Step | Hyp | Ref
| Expression |
1 | | axregndlem2 10290 |
. . . 4
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑤(𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦))) |
2 | | nfnae 2434 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑧 𝑧 = 𝑥 |
3 | | nfnae 2434 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑧 𝑧 = 𝑦 |
4 | 2, 3 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑥(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) |
5 | | nfnae 2434 |
. . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑧 𝑧 = 𝑥 |
6 | | nfnae 2434 |
. . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑧 𝑧 = 𝑦 |
7 | 5, 6 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑧(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) |
8 | | nfcvf 2935 |
. . . . . . . . . 10
⊢ (¬
∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧𝑥) |
9 | 8 | nfcrd 2895 |
. . . . . . . . 9
⊢ (¬
∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧 𝑤 ∈ 𝑥) |
10 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑤 ∈ 𝑥) |
11 | | nfcvf 2935 |
. . . . . . . . . . 11
⊢ (¬
∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧𝑦) |
12 | 11 | nfcrd 2895 |
. . . . . . . . . 10
⊢ (¬
∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑤 ∈ 𝑦) |
13 | 12 | nfnd 1862 |
. . . . . . . . 9
⊢ (¬
∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 ¬ 𝑤 ∈ 𝑦) |
14 | 13 | adantl 481 |
. . . . . . . 8
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 ¬ 𝑤 ∈ 𝑦) |
15 | 10, 14 | nfimd 1898 |
. . . . . . 7
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧(𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦)) |
16 | | elequ1 2115 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) |
17 | | elequ1 2115 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)) |
18 | 17 | notbid 317 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (¬ 𝑤 ∈ 𝑦 ↔ ¬ 𝑧 ∈ 𝑦)) |
19 | 16, 18 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → ((𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
20 | 19 | a1i 11 |
. . . . . . 7
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑤 = 𝑧 → ((𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
21 | 7, 15, 20 | cbvald 2407 |
. . . . . 6
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑤(𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
22 | 21 | anbi2d 628 |
. . . . 5
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → ((𝑥 ∈ 𝑦 ∧ ∀𝑤(𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦)) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
23 | 4, 22 | exbid 2219 |
. . . 4
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑤(𝑤 ∈ 𝑥 → ¬ 𝑤 ∈ 𝑦)) ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
24 | 1, 23 | syl5ib 243 |
. . 3
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
25 | 24 | ex 412 |
. 2
⊢ (¬
∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))))) |
26 | | axregndlem1 10289 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
27 | 26 | aecoms 2428 |
. 2
⊢
(∀𝑧 𝑧 = 𝑥 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
28 | | 19.8a 2176 |
. . 3
⊢ (𝑥 ∈ 𝑦 → ∃𝑥 𝑥 ∈ 𝑦) |
29 | | nfae 2433 |
. . . 4
⊢
Ⅎ𝑥∀𝑧 𝑧 = 𝑦 |
30 | | elirrv 9285 |
. . . . . . . . 9
⊢ ¬
𝑧 ∈ 𝑧 |
31 | | elequ2 2123 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑧 ↔ 𝑧 ∈ 𝑦)) |
32 | 30, 31 | mtbii 325 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ¬ 𝑧 ∈ 𝑦) |
33 | 32 | a1d 25 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) |
34 | 33 | alimi 1815 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑦 → ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)) |
35 | 34 | anim2i 616 |
. . . . 5
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 𝑧 = 𝑦) → (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
36 | 35 | expcom 413 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
37 | 29, 36 | eximd 2212 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑦 → (∃𝑥 𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
38 | 28, 37 | syl5 34 |
. 2
⊢
(∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
39 | 25, 27, 38 | pm2.61ii 183 |
1
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |