MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  al0ssb Structured version   Visualization version   GIF version

Theorem al0ssb 5326
Description: The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
al0ssb (∀𝑦 𝑋𝑦𝑋 = ∅)
Distinct variable group:   𝑦,𝑋

Proof of Theorem al0ssb
StepHypRef Expression
1 0ex 5325 . . 3 ∅ ∈ V
2 sseq2 4035 . . . 4 (𝑦 = ∅ → (𝑋𝑦𝑋 ⊆ ∅))
3 ss0b 4424 . . . 4 (𝑋 ⊆ ∅ ↔ 𝑋 = ∅)
42, 3bitrdi 287 . . 3 (𝑦 = ∅ → (𝑋𝑦𝑋 = ∅))
51, 4spcv 3618 . 2 (∀𝑦 𝑋𝑦𝑋 = ∅)
6 0ss 4423 . . . 4 ∅ ⊆ 𝑦
76ax-gen 1793 . . 3 𝑦∅ ⊆ 𝑦
8 sseq1 4034 . . . 4 (𝑋 = ∅ → (𝑋𝑦 ↔ ∅ ⊆ 𝑦))
98albidv 1919 . . 3 (𝑋 = ∅ → (∀𝑦 𝑋𝑦 ↔ ∀𝑦∅ ⊆ 𝑦))
107, 9mpbiri 258 . 2 (𝑋 = ∅ → ∀𝑦 𝑋𝑦)
115, 10impbii 209 1 (∀𝑦 𝑋𝑦𝑋 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535   = wceq 1537  wss 3976  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353
This theorem is referenced by:  iota0def  46953  aiota0def  47011
  Copyright terms: Public domain W3C validator