MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1of2 Structured version   Visualization version   GIF version

Theorem o1of2 14824
Description: Show that a binary operation preserves eventual boundedness. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1of2.1 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑀 ∈ ℝ)
o1of2.2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑅𝑦) ∈ ℂ)
o1of2.3 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
Assertion
Ref Expression
o1of2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝐹   𝑚,𝐺,𝑛,𝑥,𝑦   𝑅,𝑚,𝑛,𝑥,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝑀(𝑚,𝑛)

Proof of Theorem o1of2
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1f 14741 . . . 4 (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)
2 o1bdd 14743 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:dom 𝐹⟶ℂ) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
31, 2mpdan 674 . . 3 (𝐹 ∈ 𝑂(1) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
43adantr 473 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
5 o1f 14741 . . . 4 (𝐺 ∈ 𝑂(1) → 𝐺:dom 𝐺⟶ℂ)
6 o1bdd 14743 . . . 4 ((𝐺 ∈ 𝑂(1) ∧ 𝐺:dom 𝐺⟶ℂ) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
75, 6mpdan 674 . . 3 (𝐺 ∈ 𝑂(1) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
87adantl 474 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
9 reeanv 3302 . . 3 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
10 reeanv 3302 . . . . 5 (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
11 inss1 4086 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
12 ssralv 3917 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚)))
1311, 12ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
14 inss2 4087 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
15 ssralv 3917 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → (∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
1614, 15ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
1713, 16anim12i 603 . . . . . . . 8 ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
18 r19.26 3114 . . . . . . . 8 (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
1917, 18sylibr 226 . . . . . . 7 ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
20 prth 796 . . . . . . . . . 10 (((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)))
21 simplrl 764 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑎 ∈ ℝ)
2221adantr 473 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑎 ∈ ℝ)
23 simplrr 765 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑏 ∈ ℝ)
2423adantr 473 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑏 ∈ ℝ)
25 o1dm 14742 . . . . . . . . . . . . . . . 16 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
2625ad3antrrr 717 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐹 ⊆ ℝ)
2711, 26syl5ss 3863 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
2827sselda 3852 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑧 ∈ ℝ)
29 maxle 12395 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3022, 24, 28, 29syl3anc 1351 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3130biimpd 221 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (𝑎𝑧𝑏𝑧)))
321ad3antrrr 717 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐹:dom 𝐹⟶ℂ)
3311sseli 3848 . . . . . . . . . . . . . 14 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐹)
34 ffvelrn 6668 . . . . . . . . . . . . . 14 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
3532, 33, 34syl2an 586 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑧) ∈ ℂ)
365ad3antlr 718 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐺:dom 𝐺⟶ℂ)
3714sseli 3848 . . . . . . . . . . . . . 14 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐺)
38 ffvelrn 6668 . . . . . . . . . . . . . 14 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
3936, 37, 38syl2an 586 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑧) ∈ ℂ)
40 o1of2.3 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
4140ralrimivva 3135 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
4241ad2antlr 714 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
43 fveq2 6493 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝐹𝑧) → (abs‘𝑥) = (abs‘(𝐹𝑧)))
4443breq1d 4933 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑧) → ((abs‘𝑥) ≤ 𝑚 ↔ (abs‘(𝐹𝑧)) ≤ 𝑚))
4544anbi1d 620 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑧) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) ↔ ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)))
46 fvoveq1 6993 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑧) → (abs‘(𝑥𝑅𝑦)) = (abs‘((𝐹𝑧)𝑅𝑦)))
4746breq1d 4933 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑧) → ((abs‘(𝑥𝑅𝑦)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀))
4845, 47imbi12d 337 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑧) → ((((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀) ↔ (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀)))
49 fveq2 6493 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐺𝑧) → (abs‘𝑦) = (abs‘(𝐺𝑧)))
5049breq1d 4933 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐺𝑧) → ((abs‘𝑦) ≤ 𝑛 ↔ (abs‘(𝐺𝑧)) ≤ 𝑛))
5150anbi2d 619 . . . . . . . . . . . . . . 15 (𝑦 = (𝐺𝑧) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) ↔ ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)))
52 oveq2 6978 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐺𝑧) → ((𝐹𝑧)𝑅𝑦) = ((𝐹𝑧)𝑅(𝐺𝑧)))
5352fveq2d 6497 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐺𝑧) → (abs‘((𝐹𝑧)𝑅𝑦)) = (abs‘((𝐹𝑧)𝑅(𝐺𝑧))))
5453breq1d 4933 . . . . . . . . . . . . . . 15 (𝑦 = (𝐺𝑧) → ((abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5551, 54imbi12d 337 . . . . . . . . . . . . . 14 (𝑦 = (𝐺𝑧) → ((((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀) ↔ (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀)))
5648, 55rspc2va 3543 . . . . . . . . . . . . 13 ((((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5735, 39, 42, 56syl21anc 825 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5832ffnd 6339 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐹 Fn dom 𝐹)
5936ffnd 6339 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐺 Fn dom 𝐺)
60 reex 10420 . . . . . . . . . . . . . . . 16 ℝ ∈ V
61 ssexg 5077 . . . . . . . . . . . . . . . 16 ((dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐹 ∈ V)
6226, 60, 61sylancl 577 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐹 ∈ V)
63 dmexg 7422 . . . . . . . . . . . . . . . 16 (𝐺 ∈ 𝑂(1) → dom 𝐺 ∈ V)
6463ad3antlr 718 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐺 ∈ V)
65 eqid 2772 . . . . . . . . . . . . . . 15 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
66 eqidd 2773 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
67 eqidd 2773 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) = (𝐺𝑧))
6858, 59, 62, 64, 65, 66, 67ofval 7230 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑓 𝑅𝐺)‘𝑧) = ((𝐹𝑧)𝑅(𝐺𝑧)))
6968fveq2d 6497 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) = (abs‘((𝐹𝑧)𝑅(𝐺𝑧))))
7069breq1d 4933 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
7157, 70sylibrd 251 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀))
7231, 71imim12d 81 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑧𝑏𝑧) → ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
7320, 72syl5 34 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
7473ralimdva 3121 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
75 o1of2.2 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑅𝑦) ∈ ℂ)
7675adantl 474 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥𝑅𝑦) ∈ ℂ)
7776, 32, 36, 62, 64, 65off 7236 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (𝐹𝑓 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ)
7823, 21ifcld 4389 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
79 o1of2.1 . . . . . . . . . 10 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑀 ∈ ℝ)
8079adantl 474 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑀 ∈ ℝ)
81 elo12r 14740 . . . . . . . . . 10 ((((𝐹𝑓 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ) ∧ (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1))
82813expia 1101 . . . . . . . . 9 ((((𝐹𝑓 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ) ∧ (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8377, 27, 78, 80, 82syl22anc 826 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8474, 83syld 47 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8519, 84syl5 34 . . . . . 6 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8685rexlimdvva 3233 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8710, 86syl5bir 235 . . . 4 (((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → ((∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8887rexlimdvva 3233 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
899, 88syl5bir 235 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ((∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
904, 8, 89mp2and 686 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wral 3082  wrex 3083  Vcvv 3409  cin 3822  wss 3823  ifcif 4344   class class class wbr 4923  dom cdm 5401  wf 6178  cfv 6182  (class class class)co 6970  𝑓 cof 7219  cc 10327  cr 10328  cle 10469  abscabs 14448  𝑂(1)co1 14698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-pre-lttri 10403  ax-pre-lttrn 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-po 5320  df-so 5321  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-er 8083  df-pm 8203  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-ico 12554  df-o1 14702
This theorem is referenced by:  o1add  14825  o1mul  14826  o1sub  14827
  Copyright terms: Public domain W3C validator