MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn3 Structured version   Visualization version   GIF version

Theorem rlimcn3 15636
Description: Image of a limit under a continuous map, two-arg version. Originally a subproof of rlimcn2 15637. (Contributed by SN, 27-Sep-2024.)
Hypotheses
Ref Expression
rlimcn3.1a ((𝜑𝑧𝐴) → 𝐵𝑋)
rlimcn3.1b ((𝜑𝑧𝐴) → 𝐶𝑌)
rlimcn3.1c ((𝜑𝑧𝐴) → (𝐵𝐹𝐶) ∈ ℂ)
rlimcn3.2 (𝜑 → (𝑅𝐹𝑆) ∈ ℂ)
rlimcn3.3a (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
rlimcn3.3b (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
rlimcn3.4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
Assertion
Ref Expression
rlimcn3 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Distinct variable groups:   𝑠,𝑟,𝑥,𝑧,𝐴   𝑢,𝑟,𝑣,𝐹,𝑠,𝑥,𝑧   𝑅,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐵,𝑟,𝑠,𝑢,𝑣,𝑥   𝜑,𝑟,𝑠,𝑥,𝑧   𝑆,𝑟,𝑠,𝑢,𝑣,𝑥,𝑧   𝐶,𝑟,𝑠,𝑣,𝑥   𝑢,𝑋,𝑧   𝑢,𝑌,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢)   𝐴(𝑣,𝑢)   𝐵(𝑧)   𝐶(𝑧,𝑢)   𝑋(𝑥,𝑣,𝑠,𝑟)   𝑌(𝑥,𝑠,𝑟)

Proof of Theorem rlimcn3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcn3.4 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
2 rlimcn3.1a . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐵𝑋)
32ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐵𝑋)
43adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∀𝑧𝐴 𝐵𝑋)
5 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
6 rlimcn3.3a . . . . . . . . 9 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
76adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (𝑧𝐴𝐵) ⇝𝑟 𝑅)
84, 5, 7rlimi 15559 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟))
9 rlimcn3.1b . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐶𝑌)
109ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐶𝑌)
1110adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∀𝑧𝐴 𝐶𝑌)
12 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → 𝑠 ∈ ℝ+)
13 rlimcn3.3b . . . . . . . . 9 (𝜑 → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
1413adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (𝑧𝐴𝐶) ⇝𝑟 𝑆)
1511, 12, 14rlimi 15559 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠))
16 reeanv 3235 . . . . . . . 8 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) ↔ (∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)))
17 r19.26 3117 . . . . . . . . . 10 (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) ↔ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)))
18 anim12 808 . . . . . . . . . . . . 13 (((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)))
19 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑎 ∈ ℝ)
20 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑏 ∈ ℝ)
21 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
2221, 2dmmptd 6725 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
23 rlimss 15548 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐴𝐵) ⇝𝑟 𝑅 → dom (𝑧𝐴𝐵) ⊆ ℝ)
246, 23syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
2522, 24eqsstrrd 4048 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ ℝ)
2625ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2726sselda 4008 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
28 maxle 13253 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
2919, 20, 27, 28syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3029imbi1d 341 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) ↔ ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
3118, 30imbitrrid 246 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ 𝑧𝐴) → (((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
3231ralimdva 3173 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠))))
33 ifcl 4593 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
3433ancoms 458 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
3534ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
362adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → 𝐵𝑋)
379adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → 𝐶𝑌)
3836, 37jca 511 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) → (𝐵𝑋𝐶𝑌))
39 fvoveq1 7471 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝐵 → (abs‘(𝑢𝑅)) = (abs‘(𝐵𝑅)))
4039breq1d 5176 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝐵 → ((abs‘(𝑢𝑅)) < 𝑟 ↔ (abs‘(𝐵𝑅)) < 𝑟))
4140anbi1d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝐵 → (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) ↔ ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠)))
42 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝐵 → (𝑢𝐹𝑣) = (𝐵𝐹𝑣))
4342fvoveq1d 7470 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝐵 → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) = (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))))
4443breq1d 5176 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝐵 → ((abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥 ↔ (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥))
4541, 44imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝐵 → ((((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) ↔ (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)))
46 fvoveq1 7471 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝐶 → (abs‘(𝑣𝑆)) = (abs‘(𝐶𝑆)))
4746breq1d 5176 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝐶 → ((abs‘(𝑣𝑆)) < 𝑠 ↔ (abs‘(𝐶𝑆)) < 𝑠))
4847anbi2d 629 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐶 → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) ↔ ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)))
49 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝐶 → (𝐵𝐹𝑣) = (𝐵𝐹𝐶))
5049fvoveq1d 7470 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝐶 → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) = (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))))
5150breq1d 5176 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐶 → ((abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥 ↔ (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5248, 51imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐶 → ((((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) ↔ (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5345, 52rspc2va 3647 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑋𝐶𝑌) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5438, 53sylan 579 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠) → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
5554imim2d 57 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ 𝑧𝐴) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5655an32s 651 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) ∧ 𝑧𝐴) → ((if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5756ralimdva 3173 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
5857adantlr 714 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
59 breq1 5169 . . . . . . . . . . . . . . 15 (𝑐 = if(𝑎𝑏, 𝑏, 𝑎) → (𝑐𝑧 ↔ if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧))
6059rspceaimv 3641 . . . . . . . . . . . . . 14 ((if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
6135, 58, 60syl6an 683 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ ∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
6261ex 412 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6362com23 86 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → ((abs‘(𝐵𝑅)) < 𝑟 ∧ (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6432, 63syld 47 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∀𝑧𝐴 ((𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6517, 64biimtrrid 243 . . . . . . . . 9 (((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → ((∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6665rexlimdvva 3219 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
6716, 66biimtrrid 243 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ((∃𝑎 ∈ ℝ ∀𝑧𝐴 (𝑎𝑧 → (abs‘(𝐵𝑅)) < 𝑟) ∧ ∃𝑏 ∈ ℝ ∀𝑧𝐴 (𝑏𝑧 → (abs‘(𝐶𝑆)) < 𝑠)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))))
688, 15, 67mp2and 698 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → (∀𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
6968rexlimdvva 3219 . . . . 5 (𝜑 → (∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
7069imp 406 . . . 4 ((𝜑 ∧ ∃𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑢𝑋𝑣𝑌 (((abs‘(𝑢𝑅)) < 𝑟 ∧ (abs‘(𝑣𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
711, 70syldan 590 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
7271ralrimiva 3152 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥))
73 rlimcn3.1c . . . 4 ((𝜑𝑧𝐴) → (𝐵𝐹𝐶) ∈ ℂ)
7473ralrimiva 3152 . . 3 (𝜑 → ∀𝑧𝐴 (𝐵𝐹𝐶) ∈ ℂ)
75 rlimcn3.2 . . 3 (𝜑 → (𝑅𝐹𝑆) ∈ ℂ)
7674, 25, 75rlim2 15542 . 2 (𝜑 → ((𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆) ↔ ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑧𝐴 (𝑐𝑧 → (abs‘((𝐵𝐹𝐶) − (𝑅𝐹𝑆))) < 𝑥)))
7772, 76mpbird 257 1 (𝜑 → (𝑧𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  cc 11182  cr 11183   < clt 11324  cle 11325  cmin 11520  +crp 13057  abscabs 15283  𝑟 crli 15531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-rlim 15535
This theorem is referenced by:  rlimcn2  15637  rlimadd  15689  rlimmul  15692
  Copyright terms: Public domain W3C validator