![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > al0ssb | Structured version Visualization version GIF version |
Description: The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
al0ssb | ⊢ (∀𝑦 𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5313 | . . 3 ⊢ ∅ ∈ V | |
2 | sseq2 4022 | . . . 4 ⊢ (𝑦 = ∅ → (𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ ∅)) | |
3 | ss0b 4407 | . . . 4 ⊢ (𝑋 ⊆ ∅ ↔ 𝑋 = ∅) | |
4 | 2, 3 | bitrdi 287 | . . 3 ⊢ (𝑦 = ∅ → (𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅)) |
5 | 1, 4 | spcv 3605 | . 2 ⊢ (∀𝑦 𝑋 ⊆ 𝑦 → 𝑋 = ∅) |
6 | 0ss 4406 | . . . 4 ⊢ ∅ ⊆ 𝑦 | |
7 | 6 | ax-gen 1792 | . . 3 ⊢ ∀𝑦∅ ⊆ 𝑦 |
8 | sseq1 4021 | . . . 4 ⊢ (𝑋 = ∅ → (𝑋 ⊆ 𝑦 ↔ ∅ ⊆ 𝑦)) | |
9 | 8 | albidv 1918 | . . 3 ⊢ (𝑋 = ∅ → (∀𝑦 𝑋 ⊆ 𝑦 ↔ ∀𝑦∅ ⊆ 𝑦)) |
10 | 7, 9 | mpbiri 258 | . 2 ⊢ (𝑋 = ∅ → ∀𝑦 𝑋 ⊆ 𝑦) |
11 | 5, 10 | impbii 209 | 1 ⊢ (∀𝑦 𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 ⊆ wss 3963 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-ss 3980 df-nul 4340 |
This theorem is referenced by: iota0def 46988 aiota0def 47046 |
Copyright terms: Public domain | W3C validator |