology, there is a function 𝑓:ℕ⟶𝐽 enumerating neighborhoods of 𝐴 which is decreasing and forms a local base. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
1stcclb.1 𝑋 = 𝐽
Assertion
Ref Expression
1stcfb ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
Distinct variable groups:   𝑓,𝑘,𝑦,𝐴   𝑓,𝐽,𝑘,𝑦   𝑘,𝑋,𝑦
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem 1stcfb
Dummy variables 𝑎 𝑔 𝑛 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stcclb.1 . . 3 𝑋 = 𝐽
211stcclb 21756 . 2 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))
3 simplr 756 . . . . . . . . 9 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝐴𝑋)
4 eleq2 2854 . . . . . . . . . . 11 (𝑧 = 𝑋 → (𝐴𝑧𝐴𝑋))
5 sseq2 3883 . . . . . . . . . . . . 13 (𝑧 = 𝑋 → (𝑤𝑧𝑤𝑋))
65anbi2d 619 . . . . . . . . . . . 12 (𝑧 = 𝑋 → ((𝐴𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝑋)))
76rexbidv 3242 . . . . . . . . . . 11 (𝑧 = 𝑋 → (∃𝑤𝑥 (𝐴𝑤𝑤𝑧) ↔ ∃𝑤𝑥 (𝐴𝑤𝑤𝑋)))
84, 7imbi12d 337 . . . . . . . . . 10 (𝑧 = 𝑋 → ((𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)) ↔ (𝐴𝑋 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑋))))
9 simprrr 769 . . . . . . . . . 10 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)))
10 1stctop 21755 . . . . . . . . . . . 12 (𝐽 ∈ 1st𝜔 → 𝐽 ∈ Top)
1110ad2antrr 713 . . . . . . . . . . 11 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝐽 ∈ Top)
121topopn 21218 . . . . . . . . . . 11 (𝐽 ∈ Top → 𝑋𝐽)
1311, 12syl 17 . . . . . . . . . 10 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝑋𝐽)
148, 9, 13rspcdva 3541 . . . . . . . . 9 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → (𝐴𝑋 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑋)))
153, 14mpd 15 . . . . . . . 8 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑤𝑥 (𝐴𝑤𝑤𝑋))
16 simpl 475 . . . . . . . . 9 ((𝐴𝑤𝑤𝑋) → 𝐴𝑤)
1716reximi 3190 . . . . . . . 8 (∃𝑤𝑥 (𝐴𝑤𝑤𝑋) → ∃𝑤𝑥 𝐴𝑤)
1815, 17syl 17 . . . . . . 7 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑤𝑥 𝐴𝑤)
19 eleq2w 2849 . . . . . . . 8 (𝑤 = 𝑎 → (𝐴𝑤𝐴𝑎))
2019cbvrexv 3384 . . . . . . 7 (∃𝑤𝑥 𝐴𝑤 ↔ ∃𝑎𝑥 𝐴𝑎)
2118, 20sylib 210 . . . . . 6 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑎𝑥 𝐴𝑎)
22 rabn0 4225 . . . . . 6 ({𝑎𝑥𝐴𝑎} ≠ ∅ ↔ ∃𝑎𝑥 𝐴𝑎)
2321, 22sylibr 226 . . . . 5 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → {𝑎𝑥𝐴𝑎} ≠ ∅)
24 vex 3418 . . . . . . 7 𝑥 ∈ V
2524rabex 5091 . . . . . 6 {𝑎𝑥𝐴𝑎} ∈ V
26250sdom 8444 . . . . 5 (∅ ≺ {𝑎𝑥𝐴𝑎} ↔ {𝑎𝑥𝐴𝑎} ≠ ∅)
2723, 26sylibr 226 . . . 4 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∅ ≺ {𝑎𝑥𝐴𝑎})
28 ssrab2 3946 . . . . . 6 {𝑎𝑥𝐴𝑎} ⊆ 𝑥
29 ssdomg 8352 . . . . . 6 (𝑥 ∈ V → ({𝑎𝑥𝐴𝑎} ⊆ 𝑥 → {𝑎𝑥𝐴𝑎} ≼ 𝑥))
3024, 28, 29mp2 9 . . . . 5 {𝑎𝑥𝐴𝑎} ≼ 𝑥
31 simprrl 768 . . . . . 6 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝑥 ≼ ω)
32 nnenom 13163 . . . . . . 7 ℕ ≈ ω
3332ensymi 8356 . . . . . 6 ω ≈ ℕ
34 domentr 8365 . . . . . 6 ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ)
3531, 33, 34sylancl 577 . . . . 5 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → 𝑥 ≼ ℕ)
36 domtr 8359 . . . . 5 (({𝑎𝑥𝐴𝑎} ≼ 𝑥𝑥 ≼ ℕ) → {𝑎𝑥𝐴𝑎} ≼ ℕ)
3730, 35, 36sylancr 578 . . . 4 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → {𝑎𝑥𝐴𝑎} ≼ ℕ)
38 fodomr 8464 . . . 4 ((∅ ≺ {𝑎𝑥𝐴𝑎} ∧ {𝑎𝑥𝐴𝑎} ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})
3927, 37, 38syl2anc 576 . . 3 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑔 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})
4010ad3antrrr 717 . . . . . . . . 9 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → 𝐽 ∈ Top)
41 imassrn 5781 . . . . . . . . . 10 (𝑔 “ (1...𝑛)) ⊆ ran 𝑔
42 forn 6422 . . . . . . . . . . . . 13 (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → ran 𝑔 = {𝑎𝑥𝐴𝑎})
4342ad2antll 716 . . . . . . . . . . . 12 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ran 𝑔 = {𝑎𝑥𝐴𝑎})
44 simprll 766 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → 𝑥 ∈ 𝒫 𝐽)
4544elpwid 4434 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → 𝑥𝐽)
4628, 45syl5ss 3869 . . . . . . . . . . . 12 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → {𝑎𝑥𝐴𝑎} ⊆ 𝐽)
4743, 46eqsstrd 3895 . . . . . . . . . . 11 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ran 𝑔𝐽)
4847adantr 473 . . . . . . . . . 10 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → ran 𝑔𝐽)
4941, 48syl5ss 3869 . . . . . . . . 9 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ⊆ 𝐽)
50 fz1ssnn 12754 . . . . . . . . . . . . . 14 (1...𝑛) ⊆ ℕ
51 fof 6419 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → 𝑔:ℕ⟶{𝑎𝑥𝐴𝑎})
5251ad2antll 716 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → 𝑔:ℕ⟶{𝑎𝑥𝐴𝑎})
5352fdmd 6353 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → dom 𝑔 = ℕ)
5450, 53syl5sseqr 3910 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (1...𝑛) ⊆ dom 𝑔)
5554adantr 473 . . . . . . . . . . . 12 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ dom 𝑔)
56 sseqin2 4079 . . . . . . . . . . . 12 ((1...𝑛) ⊆ dom 𝑔 ↔ (dom 𝑔 ∩ (1...𝑛)) = (1...𝑛))
5755, 56sylib 210 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (dom 𝑔 ∩ (1...𝑛)) = (1...𝑛))
58 elfz1end 12753 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (1...𝑛))
59 ne0i 4186 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑛) → (1...𝑛) ≠ ∅)
6059adantl 474 . . . . . . . . . . . 12 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ (1...𝑛)) → (1...𝑛) ≠ ∅)
6158, 60sylan2b 584 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ≠ ∅)
6257, 61eqnetrd 3034 . . . . . . . . . 10 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (dom 𝑔 ∩ (1...𝑛)) ≠ ∅)
63 imadisj 5788 . . . . . . . . . . 11 ((𝑔 “ (1...𝑛)) = ∅ ↔ (dom 𝑔 ∩ (1...𝑛)) = ∅)
6463necon3bii 3019 . . . . . . . . . 10 ((𝑔 “ (1...𝑛)) ≠ ∅ ↔ (dom 𝑔 ∩ (1...𝑛)) ≠ ∅)
6562, 64sylibr 226 . . . . . . . . 9 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ≠ ∅)
66 fzfid 13156 . . . . . . . . . 10 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
6752ffund 6348 . . . . . . . . . . 11 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → Fun 𝑔)
68 fores 6429 . . . . . . . . . . 11 ((Fun 𝑔 ∧ (1...𝑛) ⊆ dom 𝑔) → (𝑔 ↾ (1...𝑛)):(1...𝑛)–onto→(𝑔 “ (1...𝑛)))
6967, 55, 68syl2an2r 672 . . . . . . . . . 10 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 ↾ (1...𝑛)):(1...𝑛)–onto→(𝑔 “ (1...𝑛)))
70 fofi 8605 . . . . . . . . . 10 (((1...𝑛) ∈ Fin ∧ (𝑔 ↾ (1...𝑛)):(1...𝑛)–onto→(𝑔 “ (1...𝑛))) → (𝑔 “ (1...𝑛)) ∈ Fin)
7166, 69, 70syl2anc 576 . . . . . . . . 9 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ∈ Fin)
72 fiinopn 21213 . . . . . . . . . 10 (𝐽 ∈ Top → (((𝑔 “ (1...𝑛)) ⊆ 𝐽 ∧ (𝑔 “ (1...𝑛)) ≠ ∅ ∧ (𝑔 “ (1...𝑛)) ∈ Fin) → (𝑔 “ (1...𝑛)) ∈ 𝐽))
7372imp 398 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((𝑔 “ (1...𝑛)) ⊆ 𝐽 ∧ (𝑔 “ (1...𝑛)) ≠ ∅ ∧ (𝑔 “ (1...𝑛)) ∈ Fin)) → (𝑔 “ (1...𝑛)) ∈ 𝐽)
7440, 49, 65, 71, 73syl13anc 1352 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑛 ∈ ℕ) → (𝑔 “ (1...𝑛)) ∈ 𝐽)
7574fmpttd 6702 . . . . . . 7 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))):ℕ⟶𝐽)
76 imassrn 5781 . . . . . . . . . . . . 13 (𝑔 “ (1...𝑘)) ⊆ ran 𝑔
7743adantr 473 . . . . . . . . . . . . 13 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ran 𝑔 = {𝑎𝑥𝐴𝑎})
7876, 77syl5sseq 3909 . . . . . . . . . . . 12 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ⊆ {𝑎𝑥𝐴𝑎})
79 id 22 . . . . . . . . . . . . . 14 (𝐴𝑛𝐴𝑛)
8079rgenw 3100 . . . . . . . . . . . . 13 𝑛𝑥 (𝐴𝑛𝐴𝑛)
81 eleq2w 2849 . . . . . . . . . . . . . 14 (𝑎 = 𝑛 → (𝐴𝑎𝐴𝑛))
8281ralrab 3601 . . . . . . . . . . . . 13 (∀𝑛 ∈ {𝑎𝑥𝐴𝑎}𝐴𝑛 ↔ ∀𝑛𝑥 (𝐴𝑛𝐴𝑛))
8380, 82mpbir 223 . . . . . . . . . . . 12 𝑛 ∈ {𝑎𝑥𝐴𝑎}𝐴𝑛
84 ssralv 3923 . . . . . . . . . . . 12 ((𝑔 “ (1...𝑘)) ⊆ {𝑎𝑥𝐴𝑎} → (∀𝑛 ∈ {𝑎𝑥𝐴𝑎}𝐴𝑛 → ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴𝑛))
8578, 83, 84mpisyl 21 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴𝑛)
86 elintg 4757 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴 (𝑔 “ (1...𝑘)) ↔ ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴𝑛))
8786ad3antlr 718 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝐴 (𝑔 “ (1...𝑘)) ↔ ∀𝑛 ∈ (𝑔 “ (1...𝑘))𝐴𝑛))
8885, 87mpbird 249 . . . . . . . . . 10 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → 𝐴 (𝑔 “ (1...𝑘)))
89 eqid 2778 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))
90 oveq2 6984 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1...𝑛) = (1...𝑘))
9190imaeq2d 5770 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑔 “ (1...𝑛)) = (𝑔 “ (1...𝑘)))
9291inteqd 4754 . . . . . . . . . . 11 (𝑛 = 𝑘 (𝑔 “ (1...𝑛)) = (𝑔 “ (1...𝑘)))
93 simpr 477 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
9474ralrimiva 3132 . . . . . . . . . . . 12 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∀𝑛 ∈ ℕ (𝑔 “ (1...𝑛)) ∈ 𝐽)
9592eleq1d 2850 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ( (𝑔 “ (1...𝑛)) ∈ 𝐽 (𝑔 “ (1...𝑘)) ∈ 𝐽))
9695rspccva 3534 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ (𝑔 “ (1...𝑛)) ∈ 𝐽𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ∈ 𝐽)
9794, 96sylan 572 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ∈ 𝐽)
9889, 92, 93, 97fvmptd3 6617 . . . . . . . . . 10 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) = (𝑔 “ (1...𝑘)))
9988, 98eleqtrrd 2869 . . . . . . . . 9 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))
100 fzssp1 12766 . . . . . . . . . . . 12 (1...𝑘) ⊆ (1...(𝑘 + 1))
101 imass2 5805 . . . . . . . . . . . 12 ((1...𝑘) ⊆ (1...(𝑘 + 1)) → (𝑔 “ (1...𝑘)) ⊆ (𝑔 “ (1...(𝑘 + 1))))
102100, 101mp1i 13 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...𝑘)) ⊆ (𝑔 “ (1...(𝑘 + 1))))
103 intss 4770 . . . . . . . . . . 11 ((𝑔 “ (1...𝑘)) ⊆ (𝑔 “ (1...(𝑘 + 1))) → (𝑔 “ (1...(𝑘 + 1))) ⊆ (𝑔 “ (1...𝑘)))
104102, 103syl 17 . . . . . . . . . 10 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...(𝑘 + 1))) ⊆ (𝑔 “ (1...𝑘)))
105 oveq2 6984 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → (1...𝑛) = (1...(𝑘 + 1)))
106105imaeq2d 5770 . . . . . . . . . . . 12 (𝑛 = (𝑘 + 1) → (𝑔 “ (1...𝑛)) = (𝑔 “ (1...(𝑘 + 1))))
107106inteqd 4754 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝑔 “ (1...𝑛)) = (𝑔 “ (1...(𝑘 + 1))))
108 peano2nn 11453 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
109108adantl 474 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
110107eleq1d 2850 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → ( (𝑔 “ (1...𝑛)) ∈ 𝐽 (𝑔 “ (1...(𝑘 + 1))) ∈ 𝐽))
111110rspccva 3534 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ (𝑔 “ (1...𝑛)) ∈ 𝐽 ∧ (𝑘 + 1) ∈ ℕ) → (𝑔 “ (1...(𝑘 + 1))) ∈ 𝐽)
11294, 108, 111syl2an 586 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝑔 “ (1...(𝑘 + 1))) ∈ 𝐽)
11389, 107, 109, 112fvmptd3 6617 . . . . . . . . . 10 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) = (𝑔 “ (1...(𝑘 + 1))))
114104, 113, 983sstr4d 3904 . . . . . . . . 9 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))
11599, 114jca 504 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)))
116115ralrimiva 3132 . . . . . . 7 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)))
117 simprlr 767 . . . . . . . . . . 11 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)))
118 eleq2w 2849 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
119 sseq2 3883 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑤𝑧𝑤𝑦))
120119anbi2d 619 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝐴𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝑦)))
121120rexbidv 3242 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (∃𝑤𝑥 (𝐴𝑤𝑤𝑧) ↔ ∃𝑤𝑥 (𝐴𝑤𝑤𝑦)))
122118, 121imbi12d 337 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)) ↔ (𝐴𝑦 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑦))))
123122rspccva 3534 . . . . . . . . . . 11 ((∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)) ∧ 𝑦𝐽) → (𝐴𝑦 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑦)))
124117, 123sylan 572 . . . . . . . . . 10 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (𝐴𝑦 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑦)))
125 eleq2w 2849 . . . . . . . . . . . 12 (𝑎 = 𝑤 → (𝐴𝑎𝐴𝑤))
126125rexrab 3603 . . . . . . . . . . 11 (∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦 ↔ ∃𝑤𝑥 (𝐴𝑤𝑤𝑦))
12743rexeqdv 3356 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (∃𝑤 ∈ ran 𝑔 𝑤𝑦 ↔ ∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦))
128 fofn 6421 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → 𝑔 Fn ℕ)
129128ad2antll 716 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → 𝑔 Fn ℕ)
130 sseq1 3882 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑔𝑘) → (𝑤𝑦 ↔ (𝑔𝑘) ⊆ 𝑦))
131130rexrn 6678 . . . . . . . . . . . . . . 15 (𝑔 Fn ℕ → (∃𝑤 ∈ ran 𝑔 𝑤𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦))
132129, 131syl 17 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (∃𝑤 ∈ ran 𝑔 𝑤𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦))
133127, 132bitr3d 273 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦))
134133adantr 473 . . . . . . . . . . . 12 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦))
135 elfz1end 12753 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (1...𝑘))
136 fz1ssnn 12754 . . . . . . . . . . . . . . . . . 18 (1...𝑘) ⊆ ℕ
13753adantr 473 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → dom 𝑔 = ℕ)
138136, 137syl5sseqr 3910 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (1...𝑘) ⊆ dom 𝑔)
139 funfvima2 6819 . . . . . . . . . . . . . . . . 17 ((Fun 𝑔 ∧ (1...𝑘) ⊆ dom 𝑔) → (𝑘 ∈ (1...𝑘) → (𝑔𝑘) ∈ (𝑔 “ (1...𝑘))))
14067, 138, 139syl2an2r 672 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (𝑘 ∈ (1...𝑘) → (𝑔𝑘) ∈ (𝑔 “ (1...𝑘))))
141140imp 398 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) ∧ 𝑘 ∈ (1...𝑘)) → (𝑔𝑘) ∈ (𝑔 “ (1...𝑘)))
142135, 141sylan2b 584 . . . . . . . . . . . . . 14 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) ∧ 𝑘 ∈ ℕ) → (𝑔𝑘) ∈ (𝑔 “ (1...𝑘)))
143 intss1 4764 . . . . . . . . . . . . . 14 ((𝑔𝑘) ∈ (𝑔 “ (1...𝑘)) → (𝑔 “ (1...𝑘)) ⊆ (𝑔𝑘))
144 sstr2 3865 . . . . . . . . . . . . . 14 ( (𝑔 “ (1...𝑘)) ⊆ (𝑔𝑘) → ((𝑔𝑘) ⊆ 𝑦 (𝑔 “ (1...𝑘)) ⊆ 𝑦))
145142, 143, 1443syl 18 . . . . . . . . . . . . 13 (((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑔𝑘) ⊆ 𝑦 (𝑔 “ (1...𝑘)) ⊆ 𝑦))
146145reximdva 3219 . . . . . . . . . . . 12 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑘 ∈ ℕ (𝑔𝑘) ⊆ 𝑦 → ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
147134, 146sylbid 232 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑤 ∈ {𝑎𝑥𝐴𝑎}𝑤𝑦 → ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
148126, 147syl5bir 235 . . . . . . . . . 10 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑤𝑥 (𝐴𝑤𝑤𝑦) → ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
149124, 148syld 47 . . . . . . . . 9 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
15098sseq1d 3888 . . . . . . . . . . 11 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦 (𝑔 “ (1...𝑘)) ⊆ 𝑦))
151150rexbidva 3241 . . . . . . . . . 10 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → (∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
152151adantr 473 . . . . . . . . 9 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ (𝑔 “ (1...𝑘)) ⊆ 𝑦))
153149, 152sylibrd 251 . . . . . . . 8 ((((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) ∧ 𝑦𝐽) → (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))
154153ralrimiva 3132 . . . . . . 7 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))
155 nnex 11446 . . . . . . . . 9 ℕ ∈ V
156155mptex 6812 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) ∈ V
157 feq1 6325 . . . . . . . . 9 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (𝑓:ℕ⟶𝐽 ↔ (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))):ℕ⟶𝐽))
158 fveq1 6498 . . . . . . . . . . . 12 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (𝑓𝑘) = ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))
159158eleq2d 2851 . . . . . . . . . . 11 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (𝐴 ∈ (𝑓𝑘) ↔ 𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)))
160 fveq1 6498 . . . . . . . . . . . 12 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (𝑓‘(𝑘 + 1)) = ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)))
161160, 158sseq12d 3890 . . . . . . . . . . 11 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘) ↔ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)))
162159, 161anbi12d 621 . . . . . . . . . 10 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ↔ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))))
163162ralbidv 3147 . . . . . . . . 9 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ↔ ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘))))
164158sseq1d 3888 . . . . . . . . . . . 12 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝑓𝑘) ⊆ 𝑦 ↔ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))
165164rexbidv 3242 . . . . . . . . . . 11 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦 ↔ ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))
166165imbi2d 333 . . . . . . . . . 10 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦) ↔ (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦)))
167166ralbidv 3147 . . . . . . . . 9 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦) ↔ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦)))
168157, 163, 1673anbi123d 1415 . . . . . . . 8 (𝑓 = (𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))) → ((𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)) ↔ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))):ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦))))
169156, 168spcev 3525 . . . . . . 7 (((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛))):ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ∧ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘(𝑘 + 1)) ⊆ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝑔 “ (1...𝑛)))‘𝑘) ⊆ 𝑦)) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
17075, 116, 154, 169syl3anc 1351 . . . . . 6 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ ((𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))) ∧ 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎})) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
171170expr 449 . . . . 5 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧)))) → (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦))))
172171adantrrl 711 . . . 4 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → (𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦))))
173172exlimdv 1892 . . 3 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → (∃𝑔 𝑔:ℕ–onto→{𝑎𝑥𝐴𝑎} → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦))))
17439, 173mpd 15 . 2 (((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝑥 ∈ 𝒫 𝐽 ∧ (𝑥 ≼ ω ∧ ∀𝑧𝐽 (𝐴𝑧 → ∃𝑤𝑥 (𝐴𝑤𝑤𝑧))))) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
1752, 174rexlimddv 3236 1 ((𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓𝑘)) ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑘 ∈ ℕ (𝑓𝑘) ⊆ 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wex 1742  wcel 2050  wne 2967  wral 3088  wrex 3089  {crab 3092  Vcvv 3415  cin 3828  wss 3829  c0 4178  𝒫 cpw 4422   cuni 4712   cint 4749   class class class wbr 4929  cmpt 5008  dom cdm 5407  ran crn 5408  cres 5409  cima 5410  Fun wfun 6182   Fn wfn 6183  wf 6184  ontowfo 6186  cfv 6188  (class class class)co 6976  ωcom 7396  cen 8303  cdom 8304  csdm 8305  Fincfn 8306  1c1 10336   + caddc 10338  cn 11439  ...cfz 12708  Topctop 21205  1st𝜔c1stc 21749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709  df-top 21206  df-1stc 21751
This theorem is referenced by:  1stcelcls  21773
  Copyright terms: Public domain W3C validator