| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iota0def | Structured version Visualization version GIF version | ||
| Description: Example for a defined iota being the empty set, i.e., ∀𝑦𝑥 ⊆ 𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). (Contributed by AV, 24-Aug-2022.) |
| Ref | Expression |
|---|---|
| iota0def | ⊢ (℩𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5282 | . 2 ⊢ ∅ ∈ V | |
| 2 | al0ssb 5283 | . . . 4 ⊢ (∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅)) |
| 4 | 3 | iota5 6519 | . 2 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (℩𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅) |
| 5 | 1, 1, 4 | mp2an 692 | 1 ⊢ (℩𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 ℩cio 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4889 df-iota 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |