MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1of2 Structured version   Visualization version   GIF version

Theorem o1of2 15520
Description: Show that a binary operation preserves eventual boundedness. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1of2.1 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑀 ∈ ℝ)
o1of2.2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑅𝑦) ∈ ℂ)
o1of2.3 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
Assertion
Ref Expression
o1of2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝐹   𝑚,𝐺,𝑛,𝑥,𝑦   𝑅,𝑚,𝑛,𝑥,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝑀(𝑚,𝑛)

Proof of Theorem o1of2
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1f 15436 . . . 4 (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)
2 o1bdd 15438 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:dom 𝐹⟶ℂ) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
31, 2mpdan 687 . . 3 (𝐹 ∈ 𝑂(1) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
43adantr 480 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
5 o1f 15436 . . . 4 (𝐺 ∈ 𝑂(1) → 𝐺:dom 𝐺⟶ℂ)
6 o1bdd 15438 . . . 4 ((𝐺 ∈ 𝑂(1) ∧ 𝐺:dom 𝐺⟶ℂ) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
75, 6mpdan 687 . . 3 (𝐺 ∈ 𝑂(1) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
87adantl 481 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
9 reeanv 3201 . . 3 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
10 reeanv 3201 . . . . 5 (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
11 inss1 4188 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
12 ssralv 4004 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚)))
1311, 12ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
14 inss2 4189 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
15 ssralv 4004 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → (∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
1614, 15ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
1713, 16anim12i 613 . . . . . . . 8 ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
18 r19.26 3089 . . . . . . . 8 (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
1917, 18sylibr 234 . . . . . . 7 ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
20 anim12 808 . . . . . . . . . 10 (((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)))
21 simplrl 776 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑎 ∈ ℝ)
2221adantr 480 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑎 ∈ ℝ)
23 simplrr 777 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑏 ∈ ℝ)
2423adantr 480 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑏 ∈ ℝ)
25 o1dm 15437 . . . . . . . . . . . . . . . 16 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
2625ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐹 ⊆ ℝ)
2711, 26sstrid 3947 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
2827sselda 3935 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑧 ∈ ℝ)
29 maxle 13093 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3022, 24, 28, 29syl3anc 1373 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3130biimpd 229 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (𝑎𝑧𝑏𝑧)))
321ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐹:dom 𝐹⟶ℂ)
3311sseli 3931 . . . . . . . . . . . . . 14 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐹)
34 ffvelcdm 7015 . . . . . . . . . . . . . 14 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
3532, 33, 34syl2an 596 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑧) ∈ ℂ)
365ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐺:dom 𝐺⟶ℂ)
3714sseli 3931 . . . . . . . . . . . . . 14 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐺)
38 ffvelcdm 7015 . . . . . . . . . . . . . 14 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
3936, 37, 38syl2an 596 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑧) ∈ ℂ)
40 o1of2.3 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
4140ralrimivva 3172 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
4241ad2antlr 727 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
43 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝐹𝑧) → (abs‘𝑥) = (abs‘(𝐹𝑧)))
4443breq1d 5102 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑧) → ((abs‘𝑥) ≤ 𝑚 ↔ (abs‘(𝐹𝑧)) ≤ 𝑚))
4544anbi1d 631 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑧) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) ↔ ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)))
46 fvoveq1 7372 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑧) → (abs‘(𝑥𝑅𝑦)) = (abs‘((𝐹𝑧)𝑅𝑦)))
4746breq1d 5102 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑧) → ((abs‘(𝑥𝑅𝑦)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀))
4845, 47imbi12d 344 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑧) → ((((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀) ↔ (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀)))
49 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐺𝑧) → (abs‘𝑦) = (abs‘(𝐺𝑧)))
5049breq1d 5102 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐺𝑧) → ((abs‘𝑦) ≤ 𝑛 ↔ (abs‘(𝐺𝑧)) ≤ 𝑛))
5150anbi2d 630 . . . . . . . . . . . . . . 15 (𝑦 = (𝐺𝑧) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) ↔ ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)))
52 oveq2 7357 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐺𝑧) → ((𝐹𝑧)𝑅𝑦) = ((𝐹𝑧)𝑅(𝐺𝑧)))
5352fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐺𝑧) → (abs‘((𝐹𝑧)𝑅𝑦)) = (abs‘((𝐹𝑧)𝑅(𝐺𝑧))))
5453breq1d 5102 . . . . . . . . . . . . . . 15 (𝑦 = (𝐺𝑧) → ((abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5551, 54imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = (𝐺𝑧) → ((((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀) ↔ (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀)))
5648, 55rspc2va 3589 . . . . . . . . . . . . 13 ((((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5735, 39, 42, 56syl21anc 837 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5832ffnd 6653 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐹 Fn dom 𝐹)
5936ffnd 6653 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐺 Fn dom 𝐺)
60 reex 11100 . . . . . . . . . . . . . . . 16 ℝ ∈ V
61 ssexg 5262 . . . . . . . . . . . . . . . 16 ((dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐹 ∈ V)
6226, 60, 61sylancl 586 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐹 ∈ V)
63 dmexg 7834 . . . . . . . . . . . . . . . 16 (𝐺 ∈ 𝑂(1) → dom 𝐺 ∈ V)
6463ad3antlr 731 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐺 ∈ V)
65 eqid 2729 . . . . . . . . . . . . . . 15 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
66 eqidd 2730 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
67 eqidd 2730 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) = (𝐺𝑧))
6858, 59, 62, 64, 65, 66, 67ofval 7624 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹f 𝑅𝐺)‘𝑧) = ((𝐹𝑧)𝑅(𝐺𝑧)))
6968fveq2d 6826 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) = (abs‘((𝐹𝑧)𝑅(𝐺𝑧))))
7069breq1d 5102 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
7157, 70sylibrd 259 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀))
7231, 71imim12d 81 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑧𝑏𝑧) → ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
7320, 72syl5 34 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
7473ralimdva 3141 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
75 o1of2.2 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑅𝑦) ∈ ℂ)
7675adantl 481 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥𝑅𝑦) ∈ ℂ)
7776, 32, 36, 62, 64, 65off 7631 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (𝐹f 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ)
7823, 21ifcld 4523 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
79 o1of2.1 . . . . . . . . . 10 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑀 ∈ ℝ)
8079adantl 481 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑀 ∈ ℝ)
81 elo12r 15435 . . . . . . . . . 10 ((((𝐹f 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ) ∧ (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1))
82813expia 1121 . . . . . . . . 9 ((((𝐹f 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ) ∧ (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
8377, 27, 78, 80, 82syl22anc 838 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹f 𝑅𝐺)‘𝑧)) ≤ 𝑀) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
8474, 83syld 47 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
8519, 84syl5 34 . . . . . 6 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
8685rexlimdvva 3186 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
8710, 86biimtrrid 243 . . . 4 (((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → ((∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
8887rexlimdvva 3186 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
899, 88biimtrrid 243 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ((∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1)))
904, 8, 89mp2and 699 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹f 𝑅𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cin 3902  wss 3903  ifcif 4476   class class class wbr 5092  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  cc 11007  cr 11008  cle 11150  abscabs 15141  𝑂(1)co1 15393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-ico 13254  df-o1 15397
This theorem is referenced by:  o1add  15521  o1mul  15522  o1sub  15523
  Copyright terms: Public domain W3C validator