Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiota0def Structured version   Visualization version   GIF version

Theorem aiota0def 44475
Description: Example for a defined alternate iota being the empty set, i.e., 𝑦𝑥𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). This corresponds to iota0def 44419. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
aiota0def (℩'𝑥𝑦 𝑥𝑦) = ∅
Distinct variable group:   𝑥,𝑦

Proof of Theorem aiota0def
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 5226 . 2 ∅ ∈ V
2 al0ssb 5227 . . 3 (∀𝑦 𝑥𝑦𝑥 = ∅)
32ax-gen 1799 . 2 𝑥(∀𝑦 𝑥𝑦𝑥 = ∅)
4 eqeq2 2750 . . . . . 6 (𝑧 = ∅ → (𝑥 = 𝑧𝑥 = ∅))
54bibi2d 342 . . . . 5 (𝑧 = ∅ → ((∀𝑦 𝑥𝑦𝑥 = 𝑧) ↔ (∀𝑦 𝑥𝑦𝑥 = ∅)))
65albidv 1924 . . . 4 (𝑧 = ∅ → (∀𝑥(∀𝑦 𝑥𝑦𝑥 = 𝑧) ↔ ∀𝑥(∀𝑦 𝑥𝑦𝑥 = ∅)))
7 eqeq2 2750 . . . 4 (𝑧 = ∅ → ((℩'𝑥𝑦 𝑥𝑦) = 𝑧 ↔ (℩'𝑥𝑦 𝑥𝑦) = ∅))
86, 7imbi12d 344 . . 3 (𝑧 = ∅ → ((∀𝑥(∀𝑦 𝑥𝑦𝑥 = 𝑧) → (℩'𝑥𝑦 𝑥𝑦) = 𝑧) ↔ (∀𝑥(∀𝑦 𝑥𝑦𝑥 = ∅) → (℩'𝑥𝑦 𝑥𝑦) = ∅)))
9 aiotaval 44474 . . 3 (∀𝑥(∀𝑦 𝑥𝑦𝑥 = 𝑧) → (℩'𝑥𝑦 𝑥𝑦) = 𝑧)
108, 9vtoclg 3495 . 2 (∅ ∈ V → (∀𝑥(∀𝑦 𝑥𝑦𝑥 = ∅) → (℩'𝑥𝑦 𝑥𝑦) = ∅))
111, 3, 10mp2 9 1 (℩'𝑥𝑦 𝑥𝑦) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  c0 4253  ℩'caiota 44462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-uni 4837  df-int 4877  df-iota 6376  df-aiota 44464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator