![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiota0def | Structured version Visualization version GIF version |
Description: Example for a defined alternate iota being the empty set, i.e., ∀𝑦𝑥 ⊆ 𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). This corresponds to iota0def 46689. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
aiota0def | ⊢ (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5304 | . 2 ⊢ ∅ ∈ V | |
2 | al0ssb 5305 | . . 3 ⊢ (∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) | |
3 | 2 | ax-gen 1790 | . 2 ⊢ ∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) |
4 | eqeq2 2738 | . . . . . 6 ⊢ (𝑧 = ∅ → (𝑥 = 𝑧 ↔ 𝑥 = ∅)) | |
5 | 4 | bibi2d 341 | . . . . 5 ⊢ (𝑧 = ∅ → ((∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧) ↔ (∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅))) |
6 | 5 | albidv 1916 | . . . 4 ⊢ (𝑧 = ∅ → (∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧) ↔ ∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅))) |
7 | eqeq2 2738 | . . . 4 ⊢ (𝑧 = ∅ → ((℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = 𝑧 ↔ (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅)) | |
8 | 6, 7 | imbi12d 343 | . . 3 ⊢ (𝑧 = ∅ → ((∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧) → (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = 𝑧) ↔ (∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) → (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅))) |
9 | aiotaval 46744 | . . 3 ⊢ (∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧) → (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = 𝑧) | |
10 | 8, 9 | vtoclg 3533 | . 2 ⊢ (∅ ∈ V → (∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) → (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅)) |
11 | 1, 3, 10 | mp2 9 | 1 ⊢ (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3946 ∅c0 4322 ℩'caiota 46732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-nul 5303 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-sn 4624 df-pr 4626 df-uni 4906 df-int 4947 df-iota 6498 df-aiota 46734 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |