![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iota0def | Structured version Visualization version GIF version |
Description: Example for a defined iota being the empty set, i.e., ∀𝑦𝑥 ⊆ 𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
iota0def | ⊢ (℩𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5062 | . 2 ⊢ ∅ ∈ V | |
2 | al0ssb 5063 | . . . 4 ⊢ (∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅)) |
4 | 3 | iota5 6166 | . 2 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (℩𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅) |
5 | 1, 1, 4 | mp2an 679 | 1 ⊢ (℩𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 ∀wal 1505 = wceq 1507 ∈ wcel 2048 Vcvv 3409 ⊆ wss 3825 ∅c0 4173 ℩cio 6144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 ax-nul 5061 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-rex 3088 df-v 3411 df-sbc 3678 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-sn 4436 df-pr 4438 df-uni 4707 df-iota 6146 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |