Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiota0def Structured version   Visualization version   GIF version

Theorem aiota0def 46745
Description: Example for a defined alternate iota being the empty set, i.e., 𝑦𝑥𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). This corresponds to iota0def 46689. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
aiota0def (℩'𝑥𝑦 𝑥𝑦) = ∅
Distinct variable group:   𝑥,𝑦

Proof of Theorem aiota0def
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 5304 . 2 ∅ ∈ V
2 al0ssb 5305 . . 3 (∀𝑦 𝑥𝑦𝑥 = ∅)
32ax-gen 1790 . 2 𝑥(∀𝑦 𝑥𝑦𝑥 = ∅)
4 eqeq2 2738 . . . . . 6 (𝑧 = ∅ → (𝑥 = 𝑧𝑥 = ∅))
54bibi2d 341 . . . . 5 (𝑧 = ∅ → ((∀𝑦 𝑥𝑦𝑥 = 𝑧) ↔ (∀𝑦 𝑥𝑦𝑥 = ∅)))
65albidv 1916 . . . 4 (𝑧 = ∅ → (∀𝑥(∀𝑦 𝑥𝑦𝑥 = 𝑧) ↔ ∀𝑥(∀𝑦 𝑥𝑦𝑥 = ∅)))
7 eqeq2 2738 . . . 4 (𝑧 = ∅ → ((℩'𝑥𝑦 𝑥𝑦) = 𝑧 ↔ (℩'𝑥𝑦 𝑥𝑦) = ∅))
86, 7imbi12d 343 . . 3 (𝑧 = ∅ → ((∀𝑥(∀𝑦 𝑥𝑦𝑥 = 𝑧) → (℩'𝑥𝑦 𝑥𝑦) = 𝑧) ↔ (∀𝑥(∀𝑦 𝑥𝑦𝑥 = ∅) → (℩'𝑥𝑦 𝑥𝑦) = ∅)))
9 aiotaval 46744 . . 3 (∀𝑥(∀𝑦 𝑥𝑦𝑥 = 𝑧) → (℩'𝑥𝑦 𝑥𝑦) = 𝑧)
108, 9vtoclg 3533 . 2 (∅ ∈ V → (∀𝑥(∀𝑦 𝑥𝑦𝑥 = ∅) → (℩'𝑥𝑦 𝑥𝑦) = ∅))
111, 3, 10mp2 9 1 (℩'𝑥𝑦 𝑥𝑦) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532   = wceq 1534  wcel 2099  Vcvv 3462  wss 3946  c0 4322  ℩'caiota 46732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-nul 5303
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-sn 4624  df-pr 4626  df-uni 4906  df-int 4947  df-iota 6498  df-aiota 46734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator