Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiota0def | Structured version Visualization version GIF version |
Description: Example for a defined alternate iota being the empty set, i.e., ∀𝑦𝑥 ⊆ 𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). This corresponds to iota0def 44532. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
aiota0def | ⊢ (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5231 | . 2 ⊢ ∅ ∈ V | |
2 | al0ssb 5232 | . . 3 ⊢ (∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) | |
3 | 2 | ax-gen 1798 | . 2 ⊢ ∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) |
4 | eqeq2 2750 | . . . . . 6 ⊢ (𝑧 = ∅ → (𝑥 = 𝑧 ↔ 𝑥 = ∅)) | |
5 | 4 | bibi2d 343 | . . . . 5 ⊢ (𝑧 = ∅ → ((∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧) ↔ (∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅))) |
6 | 5 | albidv 1923 | . . . 4 ⊢ (𝑧 = ∅ → (∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧) ↔ ∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅))) |
7 | eqeq2 2750 | . . . 4 ⊢ (𝑧 = ∅ → ((℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = 𝑧 ↔ (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅)) | |
8 | 6, 7 | imbi12d 345 | . . 3 ⊢ (𝑧 = ∅ → ((∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧) → (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = 𝑧) ↔ (∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) → (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅))) |
9 | aiotaval 44587 | . . 3 ⊢ (∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧) → (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = 𝑧) | |
10 | 8, 9 | vtoclg 3505 | . 2 ⊢ (∅ ∈ V → (∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) → (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅)) |
11 | 1, 3, 10 | mp2 9 | 1 ⊢ (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 ℩'caiota 44575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 df-int 4880 df-iota 6391 df-aiota 44577 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |