MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn3 Structured version   Visualization version   GIF version

Theorem rlimcn3 15540
Description: Image of a limit under a continuous map, two-arg version. Originally a subproof of rlimcn2 15541. (Contributed by SN, 27-Sep-2024.)
Hypotheses
Ref Expression
rlimcn3.1a ((𝜑𝑧𝐴) → 𝐵𝑋)
rlimcn3.1b ((𝜑𝑧𝐴) → 𝐶𝑌)
rlimcn3.1c ((𝜑𝑧𝐴) → (𝐵𝐹𝐶) ∈ ℂ)
rlimcn3.2 (𝜑 → (𝑅𝐹𝑆) ∈ ℂ)
rlimcn3.3a (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
rlimcn3.3b (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
rlimcn3.4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
Assertion
Ref Expression
rlimcn3 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Distinct variable groups:   𝑠,𝑟,𝑥,𝑧,𝐴   𝑢,𝑟,𝑣,𝐹,𝑠,𝑥,𝑧   𝑅,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐵,𝑟,𝑠,𝑢,𝑣,𝑥   𝜑,𝑟,𝑠,𝑥,𝑧   𝑆,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐶,𝑟,𝑠,𝑣,𝑥   𝑢,𝑋,𝑧   𝑢,𝑌,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐴(𝑣,𝑢)   𝐵(𝑧)   𝐶(𝑧,𝑢)   𝑋(𝑥,𝑣,𝑠,𝑟)   𝑌(𝑥,𝑠,𝑟)

Proof of Theorem rlimcn3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcn3.4 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
2 rlimcn3.1a . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐵𝑋)
32ralrimiva 3140 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐵𝑋)
43adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∀𝑧𝐴 𝐵𝑋)
5 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
6 rlimcn3.3a . . . . . . . . 9 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
76adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
84, 5, 7rlimi 15463 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟))
9 rlimcn3.1b . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐶𝑌)
109ralrimiva 3140 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐶𝑌)
1110adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∀𝑧𝐴 𝐶𝑌)
12 simprr 770 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → 𝑠 ∈ ℝ+)
13 rlimcn3.3b . . . . . . . . 9 (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
1413adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
1511, 12, 14rlimi 15463 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠))
16 reeanv 3220 . . . . . . . 8 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) ↔ (∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)))
17 r19.26 3105 . . . . . . . . . 10 (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) ↔ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)))
18 anim12 806 . . . . . . . . . . . . 13 (((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)))
19 simplrl 774 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑎 ∈ ℝ)
20 simplrr 775 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑏 ∈ ℝ)
21 eqid 2726 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
2221, 2dmmptd 6689 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
23 rlimss 15452 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐴𝐵) ⇝𝑟 𝑅 → dom (𝑧𝐴𝐵) ⊆ ℝ)
246, 23syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
2522, 24eqsstrrd 4016 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ ℝ)
2625ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2726sselda 3977 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
28 maxle 13176 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
2919, 20, 27, 28syl3anc 1368 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3029imbi1d 341 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) ↔ ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
3118, 30imbitrrid 245 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → (((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
3231ralimdva 3161 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
33 ifcl 4568 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
3433ancoms 458 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
3534ad2antlr 724 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
362adantlr 712 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → 𝐵𝑋)
379adantlr 712 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → 𝐶𝑌)
3836, 37jca 511 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → (𝐵𝑋𝐶𝑌))
39 fvoveq1 7428 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝐵 → (abs‘(𝑢𝑅)) = (abs‘(𝐵𝑅)))
4039breq1d 5151 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝐵 → ((abs‘(𝑢𝑅)) < 𝑟 ↔ (abs‘(𝐵𝑅)) < 𝑟))
4140anbi1d 629 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝐵 → (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) ↔ ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠)))
42 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝐵 → (𝑢𝐹𝑣) = (𝐵𝐹𝑣))
4342fvoveq1d 7427 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝐵 → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) = (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))))
4443breq1d 5151 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝐵 → ((abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥 ↔ (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
4541, 44imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝐵 → ((((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) ↔ (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)))
46 fvoveq1 7428 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝐶 → (abs‘(𝑣𝑆)) = (abs‘(𝐶𝑆)))
4746breq1d 5151 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝐶 → ((abs‘(𝑣𝑆)) < 𝑠 ↔ (abs‘(𝐶𝑆)) < 𝑠))
4847anbi2d 628 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐶 → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) ↔ ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)))
49 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝐶 → (𝐵𝐹𝑣) = (𝐵𝐹𝐶))
5049fvoveq1d 7427 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝐶 → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) = (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))))
5150breq1d 5151 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐶 → ((abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥 ↔ (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5248, 51imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐶 → ((((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) ↔ (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5345, 52rspc2va 3618 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑋𝐶𝑌) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5438, 53sylan 579 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5554imim2d 57 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5655an32s 649 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) ∧ 𝑧𝐴) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5756ralimdva 3161 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5857adantlr 712 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
59 breq1 5144 . . . . . . . . . . . . . . 15 (𝑐 = if(𝑎𝑏, 𝑏, 𝑎) → (𝑐𝑧 ↔ if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧))
6059rspceaimv 3612 . . . . . . . . . . . . . 14 ((if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
6135, 58, 60syl6an 681 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
6261ex 412 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6362com23 86 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6432, 63syld 47 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6517, 64biimtrrid 242 . . . . . . . . 9 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → ((∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6665rexlimdvva 3205 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6716, 66biimtrrid 242 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ((∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
688, 15, 67mp2and 696 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
6968rexlimdvva 3205 . . . . 5 (𝜑 → (∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
7069imp 406 . . . 4 ((𝜑 ∧ ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
711, 70syldan 590 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
7271ralrimiva 3140 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
73 rlimcn3.1c . . . 4 ((𝜑𝑧𝐴) → (𝐵𝐹𝐶) ∈ ℂ)
7473ralrimiva 3140 . . 3 (𝜑 → ∀𝑧𝐴 (𝐵𝐹𝐶) ∈ ℂ)
75 rlimcn3.2 . . 3 (𝜑 → (𝑅𝐹𝑆) ∈ ℂ)
7674, 25, 75rlim2 15446 . 2 (𝜑 → ((𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆) ↔ ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
7772, 76mpbird 257 1 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3055  wrex 3064  wss 3943  ifcif 4523   class class class wbr 5141  cmpt 5224  dom cdm 5669  cfv 6537  (class class class)co 7405  cc 11110  cr 11111   < clt 11252  cle 11253  cmin 11448  +crp 12980  abscabs 15187  𝑟 crli 15435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-rlim 15439
This theorem is referenced by:  rlimcn2  15541  rlimadd  15593  rlimmul  15596
  Copyright terms: Public domain W3C validator