![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiota0def | Structured version Visualization version GIF version |
Description: Example for a defined alternate iota being the empty set, i.e., ∀𝑦𝑥 ⊆ 𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). This corresponds to iota0def 46199. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
aiota0def | ⊢ (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5297 | . 2 ⊢ ∅ ∈ V | |
2 | al0ssb 5298 | . . 3 ⊢ (∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) | |
3 | 2 | ax-gen 1789 | . 2 ⊢ ∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) |
4 | eqeq2 2736 | . . . . . 6 ⊢ (𝑧 = ∅ → (𝑥 = 𝑧 ↔ 𝑥 = ∅)) | |
5 | 4 | bibi2d 342 | . . . . 5 ⊢ (𝑧 = ∅ → ((∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧) ↔ (∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅))) |
6 | 5 | albidv 1915 | . . . 4 ⊢ (𝑧 = ∅ → (∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧) ↔ ∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅))) |
7 | eqeq2 2736 | . . . 4 ⊢ (𝑧 = ∅ → ((℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = 𝑧 ↔ (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅)) | |
8 | 6, 7 | imbi12d 344 | . . 3 ⊢ (𝑧 = ∅ → ((∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧) → (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = 𝑧) ↔ (∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) → (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅))) |
9 | aiotaval 46254 | . . 3 ⊢ (∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = 𝑧) → (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = 𝑧) | |
10 | 8, 9 | vtoclg 3535 | . 2 ⊢ (∅ ∈ V → (∀𝑥(∀𝑦 𝑥 ⊆ 𝑦 ↔ 𝑥 = ∅) → (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅)) |
11 | 1, 3, 10 | mp2 9 | 1 ⊢ (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3940 ∅c0 4314 ℩'caiota 46242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-nul 5296 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-sn 4621 df-pr 4623 df-uni 4900 df-int 4941 df-iota 6485 df-aiota 46244 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |