MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn3 Structured version   Visualization version   GIF version

Theorem rlimcn3 15530
Description: Image of a limit under a continuous map, two-arg version. Originally a subproof of rlimcn2 15531. (Contributed by SN, 27-Sep-2024.)
Hypotheses
Ref Expression
rlimcn3.1a ((𝜑𝑧𝐴) → 𝐵𝑋)
rlimcn3.1b ((𝜑𝑧𝐴) → 𝐶𝑌)
rlimcn3.1c ((𝜑𝑧𝐴) → (𝐵𝐹𝐶) ∈ ℂ)
rlimcn3.2 (𝜑 → (𝑅𝐹𝑆) ∈ ℂ)
rlimcn3.3a (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
rlimcn3.3b (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
rlimcn3.4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
Assertion
Ref Expression
rlimcn3 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Distinct variable groups:   𝑠,𝑟,𝑥,𝑧,𝐴   𝑢,𝑟,𝑣,𝐹,𝑠,𝑥,𝑧   𝑅,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐵,𝑟,𝑠,𝑢,𝑣,𝑥   𝜑,𝑟,𝑠,𝑥,𝑧   𝑆,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐶,𝑟,𝑠,𝑣,𝑥   𝑢,𝑋,𝑧   𝑢,𝑌,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐴(𝑣,𝑢)   𝐵(𝑧)   𝐶(𝑧,𝑢)   𝑋(𝑥,𝑣,𝑠,𝑟)   𝑌(𝑥,𝑠,𝑟)

Proof of Theorem rlimcn3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcn3.4 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
2 rlimcn3.1a . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐵𝑋)
32ralrimiva 3146 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐵𝑋)
43adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∀𝑧𝐴 𝐵𝑋)
5 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
6 rlimcn3.3a . . . . . . . . 9 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
76adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
84, 5, 7rlimi 15453 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟))
9 rlimcn3.1b . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐶𝑌)
109ralrimiva 3146 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐶𝑌)
1110adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∀𝑧𝐴 𝐶𝑌)
12 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → 𝑠 ∈ ℝ+)
13 rlimcn3.3b . . . . . . . . 9 (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
1413adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
1511, 12, 14rlimi 15453 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠))
16 reeanv 3226 . . . . . . . 8 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) ↔ (∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)))
17 r19.26 3111 . . . . . . . . . 10 (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) ↔ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)))
18 anim12 807 . . . . . . . . . . . . 13 (((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)))
19 simplrl 775 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑎 ∈ ℝ)
20 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑏 ∈ ℝ)
21 eqid 2732 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
2221, 2dmmptd 6692 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
23 rlimss 15442 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐴𝐵) ⇝𝑟 𝑅 → dom (𝑧𝐴𝐵) ⊆ ℝ)
246, 23syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
2522, 24eqsstrrd 4020 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ ℝ)
2625ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2726sselda 3981 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
28 maxle 13166 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
2919, 20, 27, 28syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3029imbi1d 341 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) ↔ ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
3118, 30imbitrrid 245 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → (((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
3231ralimdva 3167 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
33 ifcl 4572 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
3433ancoms 459 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
3534ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
362adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → 𝐵𝑋)
379adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → 𝐶𝑌)
3836, 37jca 512 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → (𝐵𝑋𝐶𝑌))
39 fvoveq1 7428 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝐵 → (abs‘(𝑢𝑅)) = (abs‘(𝐵𝑅)))
4039breq1d 5157 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝐵 → ((abs‘(𝑢𝑅)) < 𝑟 ↔ (abs‘(𝐵𝑅)) < 𝑟))
4140anbi1d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝐵 → (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) ↔ ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠)))
42 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝐵 → (𝑢𝐹𝑣) = (𝐵𝐹𝑣))
4342fvoveq1d 7427 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝐵 → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) = (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))))
4443breq1d 5157 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝐵 → ((abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥 ↔ (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
4541, 44imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝐵 → ((((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) ↔ (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)))
46 fvoveq1 7428 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝐶 → (abs‘(𝑣𝑆)) = (abs‘(𝐶𝑆)))
4746breq1d 5157 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝐶 → ((abs‘(𝑣𝑆)) < 𝑠 ↔ (abs‘(𝐶𝑆)) < 𝑠))
4847anbi2d 629 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐶 → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) ↔ ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)))
49 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝐶 → (𝐵𝐹𝑣) = (𝐵𝐹𝐶))
5049fvoveq1d 7427 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝐶 → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) = (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))))
5150breq1d 5157 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐶 → ((abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥 ↔ (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5248, 51imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐶 → ((((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) ↔ (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5345, 52rspc2va 3622 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑋𝐶𝑌) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5438, 53sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5554imim2d 57 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5655an32s 650 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) ∧ 𝑧𝐴) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5756ralimdva 3167 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5857adantlr 713 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
59 breq1 5150 . . . . . . . . . . . . . . 15 (𝑐 = if(𝑎𝑏, 𝑏, 𝑎) → (𝑐𝑧 ↔ if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧))
6059rspceaimv 3616 . . . . . . . . . . . . . 14 ((if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
6135, 58, 60syl6an 682 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
6261ex 413 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6362com23 86 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6432, 63syld 47 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6517, 64biimtrrid 242 . . . . . . . . 9 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → ((∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6665rexlimdvva 3211 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6716, 66biimtrrid 242 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ((∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
688, 15, 67mp2and 697 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
6968rexlimdvva 3211 . . . . 5 (𝜑 → (∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
7069imp 407 . . . 4 ((𝜑 ∧ ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
711, 70syldan 591 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
7271ralrimiva 3146 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
73 rlimcn3.1c . . . 4 ((𝜑𝑧𝐴) → (𝐵𝐹𝐶) ∈ ℂ)
7473ralrimiva 3146 . . 3 (𝜑 → ∀𝑧𝐴 (𝐵𝐹𝐶) ∈ ℂ)
75 rlimcn3.2 . . 3 (𝜑 → (𝑅𝐹𝑆) ∈ ℂ)
7674, 25, 75rlim2 15436 . 2 (𝜑 → ((𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆) ↔ ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
7772, 76mpbird 256 1 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  wss 3947  ifcif 4527   class class class wbr 5147  cmpt 5230  dom cdm 5675  cfv 6540  (class class class)co 7405  cc 11104  cr 11105   < clt 11244  cle 11245  cmin 11440  +crp 12970  abscabs 15177  𝑟 crli 15425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-rlim 15429
This theorem is referenced by:  rlimcn2  15531  rlimadd  15583  rlimmul  15586
  Copyright terms: Public domain W3C validator