MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  al0ssb Structured version   Visualization version   GIF version

Theorem al0ssb 5235
Description: The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
al0ssb (∀𝑦 𝑋𝑦𝑋 = ∅)
Distinct variable group:   𝑦,𝑋

Proof of Theorem al0ssb
StepHypRef Expression
1 0ex 5234 . . 3 ∅ ∈ V
2 sseq2 3951 . . . 4 (𝑦 = ∅ → (𝑋𝑦𝑋 ⊆ ∅))
3 ss0b 4336 . . . 4 (𝑋 ⊆ ∅ ↔ 𝑋 = ∅)
42, 3bitrdi 286 . . 3 (𝑦 = ∅ → (𝑋𝑦𝑋 = ∅))
51, 4spcv 3542 . 2 (∀𝑦 𝑋𝑦𝑋 = ∅)
6 0ss 4335 . . . 4 ∅ ⊆ 𝑦
76ax-gen 1801 . . 3 𝑦∅ ⊆ 𝑦
8 sseq1 3950 . . . 4 (𝑋 = ∅ → (𝑋𝑦 ↔ ∅ ⊆ 𝑦))
98albidv 1926 . . 3 (𝑋 = ∅ → (∀𝑦 𝑋𝑦 ↔ ∀𝑦∅ ⊆ 𝑦))
107, 9mpbiri 257 . 2 (𝑋 = ∅ → ∀𝑦 𝑋𝑦)
115, 10impbii 208 1 (∀𝑦 𝑋𝑦𝑋 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1539   = wceq 1541  wss 3891  c0 4261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-dif 3894  df-in 3898  df-ss 3908  df-nul 4262
This theorem is referenced by:  iota0def  44483  aiota0def  44539
  Copyright terms: Public domain W3C validator