Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heicant Structured version   Visualization version   GIF version

Theorem heicant 35091
 Description: Heine-Cantor theorem: a continuous mapping between metric spaces whose domain is compact is uniformly continuous. Theorem on [Rosenlicht] p. 80. (Contributed by Brendan Leahy, 13-Aug-2018.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
heicant.c (𝜑𝐶 ∈ (∞Met‘𝑋))
heicant.d (𝜑𝐷 ∈ (∞Met‘𝑌))
heicant.j (𝜑 → (MetOpen‘𝐶) ∈ Comp)
heicant.x (𝜑𝑋 ≠ ∅)
heicant.y (𝜑𝑌 ≠ ∅)
Assertion
Ref Expression
heicant (𝜑 → ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) = ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)))

Proof of Theorem heicant
Dummy variables 𝑏 𝑐 𝑑 𝑓 𝑔 𝑝 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5037 . . . . . . . . . . 11 (𝑑 = 𝑦 → (((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑 ↔ ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
21imbi2d 344 . . . . . . . . . 10 (𝑑 = 𝑦 → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
322ralbidv 3167 . . . . . . . . 9 (𝑑 = 𝑦 → (∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
43rexbidv 3259 . . . . . . . 8 (𝑑 = 𝑦 → (∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
54cbvralvw 3399 . . . . . . 7 (∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
6 r19.12 3286 . . . . . . . 8 (∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
76ralimi 3131 . . . . . . 7 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
85, 7sylbi 220 . . . . . 6 (∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) → ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
9 rphalfcl 12408 . . . . . . . . 9 (𝑑 ∈ ℝ+ → (𝑑 / 2) ∈ ℝ+)
10 breq2 5037 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑑 / 2) → (((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦 ↔ ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)))
1110imbi2d 344 . . . . . . . . . . . . . . 15 (𝑦 = (𝑑 / 2) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
1211ralbidv 3165 . . . . . . . . . . . . . 14 (𝑦 = (𝑑 / 2) → (∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
1312rexbidv 3259 . . . . . . . . . . . . 13 (𝑦 = (𝑑 / 2) → (∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
1413ralbidv 3165 . . . . . . . . . . . 12 (𝑦 = (𝑑 / 2) → (∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
1514rspcva 3572 . . . . . . . . . . 11 (((𝑑 / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)) → ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)))
16 heicant.j . . . . . . . . . . . . . . 15 (𝜑 → (MetOpen‘𝐶) ∈ Comp)
1716ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → (MetOpen‘𝐶) ∈ Comp)
18 heicant.c . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐶 ∈ (∞Met‘𝑋))
1918ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → 𝐶 ∈ (∞Met‘𝑋))
2019anim1i 617 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) → (𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋))
21 rphalfcl 12408 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
2221rpxrd 12424 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ*)
23 eqid 2801 . . . . . . . . . . . . . . . . . . . . . . 23 (MetOpen‘𝐶) = (MetOpen‘𝐶)
2423blopn 23111 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑧 / 2) ∈ ℝ*) → (𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶))
25243expa 1115 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧 / 2) ∈ ℝ*) → (𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶))
2620, 22, 25syl2an 598 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) → (𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶))
2726adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → (𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶))
2821rpgt0d 12426 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℝ+ → 0 < (𝑧 / 2))
2922, 28jca 515 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ+ → ((𝑧 / 2) ∈ ℝ* ∧ 0 < (𝑧 / 2)))
30 xblcntr 23022 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑧 / 2) ∈ ℝ* ∧ 0 < (𝑧 / 2))) → 𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)))
31303expa 1115 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ ((𝑧 / 2) ∈ ℝ* ∧ 0 < (𝑧 / 2))) → 𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)))
3220, 29, 31syl2an 598 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)))
3332adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → 𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)))
34 opelxpi 5560 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑋 ∧ (𝑧 / 2) ∈ ℝ+) → ⟨𝑥, (𝑧 / 2)⟩ ∈ (𝑋 × ℝ+))
3521, 34sylan2 595 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑋𝑧 ∈ ℝ+) → ⟨𝑥, (𝑧 / 2)⟩ ∈ (𝑋 × ℝ+))
3635ad4ant23 752 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ⟨𝑥, (𝑧 / 2)⟩ ∈ (𝑋 × ℝ+))
37 rpcn 12391 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ℝ+𝑧 ∈ ℂ)
38372halvesd 11875 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ℝ+ → ((𝑧 / 2) + (𝑧 / 2)) = 𝑧)
3938breq2d 5045 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ℝ+ → ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) ↔ (𝑥𝐶𝑐) < 𝑧))
4039imbi1d 345 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ+ → (((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ((𝑥𝐶𝑐) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
4140ralbidv 3165 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℝ+ → (∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑐𝑋 ((𝑥𝐶𝑐) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
42 oveq2 7147 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = 𝑤 → (𝑥𝐶𝑐) = (𝑥𝐶𝑤))
4342breq1d 5043 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑤 → ((𝑥𝐶𝑐) < 𝑧 ↔ (𝑥𝐶𝑤) < 𝑧))
44 fveq2 6649 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑐 = 𝑤 → (𝑓𝑐) = (𝑓𝑤))
4544oveq2d 7155 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = 𝑤 → ((𝑓𝑥)𝐷(𝑓𝑐)) = ((𝑓𝑥)𝐷(𝑓𝑤)))
4645breq1d 5043 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑤 → (((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)))
4743, 46imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = 𝑤 → (((𝑥𝐶𝑐) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
4847cbvralvw 3399 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑐𝑋 ((𝑥𝐶𝑐) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)))
4941, 48syl6bb 290 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℝ+ → (∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
5049biimpar 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ+ ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)))
5150adantll 713 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)))
52 vex 3447 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 ∈ V
53 ovex 7172 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 / 2) ∈ V
5452, 53op1std 7685 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (1st𝑝) = 𝑥)
5552, 53op2ndd 7686 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (2nd𝑝) = (𝑧 / 2))
5654, 55oveq12d 7157 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((1st𝑝)(ball‘𝐶)(2nd𝑝)) = (𝑥(ball‘𝐶)(𝑧 / 2)))
5756eqcomd 2807 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)))
5857biantrurd 536 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
5954oveq1d 7154 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((1st𝑝)𝐶𝑐) = (𝑥𝐶𝑐))
6055, 55oveq12d 7157 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((2nd𝑝) + (2nd𝑝)) = ((𝑧 / 2) + (𝑧 / 2)))
6159, 60breq12d 5046 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) ↔ (𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2))))
6254fveq2d 6653 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (𝑓‘(1st𝑝)) = (𝑓𝑥))
6362oveq1d 7154 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) = ((𝑓𝑥)𝐷(𝑓𝑐)))
6463breq1d 5043 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)))
6561, 64imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
6665ralbidv 3165 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
6758, 66bitr3d 284 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))) ↔ ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
6867rspcev 3574 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑥, (𝑧 / 2)⟩ ∈ (𝑋 × ℝ+) ∧ ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))) → ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))
6936, 51, 68syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))
70 eleq2 2881 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → (𝑥𝑏𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2))))
71 eqeq1 2805 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → (𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ↔ (𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝))))
7271anbi1d 632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → ((𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))) ↔ ((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
7372rexbidv 3259 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → (∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))) ↔ ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
7470, 73anbi12d 633 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → ((𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ↔ (𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)) ∧ ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
7574rspcev 3574 . . . . . . . . . . . . . . . . . . 19 (((𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶) ∧ (𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)) ∧ ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
7627, 33, 69, 75syl12anc 835 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
7776rexlimdva2 3249 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) → (∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)) → ∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
7877ralimdva 3147 . . . . . . . . . . . . . . . 16 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)) → ∀𝑥𝑋𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
7978imp 410 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∀𝑥𝑋𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
8023mopnuni 23052 . . . . . . . . . . . . . . . . . 18 (𝐶 ∈ (∞Met‘𝑋) → 𝑋 = (MetOpen‘𝐶))
8118, 80syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 = (MetOpen‘𝐶))
8281raleqdv 3367 . . . . . . . . . . . . . . . 16 (𝜑 → (∀𝑥𝑋𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ↔ ∀𝑥 (MetOpen‘𝐶)∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
8382ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → (∀𝑥𝑋𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ↔ ∀𝑥 (MetOpen‘𝐶)∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
8479, 83mpbid 235 . . . . . . . . . . . . . 14 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∀𝑥 (MetOpen‘𝐶)∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
85 eqid 2801 . . . . . . . . . . . . . . 15 (MetOpen‘𝐶) = (MetOpen‘𝐶)
86 fveq2 6649 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑔𝑏) → (1st𝑝) = (1st ‘(𝑔𝑏)))
87 fveq2 6649 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑔𝑏) → (2nd𝑝) = (2nd ‘(𝑔𝑏)))
8886, 87oveq12d 7157 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑔𝑏) → ((1st𝑝)(ball‘𝐶)(2nd𝑝)) = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))))
8988eqeq2d 2812 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑔𝑏) → (𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ↔ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))))
9086oveq1d 7154 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑔𝑏) → ((1st𝑝)𝐶𝑐) = ((1st ‘(𝑔𝑏))𝐶𝑐))
9187, 87oveq12d 7157 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑔𝑏) → ((2nd𝑝) + (2nd𝑝)) = ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
9290, 91breq12d 5046 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑔𝑏) → (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) ↔ ((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))))
9386fveq2d 6653 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = (𝑔𝑏) → (𝑓‘(1st𝑝)) = (𝑓‘(1st ‘(𝑔𝑏))))
9493oveq1d 7154 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑔𝑏) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)))
9594breq1d 5043 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑔𝑏) → (((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))
9692, 95imbi12d 348 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑔𝑏) → ((((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))
9796ralbidv 3165 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑔𝑏) → (∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))
9889, 97anbi12d 633 . . . . . . . . . . . . . . 15 (𝑝 = (𝑔𝑏) → ((𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))) ↔ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
9985, 98cmpcovf 22000 . . . . . . . . . . . . . 14 (((MetOpen‘𝐶) ∈ Comp ∧ ∀𝑥 (MetOpen‘𝐶)∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
10017, 84, 99syl2anc 587 . . . . . . . . . . . . 13 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∃𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
101100ex 416 . . . . . . . . . . . 12 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)) → ∃𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))))))
102 elinel2 4126 . . . . . . . . . . . . . 14 (𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin) → 𝑠 ∈ Fin)
103 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → 𝜑)
104103anim1i 617 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) → (𝜑𝑠 ∈ Fin))
105 frn 6497 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:𝑠⟶(𝑋 × ℝ+) → ran 𝑔 ⊆ (𝑋 × ℝ+))
106 rnss 5777 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑔 ⊆ (𝑋 × ℝ+) → ran ran 𝑔 ⊆ ran (𝑋 × ℝ+))
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:𝑠⟶(𝑋 × ℝ+) → ran ran 𝑔 ⊆ ran (𝑋 × ℝ+))
108 rnxpss 6000 . . . . . . . . . . . . . . . . . . . . . . 23 ran (𝑋 × ℝ+) ⊆ ℝ+
109107, 108sstrdi 3930 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:𝑠⟶(𝑋 × ℝ+) → ran ran 𝑔 ⊆ ℝ+)
110109adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ⊆ ℝ+)
111 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → 𝑠 ∈ Fin)
112 ffun 6494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔:𝑠⟶(𝑋 × ℝ+) → Fun 𝑔)
113 vex 3447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑔 ∈ V
114113fundmen 8570 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun 𝑔 → dom 𝑔𝑔)
115114ensymd 8547 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Fun 𝑔𝑔 ≈ dom 𝑔)
116112, 115syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:𝑠⟶(𝑋 × ℝ+) → 𝑔 ≈ dom 𝑔)
117 fdm 6499 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:𝑠⟶(𝑋 × ℝ+) → dom 𝑔 = 𝑠)
118116, 117breqtrd 5059 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔:𝑠⟶(𝑋 × ℝ+) → 𝑔𝑠)
119 enfii 8723 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑠 ∈ Fin ∧ 𝑔𝑠) → 𝑔 ∈ Fin)
120118, 119sylan2 595 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ Fin ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝑔 ∈ Fin)
121 rnfi 8795 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 ∈ Fin → ran 𝑔 ∈ Fin)
122 rnfi 8795 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑔 ∈ Fin → ran ran 𝑔 ∈ Fin)
123120, 121, 1223syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 ∈ Fin ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ∈ Fin)
124111, 123sylan 583 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ∈ Fin)
125117adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → dom 𝑔 = 𝑠)
126 eqtr 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠) → 𝑋 = 𝑠)
12781, 126sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 (MetOpen‘𝐶) = 𝑠) → 𝑋 = 𝑠)
128 heicant.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑋 ≠ ∅)
129128adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 (MetOpen‘𝐶) = 𝑠) → 𝑋 ≠ ∅)
130127, 129eqnetrrd 3058 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 (MetOpen‘𝐶) = 𝑠) → 𝑠 ≠ ∅)
131 unieq 4814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑠 = ∅ → 𝑠 = ∅)
132 uni0 4831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ∅ = ∅
133131, 132eqtrdi 2852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = ∅ → 𝑠 = ∅)
134133necon3i 3022 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( 𝑠 ≠ ∅ → 𝑠 ≠ ∅)
135130, 134syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 (MetOpen‘𝐶) = 𝑠) → 𝑠 ≠ ∅)
136135adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝑠 ≠ ∅)
137125, 136eqnetrd 3057 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → dom 𝑔 ≠ ∅)
138 dm0rn0 5763 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑔 = ∅ ↔ ran 𝑔 = ∅)
139138necon3bii 3042 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom 𝑔 ≠ ∅ ↔ ran 𝑔 ≠ ∅)
140137, 139sylib 221 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran 𝑔 ≠ ∅)
141 relxp 5541 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Rel (𝑋 × ℝ+)
142 relss 5624 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ran 𝑔 ⊆ (𝑋 × ℝ+) → (Rel (𝑋 × ℝ+) → Rel ran 𝑔))
143105, 141, 142mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:𝑠⟶(𝑋 × ℝ+) → Rel ran 𝑔)
144 relrn0 5809 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Rel ran 𝑔 → (ran 𝑔 = ∅ ↔ ran ran 𝑔 = ∅))
145144necon3bid 3034 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Rel ran 𝑔 → (ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅))
146143, 145syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔:𝑠⟶(𝑋 × ℝ+) → (ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅))
147146adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → (ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅))
148140, 147mpbid 235 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ≠ ∅)
149148adantllr 718 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ≠ ∅)
150 rpssre 12388 . . . . . . . . . . . . . . . . . . . . . . 23 + ⊆ ℝ
151110, 150sstrdi 3930 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ⊆ ℝ)
152 ltso 10714 . . . . . . . . . . . . . . . . . . . . . . 23 < Or ℝ
153 fiinfcl 8953 . . . . . . . . . . . . . . . . . . . . . . 23 (( < Or ℝ ∧ (ran ran 𝑔 ∈ Fin ∧ ran ran 𝑔 ≠ ∅ ∧ ran ran 𝑔 ⊆ ℝ)) → inf(ran ran 𝑔, ℝ, < ) ∈ ran ran 𝑔)
154152, 153mpan 689 . . . . . . . . . . . . . . . . . . . . . 22 ((ran ran 𝑔 ∈ Fin ∧ ran ran 𝑔 ≠ ∅ ∧ ran ran 𝑔 ⊆ ℝ) → inf(ran ran 𝑔, ℝ, < ) ∈ ran ran 𝑔)
155124, 149, 151, 154syl3anc 1368 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → inf(ran ran 𝑔, ℝ, < ) ∈ ran ran 𝑔)
156110, 155sseldd 3919 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ+)
157104, 156sylanl1 679 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ+)
158157adantr 484 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ+)
15981ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) → 𝑋 = (MetOpen‘𝐶))
160159anim1i 617 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → (𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠))
161160ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → (𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠))
162 simpl 486 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑋𝑤𝑋) → 𝑥𝑋)
163126eleq2d 2878 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠) → (𝑥𝑋𝑥 𝑠))
164 eluni2 4807 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 𝑠 ↔ ∃𝑏𝑠 𝑥𝑏)
165163, 164syl6bb 290 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠) → (𝑥𝑋 ↔ ∃𝑏𝑠 𝑥𝑏))
166165biimpa 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑥𝑋) → ∃𝑏𝑠 𝑥𝑏)
167161, 162, 166syl2an 598 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋)) → ∃𝑏𝑠 𝑥𝑏)
168 nfv 1915 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏(((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+))
169 nfra1 3186 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))
170168, 169nfan 1900 . . . . . . . . . . . . . . . . . . . . . 22 𝑏((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))
171 nfv 1915 . . . . . . . . . . . . . . . . . . . . . 22 𝑏(𝑥𝑋𝑤𝑋)
172170, 171nfan 1900 . . . . . . . . . . . . . . . . . . . . 21 𝑏(((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋))
173 nfv 1915 . . . . . . . . . . . . . . . . . . . . 21 𝑏((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)
174 rspa 3174 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) ∧ 𝑏𝑠) → (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))
175 oveq2 7147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑥 → ((1st ‘(𝑔𝑏))𝐶𝑐) = ((1st ‘(𝑔𝑏))𝐶𝑥))
176175breq1d 5043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑥 → (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ↔ ((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))))
177 fveq2 6649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑐 = 𝑥 → (𝑓𝑐) = (𝑓𝑥))
178177oveq2d 7155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑥 → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
179178breq1d 5043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑥 → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)))
180176, 179imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑥 → ((((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ (((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2))))
181180rspcva 3572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥𝑋 ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) → (((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)))
182 oveq2 7147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑤 → ((1st ‘(𝑔𝑏))𝐶𝑐) = ((1st ‘(𝑔𝑏))𝐶𝑤))
183182breq1d 5043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ↔ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))))
18444oveq2d 7155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑤 → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)))
185184breq1d 5043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)))
186183, 185imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑤 → ((((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
187186rspcva 3572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑤𝑋 ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) → (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)))
188181, 187anim12i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑥𝑋 ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) ∧ (𝑤𝑋 ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
189188anandirs 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥𝑋𝑤𝑋) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
190 anim12 808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
191189, 190syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥𝑋𝑤𝑋) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
192191adantrl 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥𝑋𝑤𝑋) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
193192ad4ant23 752 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑏𝑠𝑥𝑏)) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
194 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → ((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+))
195194anim1i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)))
196195anim1i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)))
197109, 150sstrdi 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑔:𝑠⟶(𝑋 × ℝ+) → ran ran 𝑔 ⊆ ℝ)
198197adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → ran ran 𝑔 ⊆ ℝ)
199 0re 10636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 0 ∈ ℝ
200 rpge0 12394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦 ∈ ℝ+ → 0 ≤ 𝑦)
201200rgen 3119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 𝑦 ∈ ℝ+ 0 ≤ 𝑦
202 ssralv 3984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (ran ran 𝑔 ⊆ ℝ+ → (∀𝑦 ∈ ℝ+ 0 ≤ 𝑦 → ∀𝑦 ∈ ran ran 𝑔0 ≤ 𝑦))
203109, 201, 202mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑔:𝑠⟶(𝑋 × ℝ+) → ∀𝑦 ∈ ran ran 𝑔0 ≤ 𝑦)
204 breq1 5036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
205204ralbidv 3165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 = 0 → (∀𝑦 ∈ ran ran 𝑔 𝑥𝑦 ↔ ∀𝑦 ∈ ran ran 𝑔0 ≤ 𝑦))
206205rspcev 3574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((0 ∈ ℝ ∧ ∀𝑦 ∈ ran ran 𝑔0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦)
207199, 203, 206sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑔:𝑠⟶(𝑋 × ℝ+) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦)
208207adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦)
209143adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → Rel ran 𝑔)
210 ffn 6491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑔:𝑠⟶(𝑋 × ℝ+) → 𝑔 Fn 𝑠)
211 fnfvelrn 6829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑔 Fn 𝑠𝑏𝑠) → (𝑔𝑏) ∈ ran 𝑔)
212210, 211sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (𝑔𝑏) ∈ ran 𝑔)
213 2ndrn 7726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((Rel ran 𝑔 ∧ (𝑔𝑏) ∈ ran 𝑔) → (2nd ‘(𝑔𝑏)) ∈ ran ran 𝑔)
214209, 212, 213syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ran ran 𝑔)
215 infrelb 11617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((ran ran 𝑔 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦 ∧ (2nd ‘(𝑔𝑏)) ∈ ran ran 𝑔) → inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏)))
216198, 208, 214, 215syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏)))
217216adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏)))
218217ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏)))
21918ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝐶 ∈ (∞Met‘𝑋))
220 xmetcl 22942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → (𝑥𝐶𝑤) ∈ ℝ*)
2212203expb 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑤𝑋)) → (𝑥𝐶𝑤) ∈ ℝ*)
222219, 221sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → (𝑥𝐶𝑤) ∈ ℝ*)
223222adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → (𝑥𝐶𝑤) ∈ ℝ*)
224 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → 𝑔:𝑠⟶(𝑋 × ℝ+))
225 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑏𝑠𝑥𝑏) → 𝑏𝑠)
226214ne0d 4254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → ran ran 𝑔 ≠ ∅)
227 infrecl 11614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((ran ran 𝑔 ⊆ ℝ ∧ ran ran 𝑔 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ)
228198, 226, 208, 227syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ)
229228rexrd 10684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ*)
230224, 225, 229syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ*)
231 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝑔:𝑠⟶(𝑋 × ℝ+))
232231ffvelrnda 6832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → (𝑔𝑏) ∈ (𝑋 × ℝ+))
233 xp2nd 7708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔𝑏) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
234232, 233syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
235234rpxrd 12424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
236235ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
237 xrltletr 12542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑥𝐶𝑤) ∈ ℝ* ∧ inf(ran ran 𝑔, ℝ, < ) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ*) → (((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) ∧ inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))))
238223, 230, 236, 237syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → (((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) ∧ inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))))
239218, 238mpan2d 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))))
240239adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))))
24118ad6antr 735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → 𝐶 ∈ (∞Met‘𝑋))
242 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) → 𝑔:𝑠⟶(𝑋 × ℝ+))
243 ffvelrn 6830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (𝑔𝑏) ∈ (𝑋 × ℝ+))
244 xp1st 7707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑔𝑏) ∈ (𝑋 × ℝ+) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
245243, 244syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
246242, 225, 245syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
247 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥𝑋𝑤𝑋) → 𝑤𝑋)
248247ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → 𝑤𝑋)
249 xmetcl 22942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐶 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔𝑏)) ∈ 𝑋𝑤𝑋) → ((1st ‘(𝑔𝑏))𝐶𝑤) ∈ ℝ*)
250241, 246, 248, 249syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑤) ∈ ℝ*)
251250adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑤) ∈ ℝ*)
252243, 233syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
253224, 252sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
254253ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
255254rpred 12423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
256162ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → 𝑥𝑋)
257 xmetcl 22942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐶 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔𝑏)) ∈ 𝑋𝑥𝑋) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ*)
258241, 246, 256, 257syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ*)
259252rpxrd 12424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
260242, 225, 259syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
261 eleq2 2881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) → (𝑥𝑏𝑥 ∈ ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))))
26218ad5antr 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 𝐶 ∈ (∞Met‘𝑋))
263224, 245sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
264253rpxrd 12424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
265 elbl 22999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐶 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔𝑏)) ∈ 𝑋 ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ*) → (𝑥 ∈ ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ↔ (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
266262, 263, 264, 265syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑥 ∈ ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ↔ (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
267261, 266sylan9bbr 514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) → (𝑥𝑏 ↔ (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
268267biimpd 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) → (𝑥𝑏 → (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
269268an32s 651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ 𝑏𝑠) → (𝑥𝑏 → (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
270269impr 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏))))
271270simprd 499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))
272258, 260, 271xrltled 12535 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏)))
273224ffvelrnda 6832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑔𝑏) ∈ (𝑋 × ℝ+))
274273, 244syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
275 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 𝑥𝑋)
276262, 274, 275, 257syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ*)
277 xmetge0 22955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐶 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔𝑏)) ∈ 𝑋𝑥𝑋) → 0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥))
278262, 274, 275, 277syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥))
279 xrrege0 12559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ) ∧ (0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥) ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏)))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ)
280279an4s 659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ* ∧ 0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥)) ∧ ((2nd ‘(𝑔𝑏)) ∈ ℝ ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏)))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ)
281280ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ* ∧ 0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥)) → (((2nd ‘(𝑔𝑏)) ∈ ℝ ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ))
282276, 278, 281syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((2nd ‘(𝑔𝑏)) ∈ ℝ ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ))
283282ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((2nd ‘(𝑔𝑏)) ∈ ℝ ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ))
284255, 272, 283mp2and 698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ)
285284adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ)
286 xrltle 12534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑥𝐶𝑤) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ*) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏))))
287223, 236, 286syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏))))
288 xmetge0 22955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → 0 ≤ (𝑥𝐶𝑤))
2892883expb 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑤𝑋)) → 0 ≤ (𝑥𝐶𝑤))
290219, 289sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → 0 ≤ (𝑥𝐶𝑤))
291290adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → 0 ≤ (𝑥𝐶𝑤))
292234rpred 12423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
293292ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
294 xrrege0 12559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑥𝐶𝑤) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ) ∧ (0 ≤ (𝑥𝐶𝑤) ∧ (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏)))) → (𝑥𝐶𝑤) ∈ ℝ)
295294ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑥𝐶𝑤) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ) → ((0 ≤ (𝑥𝐶𝑤) ∧ (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) ∈ ℝ))
296223, 293, 295syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((0 ≤ (𝑥𝐶𝑤) ∧ (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) ∈ ℝ))
297291, 296mpand 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ∈ ℝ))
298287, 297syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ∈ ℝ))
299298adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ∈ ℝ))
300299imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) ∈ ℝ)
301285, 300readdcld 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)) ∈ ℝ)
302301rexrd 10684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)) ∈ ℝ*)
303254, 254rpaddcld 12438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∈ ℝ+)
304303rpxrd 12424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∈ ℝ*)
305304adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∈ ℝ*)
306 xmettri 22962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐶 ∈ (∞Met‘𝑋) ∧ ((1st ‘(𝑔𝑏)) ∈ 𝑋𝑤𝑋𝑥𝑋)) → ((1st ‘(𝑔𝑏))𝐶𝑤) ≤ (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)))
307241, 246, 248, 256, 306syl13anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑤) ≤ (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)))
308307adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑤) ≤ (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)))
309 rexadd 12617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ ∧ (𝑥𝐶𝑤) ∈ ℝ) → (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)) = (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)))
310285, 300, 309syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)) = (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)))
311308, 310breqtrd 5059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑤) ≤ (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)))
312255adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
313271adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))
314 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)))
315285, 300, 312, 312, 313, 314lt2addd 11256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
316251, 302, 305, 311, 315xrlelttrd 12545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
317316ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))))
318252rpred 12423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
319318, 252ltaddrpd 12456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
320242, 225, 319syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
321258, 260, 304, 271, 320xrlttrd 12544 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
322317, 321jctild 529 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))))
323240, 322syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → (((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))))
324 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → (𝜑𝑓:𝑋𝑌))
325 heicant.d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝐷 ∈ (∞Met‘𝑌))
326 ffvelrn 6830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑓:𝑋𝑌𝑥𝑋) → (𝑓𝑥) ∈ 𝑌)
327 ffvelrn 6830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑓:𝑋𝑌𝑤𝑋) → (𝑓𝑤) ∈ 𝑌)
328326, 327anim12dan 621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:𝑋𝑌 ∧ (𝑥𝑋𝑤𝑋)) → ((𝑓𝑥) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌))
329 xmetcl 22942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓𝑥) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
3303293expb 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐷 ∈ (∞Met‘𝑌) ∧ ((𝑓𝑥) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
331325, 328, 330syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑓:𝑋𝑌 ∧ (𝑥𝑋𝑤𝑋))) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
332331anassrs 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑓:𝑋𝑌) ∧ (𝑥𝑋𝑤𝑋)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
333324, 332sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
334333ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
335325ad5antr 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 𝐷 ∈ (∞Met‘𝑌))
336 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 𝑓:𝑋𝑌)
337336, 274ffvelrnd 6833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌)
338 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝑓:𝑋𝑌)
339338ffvelrnda 6832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ 𝑌)
340339adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → (𝑓𝑥) ∈ 𝑌)
341340adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑓𝑥) ∈ 𝑌)
342 xmetcl 22942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌 ∧ (𝑓𝑥) ∈ 𝑌) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ*)
343335, 337, 341, 342syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ*)
3449rpxrd 12424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑑 ∈ ℝ+ → (𝑑 / 2) ∈ ℝ*)
345344ad4antlr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑑 / 2) ∈ ℝ*)
346 xrltle 12534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ*) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2)))
347343, 345, 346syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2)))
348 xmetge0 22955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌 ∧ (𝑓𝑥) ∈ 𝑌) → 0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
349335, 337, 341, 348syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
3509rpred 12423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑑 ∈ ℝ+ → (𝑑 / 2) ∈ ℝ)
351350ad4antlr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑑 / 2) ∈ ℝ)
352 xrrege0 12559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ) ∧ (0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ)
353352ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ) → ((0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
354343, 351, 353syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
355349, 354mpand 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
356347, 355syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
357356ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
358357imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ)
359338ffvelrnda 6832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑤𝑋) → (𝑓𝑤) ∈ 𝑌)
360359adantrl 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → (𝑓𝑤) ∈ 𝑌)
361360adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑓𝑤) ∈ 𝑌)
362 xmetcl 22942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ*)
363335, 337, 361, 362syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ*)
364 xrltle 12534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ*) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2)))
365363, 345, 364syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2)))
366 xmetge0 22955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌) → 0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)))
367335, 337, 361, 366syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)))
368 xrrege0 12559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ) ∧ (0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ)
369368ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ) → ((0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
370363, 351, 369syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
371367, 370mpand 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
372365, 371syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
373372ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
374373imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ)
375 readdcl 10613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) ∈ ℝ)
376358, 374, 375syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) ∈ ℝ)
377376anandis 677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) ∈ ℝ)
378377rexrd 10684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) ∈ ℝ*)
379 rpxr 12390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑑 ∈ ℝ+𝑑 ∈ ℝ*)
380379ad6antlr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → 𝑑 ∈ ℝ*)
381 xmettri 22962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐷 ∈ (∞Met‘𝑌) ∧ ((𝑓𝑥) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌 ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
382335, 341, 361, 337, 381syl13anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
383382ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
384383adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
385 xmetsym 22958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓𝑥) ∈ 𝑌 ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌) → ((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
386335, 341, 337, 385syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
387386ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
388387adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
389388oveq1d 7154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
390 rexadd 12617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
391358, 374, 390syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
392391anandis 677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
393389, 392eqtrd 2836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
394384, 393breqtrd 5059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
395 lt2add 11118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) ∧ ((𝑑 / 2) ∈ ℝ ∧ (𝑑 / 2) ∈ ℝ)) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2))))
396395expcom 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑑 / 2) ∈ ℝ ∧ (𝑑 / 2) ∈ ℝ) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2)))))
397351, 351, 396syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2)))))
398356, 372, 397syl2and 610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2)))))
399398pm2.43d 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2))))
400399ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2))))
401400imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2)))
402 rpcn 12391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 ∈ ℝ+𝑑 ∈ ℂ)
4034022halvesd 11875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑 ∈ ℝ+ → ((𝑑 / 2) + (𝑑 / 2)) = 𝑑)
404403ad6antlr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑑 / 2) + (𝑑 / 2)) = 𝑑)
405401, 404breqtrd 5059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < 𝑑)
406334, 378, 380, 394, 405xrlelttrd 12545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)
407406ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
408323, 407imim12d 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
409196, 408sylanl1 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
410409adantlrr 720 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑏𝑠𝑥𝑏)) → (((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
411193, 410mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
412411exp32 424 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
413174, 412sylan2 595 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) ∧ 𝑏𝑠)) → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
414413expr 460 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → (𝑏𝑠 → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))))
415414pm2.43d 53 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
416415an32s 651 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋)) → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
417172, 173, 416rexlimd 3279 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋)) → (∃𝑏𝑠 𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
418167, 417mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
419418ralrimivva 3159 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
420 breq2 5037 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = inf(ran ran 𝑔, ℝ, < ) → ((𝑥𝐶𝑤) < 𝑧 ↔ (𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < )))
421420imbi1d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = inf(ran ran 𝑔, ℝ, < ) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
4224212ralbidv 3167 . . . . . . . . . . . . . . . . . . 19 (𝑧 = inf(ran ran 𝑔, ℝ, < ) → (∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
423422rspcev 3574 . . . . . . . . . . . . . . . . . 18 ((inf(ran ran 𝑔, ℝ, < ) ∈ ℝ+ ∧ ∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
424158, 419, 423syl2anc 587 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
425424expl 461 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
426425exlimdv 1934 . . . . . . . . . . . . . . 15 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → (∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
427426expimpd 457 . . . . . . . . . . . . . 14 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) → (( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
428102, 427sylan2 595 . . . . . . . . . . . . 13 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)) → (( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
429428rexlimdva 3246 . . . . . . . . . . . 12 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∃𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
430101, 429syld 47 . . . . . . . . . . 11 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
43115, 430syl5 34 . . . . . . . . . 10 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (((𝑑 / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
432431exp4b 434 . . . . . . . . 9 ((𝜑𝑓:𝑋𝑌) → (𝑑 ∈ ℝ+ → ((𝑑 / 2) ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))))
4339, 432mpdi 45 . . . . . . . 8 ((𝜑𝑓:𝑋𝑌) → (𝑑 ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
434433ralrimiv 3151 . . . . . . 7 ((𝜑𝑓:𝑋𝑌) → ∀𝑑 ∈ ℝ+ (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
435 r19.21v 3145 . . . . . . 7 (∀𝑑 ∈ ℝ+ (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)) ↔ (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
436434, 435sylib 221 . . . . . 6 ((𝜑𝑓:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
4378, 436impbid2 229 . . . . 5 ((𝜑𝑓:𝑋𝑌) → (∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
438 ralcom 3310 . . . . 5 (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
439437, 438syl6bb 290 . . . 4 ((𝜑𝑓:𝑋𝑌) → (∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
440439pm5.32da 582 . . 3 (𝜑 → ((𝑓:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
441 eqid 2801 . . . 4 (metUnif‘𝐶) = (metUnif‘𝐶)
442 eqid 2801 . . . 4 (metUnif‘𝐷) = (metUnif‘𝐷)
443 heicant.y . . . 4 (𝜑𝑌 ≠ ∅)
444 xmetpsmet 22959 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → 𝐶 ∈ (PsMet‘𝑋))
44518, 444syl 17 . . . 4 (𝜑𝐶 ∈ (PsMet‘𝑋))
446 xmetpsmet 22959 . . . . 5 (𝐷 ∈ (∞Met‘𝑌) → 𝐷 ∈ (PsMet‘𝑌))
447325, 446syl 17 . . . 4 (𝜑𝐷 ∈ (PsMet‘𝑌))
448441, 442, 128, 443, 445, 447metucn 23182 . . 3 (𝜑 → (𝑓 ∈ ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
449 eqid 2801 . . . . 5 (MetOpen‘𝐷) = (MetOpen‘𝐷)
45023, 449metcn 23154 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝑓 ∈ ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
45118, 325, 450syl2anc 587 . . 3 (𝜑 → (𝑓 ∈ ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
452440, 448, 4513bitr4d 314 . 2 (𝜑 → (𝑓 ∈ ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) ↔ 𝑓 ∈ ((MetOpen‘𝐶) Cn (MetOpen‘𝐷))))
453452eqrdv 2799 1 (𝜑 → ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) = ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109  ∃wrex 3110   ∩ cin 3883   ⊆ wss 3884  ∅c0 4246  𝒫 cpw 4500  ⟨cop 4534  ∪ cuni 4803   class class class wbr 5033   Or wor 5441   × cxp 5521  dom cdm 5523  ran crn 5524  Rel wrel 5528  Fun wfun 6322   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  1st c1st 7673  2nd c2nd 7674   ≈ cen 8493  Fincfn 8496  infcinf 8893  ℝcr 10529  0cc0 10530   + caddc 10533  ℝ*cxr 10667   < clt 10668   ≤ cle 10669   / cdiv 11290  2c2 11684  ℝ+crp 12381   +𝑒 cxad 12497  PsMetcpsmet 20079  ∞Metcxmet 20080  ballcbl 20082  MetOpencmopn 20085  metUnifcmetu 20086   Cn ccn 21833  Compccmp 21995   Cnucucn 22885 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-topgen 16713  df-psmet 20087  df-xmet 20088  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-metu 20094  df-top 21503  df-topon 21520  df-bases 21555  df-cn 21836  df-cnp 21837  df-cmp 21996  df-fil 22455  df-ust 22810  df-ucn 22886 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator