Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iota0def Structured version   Visualization version   GIF version

Theorem iota0def 44419
Description: Example for a defined iota being the empty set, i.e., 𝑦𝑥𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
iota0def (℩𝑥𝑦 𝑥𝑦) = ∅
Distinct variable group:   𝑥,𝑦

Proof of Theorem iota0def
StepHypRef Expression
1 0ex 5226 . 2 ∅ ∈ V
2 al0ssb 5227 . . . 4 (∀𝑦 𝑥𝑦𝑥 = ∅)
32a1i 11 . . 3 ((∅ ∈ V ∧ ∅ ∈ V) → (∀𝑦 𝑥𝑦𝑥 = ∅))
43iota5 6401 . 2 ((∅ ∈ V ∧ ∅ ∈ V) → (℩𝑥𝑦 𝑥𝑦) = ∅)
51, 1, 4mp2an 688 1 (℩𝑥𝑦 𝑥𝑦) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  c0 4253  cio 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator