Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iota0def | Structured version Visualization version GIF version |
Description: Example for a defined iota being the empty set, i.e., ∀𝑦𝑥 ⊆ 𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
iota0def | ⊢ (℩𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5200 | . 2 ⊢ ∅ ∈ V | |
2 | al0ssb 5201 | . . . 4 ⊢ (∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅)) |
4 | 3 | iota5 6363 | . 2 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (℩𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅) |
5 | 1, 1, 4 | mp2an 692 | 1 ⊢ (℩𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∀wal 1541 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ⊆ wss 3866 ∅c0 4237 ℩cio 6336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-nul 5199 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-sn 4542 df-pr 4544 df-uni 4820 df-iota 6338 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |