| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | axregndlem2 10644 | . . . 4
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑤(𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦))) | 
| 2 |  | nfnae 2438 | . . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑧 𝑧 = 𝑥 | 
| 3 |  | nfnae 2438 | . . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑧 𝑧 = 𝑦 | 
| 4 | 2, 3 | nfan 1898 | . . . . 5
⊢
Ⅎ𝑥(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) | 
| 5 |  | nfnae 2438 | . . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑧 𝑧 = 𝑥 | 
| 6 |  | nfnae 2438 | . . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑧 𝑧 = 𝑦 | 
| 7 | 5, 6 | nfan 1898 | . . . . . . 7
⊢
Ⅎ𝑧(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) | 
| 8 |  | nfcvf 2931 | . . . . . . . . . 10
⊢ (¬
∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧𝑥) | 
| 9 | 8 | nfcrd 2898 | . . . . . . . . 9
⊢ (¬
∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧 𝑤 ∈ 𝑥) | 
| 10 | 9 | adantr 480 | . . . . . . . 8
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑤 ∈ 𝑥) | 
| 11 |  | nfcvf 2931 | . . . . . . . . . . 11
⊢ (¬
∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧𝑦) | 
| 12 | 11 | nfcrd 2898 | . . . . . . . . . 10
⊢ (¬
∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑤 ∈ 𝑦) | 
| 13 | 12 | nfnd 1857 | . . . . . . . . 9
⊢ (¬
∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 ¬ 𝑤 ∈ 𝑦) | 
| 14 | 13 | adantl 481 | . . . . . . . 8
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 ¬ 𝑤 ∈ 𝑦) | 
| 15 | 10, 14 | nfimd 1893 | . . . . . . 7
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧(𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦)) | 
| 16 |  | elequ1 2114 | . . . . . . . . 9
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) | 
| 17 |  | elequ1 2114 | . . . . . . . . . 10
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)) | 
| 18 | 17 | notbid 318 | . . . . . . . . 9
⊢ (𝑤 = 𝑧 → (¬ 𝑤 ∈ 𝑦 ↔ ¬ 𝑧 ∈ 𝑦)) | 
| 19 | 16, 18 | imbi12d 344 | . . . . . . . 8
⊢ (𝑤 = 𝑧 → ((𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | 
| 20 | 19 | a1i 11 | . . . . . . 7
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑤 = 𝑧 → ((𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | 
| 21 | 7, 15, 20 | cbvald 2411 | . . . . . 6
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑤(𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | 
| 22 | 21 | anbi2d 630 | . . . . 5
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → ((𝑥 ∈ 𝑦 ∧ ∀𝑤(𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦)) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | 
| 23 | 4, 22 | exbid 2222 | . . . 4
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑤(𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦)) ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | 
| 24 | 1, 23 | imbitrid 244 | . . 3
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | 
| 25 | 24 | ex 412 | . 2
⊢ (¬
∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))))) | 
| 26 |  | axregndlem1 10643 | . . 3
⊢
(∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | 
| 27 | 26 | aecoms 2432 | . 2
⊢
(∀𝑧 𝑧 = 𝑥 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | 
| 28 |  | 19.8a 2180 | . . 3
⊢ (𝑥 ∈ 𝑦 → ∃𝑥 𝑥 ∈ 𝑦) | 
| 29 |  | nfae 2437 | . . . 4
⊢
Ⅎ𝑥∀𝑧 𝑧 = 𝑦 | 
| 30 |  | elirrv 9637 | . . . . . . . . 9
⊢  ¬
𝑧 ∈ 𝑧 | 
| 31 |  | elequ2 2122 | . . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑧 ↔ 𝑧 ∈ 𝑦)) | 
| 32 | 30, 31 | mtbii 326 | . . . . . . . 8
⊢ (𝑧 = 𝑦 → ¬ 𝑧 ∈ 𝑦) | 
| 33 | 32 | a1d 25 | . . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) | 
| 34 | 33 | alimi 1810 | . . . . . 6
⊢
(∀𝑧 𝑧 = 𝑦 → ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) | 
| 35 | 34 | anim2i 617 | . . . . 5
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 𝑧 = 𝑦) → (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | 
| 36 | 35 | expcom 413 | . . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | 
| 37 | 29, 36 | eximd 2215 | . . 3
⊢
(∀𝑧 𝑧 = 𝑦 → (∃𝑥 𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | 
| 38 | 28, 37 | syl5 34 | . 2
⊢
(∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | 
| 39 | 25, 27, 38 | pm2.61ii 183 | 1
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |