Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iota0def Structured version   Visualization version   GIF version

Theorem iota0def 47068
Description: Example for a defined iota being the empty set, i.e., 𝑦𝑥𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
iota0def (℩𝑥𝑦 𝑥𝑦) = ∅
Distinct variable group:   𝑥,𝑦

Proof of Theorem iota0def
StepHypRef Expression
1 0ex 5245 . 2 ∅ ∈ V
2 al0ssb 5246 . . . 4 (∀𝑦 𝑥𝑦𝑥 = ∅)
32a1i 11 . . 3 ((∅ ∈ V ∧ ∅ ∈ V) → (∀𝑦 𝑥𝑦𝑥 = ∅))
43iota5 6464 . 2 ((∅ ∈ V ∧ ∅ ∈ V) → (℩𝑥𝑦 𝑥𝑦) = ∅)
51, 1, 4mp2an 692 1 (℩𝑥𝑦 𝑥𝑦) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  c0 4283  cio 6435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-sn 4577  df-pr 4579  df-uni 4860  df-iota 6437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator