Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iota0def Structured version   Visualization version   GIF version

Theorem iota0def 45683
Description: Example for a defined iota being the empty set, i.e., 𝑦𝑥𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
iota0def (℩𝑥𝑦 𝑥𝑦) = ∅
Distinct variable group:   𝑥,𝑦

Proof of Theorem iota0def
StepHypRef Expression
1 0ex 5306 . 2 ∅ ∈ V
2 al0ssb 5307 . . . 4 (∀𝑦 𝑥𝑦𝑥 = ∅)
32a1i 11 . . 3 ((∅ ∈ V ∧ ∅ ∈ V) → (∀𝑦 𝑥𝑦𝑥 = ∅))
43iota5 6523 . 2 ((∅ ∈ V ∧ ∅ ∈ V) → (℩𝑥𝑦 𝑥𝑦) = ∅)
51, 1, 4mp2an 691 1 (℩𝑥𝑦 𝑥𝑦) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wal 1540   = wceq 1542  wcel 2107  Vcvv 3475  wss 3947  c0 4321  cio 6490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-sn 4628  df-pr 4630  df-uni 4908  df-iota 6492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator