Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1of2 Structured version   Visualization version   GIF version

Theorem o1of2 14964
 Description: Show that a binary operation preserves eventual boundedness. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1of2.1 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑀 ∈ ℝ)
o1of2.2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑅𝑦) ∈ ℂ)
o1of2.3 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
Assertion
Ref Expression
o1of2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝐹   𝑚,𝐺,𝑛,𝑥,𝑦   𝑅,𝑚,𝑛,𝑥,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝑀(𝑚,𝑛)

Proof of Theorem o1of2
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1f 14881 . . . 4 (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)
2 o1bdd 14883 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:dom 𝐹⟶ℂ) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
31, 2mpdan 686 . . 3 (𝐹 ∈ 𝑂(1) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
43adantr 484 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
5 o1f 14881 . . . 4 (𝐺 ∈ 𝑂(1) → 𝐺:dom 𝐺⟶ℂ)
6 o1bdd 14883 . . . 4 ((𝐺 ∈ 𝑂(1) ∧ 𝐺:dom 𝐺⟶ℂ) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
75, 6mpdan 686 . . 3 (𝐺 ∈ 𝑂(1) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
87adantl 485 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
9 reeanv 3320 . . 3 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
10 reeanv 3320 . . . . 5 (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
11 inss1 4155 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
12 ssralv 3981 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚)))
1311, 12ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
14 inss2 4156 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
15 ssralv 3981 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → (∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
1614, 15ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
1713, 16anim12i 615 . . . . . . . 8 ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
18 r19.26 3137 . . . . . . . 8 (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
1917, 18sylibr 237 . . . . . . 7 ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
20 anim12 808 . . . . . . . . . 10 (((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)))
21 simplrl 776 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑎 ∈ ℝ)
2221adantr 484 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑎 ∈ ℝ)
23 simplrr 777 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑏 ∈ ℝ)
2423adantr 484 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑏 ∈ ℝ)
25 o1dm 14882 . . . . . . . . . . . . . . . 16 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
2625ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐹 ⊆ ℝ)
2711, 26sstrid 3926 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
2827sselda 3915 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑧 ∈ ℝ)
29 maxle 12575 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3022, 24, 28, 29syl3anc 1368 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3130biimpd 232 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (𝑎𝑧𝑏𝑧)))
321ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐹:dom 𝐹⟶ℂ)
3311sseli 3911 . . . . . . . . . . . . . 14 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐹)
34 ffvelrn 6827 . . . . . . . . . . . . . 14 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
3532, 33, 34syl2an 598 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑧) ∈ ℂ)
365ad3antlr 730 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐺:dom 𝐺⟶ℂ)
3714sseli 3911 . . . . . . . . . . . . . 14 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐺)
38 ffvelrn 6827 . . . . . . . . . . . . . 14 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
3936, 37, 38syl2an 598 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑧) ∈ ℂ)
40 o1of2.3 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
4140ralrimivva 3156 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
4241ad2antlr 726 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
43 fveq2 6646 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝐹𝑧) → (abs‘𝑥) = (abs‘(𝐹𝑧)))
4443breq1d 5041 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑧) → ((abs‘𝑥) ≤ 𝑚 ↔ (abs‘(𝐹𝑧)) ≤ 𝑚))
4544anbi1d 632 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑧) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) ↔ ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)))
46 fvoveq1 7159 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑧) → (abs‘(𝑥𝑅𝑦)) = (abs‘((𝐹𝑧)𝑅𝑦)))
4746breq1d 5041 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑧) → ((abs‘(𝑥𝑅𝑦)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀))
4845, 47imbi12d 348 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑧) → ((((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀) ↔ (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀)))
49 fveq2 6646 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐺𝑧) → (abs‘𝑦) = (abs‘(𝐺𝑧)))
5049breq1d 5041 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐺𝑧) → ((abs‘𝑦) ≤ 𝑛 ↔ (abs‘(𝐺𝑧)) ≤ 𝑛))
5150anbi2d 631 . . . . . . . . . . . . . . 15 (𝑦 = (𝐺𝑧) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) ↔ ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)))
52 oveq2 7144 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐺𝑧) → ((𝐹𝑧)𝑅𝑦) = ((𝐹𝑧)𝑅(𝐺𝑧)))
5352fveq2d 6650 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐺𝑧) → (abs‘((𝐹𝑧)𝑅𝑦)) = (abs‘((𝐹𝑧)𝑅(𝐺𝑧))))
5453breq1d 5041 . . . . . . . . . . . . . . 15 (𝑦 = (𝐺𝑧) → ((abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5551, 54imbi12d 348 . . . . . . . . . . . . . 14 (𝑦 = (𝐺𝑧) → ((((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀) ↔ (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀)))
5648, 55rspc2va 3582 . . . . . . . . . . . . 13 ((((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5735, 39, 42, 56syl21anc 836 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5832ffnd 6489 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐹 Fn dom 𝐹)
5936ffnd 6489 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐺 Fn dom 𝐺)
60 reex 10620 . . . . . . . . . . . . . . . 16 ℝ ∈ V
61 ssexg 5192 . . . . . . . . . . . . . . . 16 ((dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐹 ∈ V)
6226, 60, 61sylancl 589 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐹 ∈ V)
63 dmexg 7597 . . . . . . . . . . . . . . . 16 (𝐺 ∈ 𝑂(1) → dom 𝐺 ∈ V)
6463ad3antlr 730 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐺 ∈ V)
65 eqid 2798 . . . . . . . . . . . . . . 15 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
66 eqidd 2799 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
67 eqidd 2799 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) = (𝐺𝑧))
6858, 59, 62, 64, 65, 66, 67ofval 7400 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹f 𝑅𝐺)‘𝑧) = ((𝐹𝑧)𝑅(𝐺𝑧)))
6968fveq2d 6650 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) = (abs‘((𝐹𝑧)𝑅(𝐺𝑧))))
7069breq1d 5041 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
7157, 70sylibrd 262 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀))
7231, 71imim12d 81 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑧𝑏𝑧) → ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
7320, 72syl5 34 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
7473ralimdva 3144 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
75 o1of2.2 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑅𝑦) ∈ ℂ)
7675adantl 485 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥𝑅𝑦) ∈ ℂ)
7776, 32, 36, 62, 64, 65off 7407 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (𝐹f 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ)
7823, 21ifcld 4470 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
79 o1of2.1 . . . . . . . . . 10 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑀 ∈ ℝ)
8079adantl 485 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑀 ∈ ℝ)
81 elo12r 14880 . . . . . . . . . 10 ((((𝐹f 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ) ∧ (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1))
82813expia 1118 . . . . . . . . 9 ((((𝐹f 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ) ∧ (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
8377, 27, 78, 80, 82syl22anc 837 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
8474, 83syld 47 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
8519, 84syl5 34 . . . . . 6 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
8685rexlimdvva 3253 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
8710, 86syl5bir 246 . . . 4 (((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → ((∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
8887rexlimdvva 3253 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
899, 88syl5bir 246 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ((∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
904, 8, 89mp2and 698 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ∩ cin 3880   ⊆ wss 3881  ifcif 4425   class class class wbr 5031  dom cdm 5520  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   ∘f cof 7389  ℂcc 10527  ℝcr 10528   ≤ cle 10668  abscabs 14588  𝑂(1)co1 14838 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-pre-lttri 10603  ax-pre-lttrn 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-po 5439  df-so 5440  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-er 8275  df-pm 8395  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-ico 12735  df-o1 14842 This theorem is referenced by:  o1add  14965  o1mul  14966  o1sub  14967
 Copyright terms: Public domain W3C validator