Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > al0ssb | Structured version Visualization version GIF version |
Description: The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
al0ssb | ⊢ (∀𝑦 𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5234 | . . 3 ⊢ ∅ ∈ V | |
2 | sseq2 3951 | . . . 4 ⊢ (𝑦 = ∅ → (𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ ∅)) | |
3 | ss0b 4336 | . . . 4 ⊢ (𝑋 ⊆ ∅ ↔ 𝑋 = ∅) | |
4 | 2, 3 | bitrdi 286 | . . 3 ⊢ (𝑦 = ∅ → (𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅)) |
5 | 1, 4 | spcv 3542 | . 2 ⊢ (∀𝑦 𝑋 ⊆ 𝑦 → 𝑋 = ∅) |
6 | 0ss 4335 | . . . 4 ⊢ ∅ ⊆ 𝑦 | |
7 | 6 | ax-gen 1801 | . . 3 ⊢ ∀𝑦∅ ⊆ 𝑦 |
8 | sseq1 3950 | . . . 4 ⊢ (𝑋 = ∅ → (𝑋 ⊆ 𝑦 ↔ ∅ ⊆ 𝑦)) | |
9 | 8 | albidv 1926 | . . 3 ⊢ (𝑋 = ∅ → (∀𝑦 𝑋 ⊆ 𝑦 ↔ ∀𝑦∅ ⊆ 𝑦)) |
10 | 7, 9 | mpbiri 257 | . 2 ⊢ (𝑋 = ∅ → ∀𝑦 𝑋 ⊆ 𝑦) |
11 | 5, 10 | impbii 208 | 1 ⊢ (∀𝑦 𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1539 = wceq 1541 ⊆ wss 3891 ∅c0 4261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-nul 4262 |
This theorem is referenced by: iota0def 44483 aiota0def 44539 |
Copyright terms: Public domain | W3C validator |