MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  al0ssb Structured version   Visualization version   GIF version

Theorem al0ssb 5266
Description: The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
al0ssb (∀𝑦 𝑋𝑦𝑋 = ∅)
Distinct variable group:   𝑦,𝑋

Proof of Theorem al0ssb
StepHypRef Expression
1 0ex 5265 . . 3 ∅ ∈ V
2 sseq2 3976 . . . 4 (𝑦 = ∅ → (𝑋𝑦𝑋 ⊆ ∅))
3 ss0b 4367 . . . 4 (𝑋 ⊆ ∅ ↔ 𝑋 = ∅)
42, 3bitrdi 287 . . 3 (𝑦 = ∅ → (𝑋𝑦𝑋 = ∅))
51, 4spcv 3574 . 2 (∀𝑦 𝑋𝑦𝑋 = ∅)
6 0ss 4366 . . . 4 ∅ ⊆ 𝑦
76ax-gen 1795 . . 3 𝑦∅ ⊆ 𝑦
8 sseq1 3975 . . . 4 (𝑋 = ∅ → (𝑋𝑦 ↔ ∅ ⊆ 𝑦))
98albidv 1920 . . 3 (𝑋 = ∅ → (∀𝑦 𝑋𝑦 ↔ ∀𝑦∅ ⊆ 𝑦))
107, 9mpbiri 258 . 2 (𝑋 = ∅ → ∀𝑦 𝑋𝑦)
115, 10impbii 209 1 (∀𝑦 𝑋𝑦𝑋 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wss 3917  c0 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-ss 3934  df-nul 4300
This theorem is referenced by:  iota0def  47043  aiota0def  47101
  Copyright terms: Public domain W3C validator