Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiota0def Structured version   Visualization version   GIF version

Theorem aiota0def 47101
Description: Example for a defined alternate iota being the empty set, i.e., 𝑦𝑥𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). This corresponds to iota0def 47043. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
aiota0def (℩'𝑥𝑦 𝑥𝑦) = ∅
Distinct variable group:   𝑥,𝑦

Proof of Theorem aiota0def
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 5265 . 2 ∅ ∈ V
2 al0ssb 5266 . . 3 (∀𝑦 𝑥𝑦𝑥 = ∅)
32ax-gen 1795 . 2 𝑥(∀𝑦 𝑥𝑦𝑥 = ∅)
4 eqeq2 2742 . . . . . 6 (𝑧 = ∅ → (𝑥 = 𝑧𝑥 = ∅))
54bibi2d 342 . . . . 5 (𝑧 = ∅ → ((∀𝑦 𝑥𝑦𝑥 = 𝑧) ↔ (∀𝑦 𝑥𝑦𝑥 = ∅)))
65albidv 1920 . . . 4 (𝑧 = ∅ → (∀𝑥(∀𝑦 𝑥𝑦𝑥 = 𝑧) ↔ ∀𝑥(∀𝑦 𝑥𝑦𝑥 = ∅)))
7 eqeq2 2742 . . . 4 (𝑧 = ∅ → ((℩'𝑥𝑦 𝑥𝑦) = 𝑧 ↔ (℩'𝑥𝑦 𝑥𝑦) = ∅))
86, 7imbi12d 344 . . 3 (𝑧 = ∅ → ((∀𝑥(∀𝑦 𝑥𝑦𝑥 = 𝑧) → (℩'𝑥𝑦 𝑥𝑦) = 𝑧) ↔ (∀𝑥(∀𝑦 𝑥𝑦𝑥 = ∅) → (℩'𝑥𝑦 𝑥𝑦) = ∅)))
9 aiotaval 47100 . . 3 (∀𝑥(∀𝑦 𝑥𝑦𝑥 = 𝑧) → (℩'𝑥𝑦 𝑥𝑦) = 𝑧)
108, 9vtoclg 3523 . 2 (∅ ∈ V → (∀𝑥(∀𝑦 𝑥𝑦𝑥 = ∅) → (℩'𝑥𝑦 𝑥𝑦) = ∅))
111, 3, 10mp2 9 1 (℩'𝑥𝑦 𝑥𝑦) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  c0 4299  ℩'caiota 47088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-sn 4593  df-pr 4595  df-uni 4875  df-int 4914  df-iota 6467  df-aiota 47090
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator