MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn3 Structured version   Visualization version   GIF version

Theorem rlimcn3 15532
Description: Image of a limit under a continuous map, two-arg version. Originally a subproof of rlimcn2 15533. (Contributed by SN, 27-Sep-2024.)
Hypotheses
Ref Expression
rlimcn3.1a ((𝜑𝑧𝐴) → 𝐵𝑋)
rlimcn3.1b ((𝜑𝑧𝐴) → 𝐶𝑌)
rlimcn3.1c ((𝜑𝑧𝐴) → (𝐵𝐹𝐶) ∈ ℂ)
rlimcn3.2 (𝜑 → (𝑅𝐹𝑆) ∈ ℂ)
rlimcn3.3a (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
rlimcn3.3b (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
rlimcn3.4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
Assertion
Ref Expression
rlimcn3 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Distinct variable groups:   𝑠,𝑟,𝑥,𝑧,𝐴   𝑢,𝑟,𝑣,𝐹,𝑠,𝑥,𝑧   𝑅,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐵,𝑟,𝑠,𝑢,𝑣,𝑥   𝜑,𝑟,𝑠,𝑥,𝑧   𝑆,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐶,𝑟,𝑠,𝑣,𝑥   𝑢,𝑋,𝑧   𝑢,𝑌,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐴(𝑣,𝑢)   𝐵(𝑧)   𝐶(𝑧,𝑢)   𝑋(𝑥,𝑣,𝑠,𝑟)   𝑌(𝑥,𝑠,𝑟)

Proof of Theorem rlimcn3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcn3.4 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
2 rlimcn3.1a . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐵𝑋)
32ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐵𝑋)
43adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∀𝑧𝐴 𝐵𝑋)
5 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
6 rlimcn3.3a . . . . . . . . 9 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
76adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
84, 5, 7rlimi 15455 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟))
9 rlimcn3.1b . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐶𝑌)
109ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐶𝑌)
1110adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∀𝑧𝐴 𝐶𝑌)
12 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → 𝑠 ∈ ℝ+)
13 rlimcn3.3b . . . . . . . . 9 (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
1413adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
1511, 12, 14rlimi 15455 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠))
16 reeanv 3207 . . . . . . . 8 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) ↔ (∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)))
17 r19.26 3091 . . . . . . . . . 10 (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) ↔ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)))
18 anim12 808 . . . . . . . . . . . . 13 (((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)))
19 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑎 ∈ ℝ)
20 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑏 ∈ ℝ)
21 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
2221, 2dmmptd 6645 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
23 rlimss 15444 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐴𝐵) ⇝𝑟 𝑅 → dom (𝑧𝐴𝐵) ⊆ ℝ)
246, 23syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
2522, 24eqsstrrd 3979 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ ℝ)
2625ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2726sselda 3943 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
28 maxle 13127 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
2919, 20, 27, 28syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3029imbi1d 341 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) ↔ ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
3118, 30imbitrrid 246 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → (((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
3231ralimdva 3145 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
33 ifcl 4530 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
3433ancoms 458 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
3534ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
362adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → 𝐵𝑋)
379adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → 𝐶𝑌)
3836, 37jca 511 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → (𝐵𝑋𝐶𝑌))
39 fvoveq1 7392 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝐵 → (abs‘(𝑢𝑅)) = (abs‘(𝐵𝑅)))
4039breq1d 5112 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝐵 → ((abs‘(𝑢𝑅)) < 𝑟 ↔ (abs‘(𝐵𝑅)) < 𝑟))
4140anbi1d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝐵 → (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) ↔ ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠)))
42 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝐵 → (𝑢𝐹𝑣) = (𝐵𝐹𝑣))
4342fvoveq1d 7391 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝐵 → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) = (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))))
4443breq1d 5112 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝐵 → ((abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥 ↔ (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
4541, 44imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝐵 → ((((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) ↔ (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)))
46 fvoveq1 7392 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝐶 → (abs‘(𝑣𝑆)) = (abs‘(𝐶𝑆)))
4746breq1d 5112 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝐶 → ((abs‘(𝑣𝑆)) < 𝑠 ↔ (abs‘(𝐶𝑆)) < 𝑠))
4847anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐶 → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) ↔ ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)))
49 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝐶 → (𝐵𝐹𝑣) = (𝐵𝐹𝐶))
5049fvoveq1d 7391 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝐶 → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) = (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))))
5150breq1d 5112 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐶 → ((abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥 ↔ (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5248, 51imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐶 → ((((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) ↔ (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5345, 52rspc2va 3597 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑋𝐶𝑌) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5438, 53sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5554imim2d 57 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5655an32s 652 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) ∧ 𝑧𝐴) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5756ralimdva 3145 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5857adantlr 715 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
59 breq1 5105 . . . . . . . . . . . . . . 15 (𝑐 = if(𝑎𝑏, 𝑏, 𝑎) → (𝑐𝑧 ↔ if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧))
6059rspceaimv 3591 . . . . . . . . . . . . . 14 ((if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
6135, 58, 60syl6an 684 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
6261ex 412 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6362com23 86 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6432, 63syld 47 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6517, 64biimtrrid 243 . . . . . . . . 9 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → ((∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6665rexlimdvva 3192 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6716, 66biimtrrid 243 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ((∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
688, 15, 67mp2and 699 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
6968rexlimdvva 3192 . . . . 5 (𝜑 → (∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
7069imp 406 . . . 4 ((𝜑 ∧ ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
711, 70syldan 591 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
7271ralrimiva 3125 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
73 rlimcn3.1c . . . 4 ((𝜑𝑧𝐴) → (𝐵𝐹𝐶) ∈ ℂ)
7473ralrimiva 3125 . . 3 (𝜑 → ∀𝑧𝐴 (𝐵𝐹𝐶) ∈ ℂ)
75 rlimcn3.2 . . 3 (𝜑 → (𝑅𝐹𝑆) ∈ ℂ)
7674, 25, 75rlim2 15438 . 2 (𝜑 → ((𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆) ↔ ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
7772, 76mpbird 257 1 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911  ifcif 4484   class class class wbr 5102  cmpt 5183  dom cdm 5631  cfv 6499  (class class class)co 7369  cc 11042  cr 11043   < clt 11184  cle 11185  cmin 11381  +crp 12927  abscabs 15176  𝑟 crli 15427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-rlim 15431
This theorem is referenced by:  rlimcn2  15533  rlimadd  15585  rlimmul  15587
  Copyright terms: Public domain W3C validator