| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > al0ssb | Structured version Visualization version GIF version | ||
| Description: The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022.) |
| Ref | Expression |
|---|---|
| al0ssb | ⊢ (∀𝑦 𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5243 | . . 3 ⊢ ∅ ∈ V | |
| 2 | sseq2 3956 | . . . 4 ⊢ (𝑦 = ∅ → (𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ ∅)) | |
| 3 | ss0b 4348 | . . . 4 ⊢ (𝑋 ⊆ ∅ ↔ 𝑋 = ∅) | |
| 4 | 2, 3 | bitrdi 287 | . . 3 ⊢ (𝑦 = ∅ → (𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅)) |
| 5 | 1, 4 | spcv 3555 | . 2 ⊢ (∀𝑦 𝑋 ⊆ 𝑦 → 𝑋 = ∅) |
| 6 | 0ss 4347 | . . . 4 ⊢ ∅ ⊆ 𝑦 | |
| 7 | 6 | ax-gen 1796 | . . 3 ⊢ ∀𝑦∅ ⊆ 𝑦 |
| 8 | sseq1 3955 | . . . 4 ⊢ (𝑋 = ∅ → (𝑋 ⊆ 𝑦 ↔ ∅ ⊆ 𝑦)) | |
| 9 | 8 | albidv 1921 | . . 3 ⊢ (𝑋 = ∅ → (∀𝑦 𝑋 ⊆ 𝑦 ↔ ∀𝑦∅ ⊆ 𝑦)) |
| 10 | 7, 9 | mpbiri 258 | . 2 ⊢ (𝑋 = ∅ → ∀𝑦 𝑋 ⊆ 𝑦) |
| 11 | 5, 10 | impbii 209 | 1 ⊢ (∀𝑦 𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 = wceq 1541 ⊆ wss 3897 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4281 |
| This theorem is referenced by: iota0def 47148 aiota0def 47206 |
| Copyright terms: Public domain | W3C validator |