Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heicant Structured version   Visualization version   GIF version

Theorem heicant 35966
Description: Heine-Cantor theorem: a continuous mapping between metric spaces whose domain is compact is uniformly continuous. Theorem on [Rosenlicht] p. 80. (Contributed by Brendan Leahy, 13-Aug-2018.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
heicant.c (𝜑𝐶 ∈ (∞Met‘𝑋))
heicant.d (𝜑𝐷 ∈ (∞Met‘𝑌))
heicant.j (𝜑 → (MetOpen‘𝐶) ∈ Comp)
heicant.x (𝜑𝑋 ≠ ∅)
heicant.y (𝜑𝑌 ≠ ∅)
Assertion
Ref Expression
heicant (𝜑 → ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) = ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)))

Proof of Theorem heicant
Dummy variables 𝑏 𝑐 𝑑 𝑓 𝑔 𝑝 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5101 . . . . . . . . . . 11 (𝑑 = 𝑦 → (((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑 ↔ ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
21imbi2d 341 . . . . . . . . . 10 (𝑑 = 𝑦 → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
322ralbidv 3209 . . . . . . . . 9 (𝑑 = 𝑦 → (∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
43rexbidv 3172 . . . . . . . 8 (𝑑 = 𝑦 → (∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
54cbvralvw 3222 . . . . . . 7 (∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
6 r19.12 3294 . . . . . . . 8 (∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
76ralimi 3083 . . . . . . 7 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
85, 7sylbi 216 . . . . . 6 (∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) → ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
9 rphalfcl 12863 . . . . . . . . 9 (𝑑 ∈ ℝ+ → (𝑑 / 2) ∈ ℝ+)
10 breq2 5101 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑑 / 2) → (((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦 ↔ ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)))
1110imbi2d 341 . . . . . . . . . . . . . . 15 (𝑦 = (𝑑 / 2) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
1211ralbidv 3171 . . . . . . . . . . . . . 14 (𝑦 = (𝑑 / 2) → (∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
1312rexbidv 3172 . . . . . . . . . . . . 13 (𝑦 = (𝑑 / 2) → (∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
1413ralbidv 3171 . . . . . . . . . . . 12 (𝑦 = (𝑑 / 2) → (∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
1514rspcva 3572 . . . . . . . . . . 11 (((𝑑 / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)) → ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)))
16 heicant.j . . . . . . . . . . . . . . 15 (𝜑 → (MetOpen‘𝐶) ∈ Comp)
1716ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → (MetOpen‘𝐶) ∈ Comp)
18 heicant.c . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐶 ∈ (∞Met‘𝑋))
1918ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → 𝐶 ∈ (∞Met‘𝑋))
2019anim1i 616 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) → (𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋))
21 rphalfcl 12863 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
2221rpxrd 12879 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ*)
23 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (MetOpen‘𝐶) = (MetOpen‘𝐶)
2423blopn 23762 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑧 / 2) ∈ ℝ*) → (𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶))
25243expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧 / 2) ∈ ℝ*) → (𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶))
2620, 22, 25syl2an 597 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) → (𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶))
2726adantr 482 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → (𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶))
2821rpgt0d 12881 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℝ+ → 0 < (𝑧 / 2))
2922, 28jca 513 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ+ → ((𝑧 / 2) ∈ ℝ* ∧ 0 < (𝑧 / 2)))
30 xblcntr 23670 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑧 / 2) ∈ ℝ* ∧ 0 < (𝑧 / 2))) → 𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)))
31303expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ ((𝑧 / 2) ∈ ℝ* ∧ 0 < (𝑧 / 2))) → 𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)))
3220, 29, 31syl2an 597 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)))
3332adantr 482 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → 𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)))
34 opelxpi 5662 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑋 ∧ (𝑧 / 2) ∈ ℝ+) → ⟨𝑥, (𝑧 / 2)⟩ ∈ (𝑋 × ℝ+))
3521, 34sylan2 594 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑋𝑧 ∈ ℝ+) → ⟨𝑥, (𝑧 / 2)⟩ ∈ (𝑋 × ℝ+))
3635ad4ant23 751 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ⟨𝑥, (𝑧 / 2)⟩ ∈ (𝑋 × ℝ+))
37 rpcn 12846 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ℝ+𝑧 ∈ ℂ)
38372halvesd 12325 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ℝ+ → ((𝑧 / 2) + (𝑧 / 2)) = 𝑧)
3938breq2d 5109 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ℝ+ → ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) ↔ (𝑥𝐶𝑐) < 𝑧))
4039imbi1d 342 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ+ → (((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ((𝑥𝐶𝑐) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
4140ralbidv 3171 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℝ+ → (∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑐𝑋 ((𝑥𝐶𝑐) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
42 oveq2 7350 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = 𝑤 → (𝑥𝐶𝑐) = (𝑥𝐶𝑤))
4342breq1d 5107 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑤 → ((𝑥𝐶𝑐) < 𝑧 ↔ (𝑥𝐶𝑤) < 𝑧))
44 fveq2 6830 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑐 = 𝑤 → (𝑓𝑐) = (𝑓𝑤))
4544oveq2d 7358 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = 𝑤 → ((𝑓𝑥)𝐷(𝑓𝑐)) = ((𝑓𝑥)𝐷(𝑓𝑤)))
4645breq1d 5107 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑤 → (((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)))
4743, 46imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = 𝑤 → (((𝑥𝐶𝑐) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
4847cbvralvw 3222 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑐𝑋 ((𝑥𝐶𝑐) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)))
4941, 48bitrdi 287 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℝ+ → (∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
5049biimpar 479 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ+ ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)))
5150adantll 712 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)))
52 vex 3446 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 ∈ V
53 ovex 7375 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 / 2) ∈ V
5452, 53op1std 7914 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (1st𝑝) = 𝑥)
5552, 53op2ndd 7915 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (2nd𝑝) = (𝑧 / 2))
5654, 55oveq12d 7360 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((1st𝑝)(ball‘𝐶)(2nd𝑝)) = (𝑥(ball‘𝐶)(𝑧 / 2)))
5756eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)))
5857biantrurd 534 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
5954oveq1d 7357 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((1st𝑝)𝐶𝑐) = (𝑥𝐶𝑐))
6055, 55oveq12d 7360 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((2nd𝑝) + (2nd𝑝)) = ((𝑧 / 2) + (𝑧 / 2)))
6159, 60breq12d 5110 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) ↔ (𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2))))
6254fveq2d 6834 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (𝑓‘(1st𝑝)) = (𝑓𝑥))
6362oveq1d 7357 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) = ((𝑓𝑥)𝐷(𝑓𝑐)))
6463breq1d 5107 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)))
6561, 64imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
6665ralbidv 3171 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
6758, 66bitr3d 281 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))) ↔ ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
6867rspcev 3574 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑥, (𝑧 / 2)⟩ ∈ (𝑋 × ℝ+) ∧ ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))) → ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))
6936, 51, 68syl2anc 585 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))
70 eleq2 2826 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → (𝑥𝑏𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2))))
71 eqeq1 2741 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → (𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ↔ (𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝))))
7271anbi1d 631 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → ((𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))) ↔ ((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
7372rexbidv 3172 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → (∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))) ↔ ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
7470, 73anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → ((𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ↔ (𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)) ∧ ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
7574rspcev 3574 . . . . . . . . . . . . . . . . . . 19 (((𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶) ∧ (𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)) ∧ ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
7627, 33, 69, 75syl12anc 835 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
7776rexlimdva2 3151 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) → (∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)) → ∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
7877ralimdva 3161 . . . . . . . . . . . . . . . 16 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)) → ∀𝑥𝑋𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
7978imp 408 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∀𝑥𝑋𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
8023mopnuni 23700 . . . . . . . . . . . . . . . . . 18 (𝐶 ∈ (∞Met‘𝑋) → 𝑋 = (MetOpen‘𝐶))
8118, 80syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 = (MetOpen‘𝐶))
8281raleqdv 3310 . . . . . . . . . . . . . . . 16 (𝜑 → (∀𝑥𝑋𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ↔ ∀𝑥 (MetOpen‘𝐶)∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
8382ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → (∀𝑥𝑋𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ↔ ∀𝑥 (MetOpen‘𝐶)∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
8479, 83mpbid 231 . . . . . . . . . . . . . 14 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∀𝑥 (MetOpen‘𝐶)∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
85 eqid 2737 . . . . . . . . . . . . . . 15 (MetOpen‘𝐶) = (MetOpen‘𝐶)
86 fveq2 6830 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑔𝑏) → (1st𝑝) = (1st ‘(𝑔𝑏)))
87 fveq2 6830 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑔𝑏) → (2nd𝑝) = (2nd ‘(𝑔𝑏)))
8886, 87oveq12d 7360 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑔𝑏) → ((1st𝑝)(ball‘𝐶)(2nd𝑝)) = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))))
8988eqeq2d 2748 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑔𝑏) → (𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ↔ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))))
9086oveq1d 7357 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑔𝑏) → ((1st𝑝)𝐶𝑐) = ((1st ‘(𝑔𝑏))𝐶𝑐))
9187, 87oveq12d 7360 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑔𝑏) → ((2nd𝑝) + (2nd𝑝)) = ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
9290, 91breq12d 5110 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑔𝑏) → (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) ↔ ((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))))
9386fveq2d 6834 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = (𝑔𝑏) → (𝑓‘(1st𝑝)) = (𝑓‘(1st ‘(𝑔𝑏))))
9493oveq1d 7357 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑔𝑏) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)))
9594breq1d 5107 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑔𝑏) → (((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))
9692, 95imbi12d 345 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑔𝑏) → ((((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))
9796ralbidv 3171 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑔𝑏) → (∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))
9889, 97anbi12d 632 . . . . . . . . . . . . . . 15 (𝑝 = (𝑔𝑏) → ((𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))) ↔ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
9985, 98cmpcovf 22648 . . . . . . . . . . . . . 14 (((MetOpen‘𝐶) ∈ Comp ∧ ∀𝑥 (MetOpen‘𝐶)∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
10017, 84, 99syl2anc 585 . . . . . . . . . . . . 13 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∃𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
101100ex 414 . . . . . . . . . . . 12 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)) → ∃𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))))))
102 elinel2 4148 . . . . . . . . . . . . . 14 (𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin) → 𝑠 ∈ Fin)
103 simpll 765 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → 𝜑)
104103anim1i 616 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) → (𝜑𝑠 ∈ Fin))
105 frn 6663 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:𝑠⟶(𝑋 × ℝ+) → ran 𝑔 ⊆ (𝑋 × ℝ+))
106 rnss 5885 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑔 ⊆ (𝑋 × ℝ+) → ran ran 𝑔 ⊆ ran (𝑋 × ℝ+))
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:𝑠⟶(𝑋 × ℝ+) → ran ran 𝑔 ⊆ ran (𝑋 × ℝ+))
108 rnxpss 6115 . . . . . . . . . . . . . . . . . . . . . . 23 ran (𝑋 × ℝ+) ⊆ ℝ+
109107, 108sstrdi 3948 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:𝑠⟶(𝑋 × ℝ+) → ran ran 𝑔 ⊆ ℝ+)
110109adantl 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ⊆ ℝ+)
111 simplr 767 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → 𝑠 ∈ Fin)
112 ffun 6659 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔:𝑠⟶(𝑋 × ℝ+) → Fun 𝑔)
113 vex 3446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑔 ∈ V
114113fundmen 8901 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun 𝑔 → dom 𝑔𝑔)
115114ensymd 8871 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Fun 𝑔𝑔 ≈ dom 𝑔)
116112, 115syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:𝑠⟶(𝑋 × ℝ+) → 𝑔 ≈ dom 𝑔)
117 fdm 6665 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:𝑠⟶(𝑋 × ℝ+) → dom 𝑔 = 𝑠)
118116, 117breqtrd 5123 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔:𝑠⟶(𝑋 × ℝ+) → 𝑔𝑠)
119 enfii 9059 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑠 ∈ Fin ∧ 𝑔𝑠) → 𝑔 ∈ Fin)
120118, 119sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ Fin ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝑔 ∈ Fin)
121 rnfi 9205 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 ∈ Fin → ran 𝑔 ∈ Fin)
122 rnfi 9205 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑔 ∈ Fin → ran ran 𝑔 ∈ Fin)
123120, 121, 1223syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 ∈ Fin ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ∈ Fin)
124111, 123sylan 581 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ∈ Fin)
125117adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → dom 𝑔 = 𝑠)
126 eqtr 2760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠) → 𝑋 = 𝑠)
12781, 126sylan 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 (MetOpen‘𝐶) = 𝑠) → 𝑋 = 𝑠)
128 heicant.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑋 ≠ ∅)
129128adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 (MetOpen‘𝐶) = 𝑠) → 𝑋 ≠ ∅)
130127, 129eqnetrrd 3010 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 (MetOpen‘𝐶) = 𝑠) → 𝑠 ≠ ∅)
131 unieq 4868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑠 = ∅ → 𝑠 = ∅)
132 uni0 4888 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ∅ = ∅
133131, 132eqtrdi 2793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = ∅ → 𝑠 = ∅)
134133necon3i 2974 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( 𝑠 ≠ ∅ → 𝑠 ≠ ∅)
135130, 134syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 (MetOpen‘𝐶) = 𝑠) → 𝑠 ≠ ∅)
136135adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝑠 ≠ ∅)
137125, 136eqnetrd 3009 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → dom 𝑔 ≠ ∅)
138 dm0rn0 5871 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑔 = ∅ ↔ ran 𝑔 = ∅)
139138necon3bii 2994 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom 𝑔 ≠ ∅ ↔ ran 𝑔 ≠ ∅)
140137, 139sylib 217 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran 𝑔 ≠ ∅)
141 relxp 5643 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Rel (𝑋 × ℝ+)
142 relss 5728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ran 𝑔 ⊆ (𝑋 × ℝ+) → (Rel (𝑋 × ℝ+) → Rel ran 𝑔))
143105, 141, 142mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:𝑠⟶(𝑋 × ℝ+) → Rel ran 𝑔)
144 relrn0 5915 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Rel ran 𝑔 → (ran 𝑔 = ∅ ↔ ran ran 𝑔 = ∅))
145144necon3bid 2986 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Rel ran 𝑔 → (ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅))
146143, 145syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔:𝑠⟶(𝑋 × ℝ+) → (ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅))
147146adantl 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → (ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅))
148140, 147mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ≠ ∅)
149148adantllr 717 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ≠ ∅)
150 rpssre 12843 . . . . . . . . . . . . . . . . . . . . . . 23 + ⊆ ℝ
151110, 150sstrdi 3948 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ⊆ ℝ)
152 ltso 11161 . . . . . . . . . . . . . . . . . . . . . . 23 < Or ℝ
153 fiinfcl 9363 . . . . . . . . . . . . . . . . . . . . . . 23 (( < Or ℝ ∧ (ran ran 𝑔 ∈ Fin ∧ ran ran 𝑔 ≠ ∅ ∧ ran ran 𝑔 ⊆ ℝ)) → inf(ran ran 𝑔, ℝ, < ) ∈ ran ran 𝑔)
154152, 153mpan 688 . . . . . . . . . . . . . . . . . . . . . 22 ((ran ran 𝑔 ∈ Fin ∧ ran ran 𝑔 ≠ ∅ ∧ ran ran 𝑔 ⊆ ℝ) → inf(ran ran 𝑔, ℝ, < ) ∈ ran ran 𝑔)
155124, 149, 151, 154syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → inf(ran ran 𝑔, ℝ, < ) ∈ ran ran 𝑔)
156110, 155sseldd 3937 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ+)
157104, 156sylanl1 678 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ+)
158157adantr 482 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ+)
15981ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) → 𝑋 = (MetOpen‘𝐶))
160159anim1i 616 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → (𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠))
161160ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → (𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠))
162 simpl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑋𝑤𝑋) → 𝑥𝑋)
163126eleq2d 2823 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠) → (𝑥𝑋𝑥 𝑠))
164 eluni2 4861 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 𝑠 ↔ ∃𝑏𝑠 𝑥𝑏)
165163, 164bitrdi 287 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠) → (𝑥𝑋 ↔ ∃𝑏𝑠 𝑥𝑏))
166165biimpa 478 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑥𝑋) → ∃𝑏𝑠 𝑥𝑏)
167161, 162, 166syl2an 597 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋)) → ∃𝑏𝑠 𝑥𝑏)
168 nfv 1917 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏(((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+))
169 nfra1 3264 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))
170168, 169nfan 1902 . . . . . . . . . . . . . . . . . . . . . 22 𝑏((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))
171 nfv 1917 . . . . . . . . . . . . . . . . . . . . . 22 𝑏(𝑥𝑋𝑤𝑋)
172170, 171nfan 1902 . . . . . . . . . . . . . . . . . . . . 21 𝑏(((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋))
173 nfv 1917 . . . . . . . . . . . . . . . . . . . . 21 𝑏((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)
174 rspa 3228 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) ∧ 𝑏𝑠) → (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))
175 oveq2 7350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑥 → ((1st ‘(𝑔𝑏))𝐶𝑐) = ((1st ‘(𝑔𝑏))𝐶𝑥))
176175breq1d 5107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑥 → (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ↔ ((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))))
177 fveq2 6830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑐 = 𝑥 → (𝑓𝑐) = (𝑓𝑥))
178177oveq2d 7358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑥 → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
179178breq1d 5107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑥 → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)))
180176, 179imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑥 → ((((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ (((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2))))
181180rspcva 3572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥𝑋 ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) → (((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)))
182 oveq2 7350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑤 → ((1st ‘(𝑔𝑏))𝐶𝑐) = ((1st ‘(𝑔𝑏))𝐶𝑤))
183182breq1d 5107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ↔ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))))
18444oveq2d 7358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑤 → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)))
185184breq1d 5107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)))
186183, 185imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑤 → ((((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
187186rspcva 3572 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑤𝑋 ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) → (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)))
188181, 187anim12i 614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑥𝑋 ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) ∧ (𝑤𝑋 ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
189188anandirs 677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥𝑋𝑤𝑋) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
190 anim12 807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
191189, 190syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥𝑋𝑤𝑋) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
192191adantrl 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥𝑋𝑤𝑋) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
193192ad4ant23 751 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑏𝑠𝑥𝑏)) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
194 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → ((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+))
195194anim1i 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)))
196195anim1i 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)))
197109, 150sstrdi 3948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑔:𝑠⟶(𝑋 × ℝ+) → ran ran 𝑔 ⊆ ℝ)
198197adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → ran ran 𝑔 ⊆ ℝ)
199 0re 11083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 0 ∈ ℝ
200 rpge0 12849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦 ∈ ℝ+ → 0 ≤ 𝑦)
201200rgen 3064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 𝑦 ∈ ℝ+ 0 ≤ 𝑦
202 ssralv 4002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (ran ran 𝑔 ⊆ ℝ+ → (∀𝑦 ∈ ℝ+ 0 ≤ 𝑦 → ∀𝑦 ∈ ran ran 𝑔0 ≤ 𝑦))
203109, 201, 202mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑔:𝑠⟶(𝑋 × ℝ+) → ∀𝑦 ∈ ran ran 𝑔0 ≤ 𝑦)
204 breq1 5100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
205204ralbidv 3171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 = 0 → (∀𝑦 ∈ ran ran 𝑔 𝑥𝑦 ↔ ∀𝑦 ∈ ran ran 𝑔0 ≤ 𝑦))
206205rspcev 3574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((0 ∈ ℝ ∧ ∀𝑦 ∈ ran ran 𝑔0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦)
207199, 203, 206sylancr 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑔:𝑠⟶(𝑋 × ℝ+) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦)
208207adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦)
209143adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → Rel ran 𝑔)
210 ffn 6656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑔:𝑠⟶(𝑋 × ℝ+) → 𝑔 Fn 𝑠)
211 fnfvelrn 7019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑔 Fn 𝑠𝑏𝑠) → (𝑔𝑏) ∈ ran 𝑔)
212210, 211sylan 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (𝑔𝑏) ∈ ran 𝑔)
213 2ndrn 7955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((Rel ran 𝑔 ∧ (𝑔𝑏) ∈ ran 𝑔) → (2nd ‘(𝑔𝑏)) ∈ ran ran 𝑔)
214209, 212, 213syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ran ran 𝑔)
215 infrelb 12066 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((ran ran 𝑔 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦 ∧ (2nd ‘(𝑔𝑏)) ∈ ran ran 𝑔) → inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏)))
216198, 208, 214, 215syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏)))
217216adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏)))
218217ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏)))
21918ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝐶 ∈ (∞Met‘𝑋))
220 xmetcl 23590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → (𝑥𝐶𝑤) ∈ ℝ*)
2212203expb 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑤𝑋)) → (𝑥𝐶𝑤) ∈ ℝ*)
222219, 221sylan 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → (𝑥𝐶𝑤) ∈ ℝ*)
223222adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → (𝑥𝐶𝑤) ∈ ℝ*)
224 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → 𝑔:𝑠⟶(𝑋 × ℝ+))
225 simpl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑏𝑠𝑥𝑏) → 𝑏𝑠)
226214ne0d 4287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → ran ran 𝑔 ≠ ∅)
227 infrecl 12063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((ran ran 𝑔 ⊆ ℝ ∧ ran ran 𝑔 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ)
228198, 226, 208, 227syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ)
229228rexrd 11131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ*)
230224, 225, 229syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ*)
231 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝑔:𝑠⟶(𝑋 × ℝ+))
232231ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → (𝑔𝑏) ∈ (𝑋 × ℝ+))
233 xp2nd 7937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔𝑏) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
234232, 233syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
235234rpxrd 12879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
236235ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
237 xrltletr 12997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑥𝐶𝑤) ∈ ℝ* ∧ inf(ran ran 𝑔, ℝ, < ) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ*) → (((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) ∧ inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))))
238223, 230, 236, 237syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → (((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) ∧ inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))))
239218, 238mpan2d 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))))
240239adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))))
24118ad6antr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → 𝐶 ∈ (∞Met‘𝑋))
242 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) → 𝑔:𝑠⟶(𝑋 × ℝ+))
243 ffvelcdm 7020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (𝑔𝑏) ∈ (𝑋 × ℝ+))
244 xp1st 7936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑔𝑏) ∈ (𝑋 × ℝ+) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
245243, 244syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
246242, 225, 245syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
247 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥𝑋𝑤𝑋) → 𝑤𝑋)
248247ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → 𝑤𝑋)
249 xmetcl 23590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐶 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔𝑏)) ∈ 𝑋𝑤𝑋) → ((1st ‘(𝑔𝑏))𝐶𝑤) ∈ ℝ*)
250241, 246, 248, 249syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑤) ∈ ℝ*)
251250adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑤) ∈ ℝ*)
252243, 233syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
253224, 252sylan 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
254253ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
255254rpred 12878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
256162ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → 𝑥𝑋)
257 xmetcl 23590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐶 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔𝑏)) ∈ 𝑋𝑥𝑋) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ*)
258241, 246, 256, 257syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ*)
259252rpxrd 12879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
260242, 225, 259syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
261 eleq2 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) → (𝑥𝑏𝑥 ∈ ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))))
26218ad5antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 𝐶 ∈ (∞Met‘𝑋))
263224, 245sylan 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
264253rpxrd 12879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
265 elbl 23647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐶 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔𝑏)) ∈ 𝑋 ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ*) → (𝑥 ∈ ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ↔ (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
266262, 263, 264, 265syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑥 ∈ ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ↔ (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
267261, 266sylan9bbr 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) → (𝑥𝑏 ↔ (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
268267biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) → (𝑥𝑏 → (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
269268an32s 650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ 𝑏𝑠) → (𝑥𝑏 → (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
270269impr 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏))))
271270simprd 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))
272258, 260, 271xrltled 12990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏)))
273224ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑔𝑏) ∈ (𝑋 × ℝ+))
274273, 244syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
275 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 𝑥𝑋)
276262, 274, 275, 257syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ*)
277 xmetge0 23603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐶 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔𝑏)) ∈ 𝑋𝑥𝑋) → 0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥))
278262, 274, 275, 277syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥))
279 xrrege0 13014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ) ∧ (0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥) ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏)))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ)
280279an4s 658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ* ∧ 0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥)) ∧ ((2nd ‘(𝑔𝑏)) ∈ ℝ ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏)))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ)
281280ex 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ* ∧ 0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥)) → (((2nd ‘(𝑔𝑏)) ∈ ℝ ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ))
282276, 278, 281syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((2nd ‘(𝑔𝑏)) ∈ ℝ ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ))
283282ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((2nd ‘(𝑔𝑏)) ∈ ℝ ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ))
284255, 272, 283mp2and 697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ)
285284adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ)
286 xrltle 12989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑥𝐶𝑤) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ*) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏))))
287223, 236, 286syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏))))
288 xmetge0 23603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → 0 ≤ (𝑥𝐶𝑤))
2892883expb 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑤𝑋)) → 0 ≤ (𝑥𝐶𝑤))
290219, 289sylan 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → 0 ≤ (𝑥𝐶𝑤))
291290adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → 0 ≤ (𝑥𝐶𝑤))
292234rpred 12878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
293292ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
294 xrrege0 13014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑥𝐶𝑤) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ) ∧ (0 ≤ (𝑥𝐶𝑤) ∧ (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏)))) → (𝑥𝐶𝑤) ∈ ℝ)
295294ex 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑥𝐶𝑤) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ) → ((0 ≤ (𝑥𝐶𝑤) ∧ (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) ∈ ℝ))
296223, 293, 295syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((0 ≤ (𝑥𝐶𝑤) ∧ (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) ∈ ℝ))
297291, 296mpand 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ∈ ℝ))
298287, 297syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ∈ ℝ))
299298adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ∈ ℝ))
300299imp 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) ∈ ℝ)
301285, 300readdcld 11110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)) ∈ ℝ)
302301rexrd 11131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)) ∈ ℝ*)
303254, 254rpaddcld 12893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∈ ℝ+)
304303rpxrd 12879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∈ ℝ*)
305304adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∈ ℝ*)
306 xmettri 23610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐶 ∈ (∞Met‘𝑋) ∧ ((1st ‘(𝑔𝑏)) ∈ 𝑋𝑤𝑋𝑥𝑋)) → ((1st ‘(𝑔𝑏))𝐶𝑤) ≤ (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)))
307241, 246, 248, 256, 306syl13anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑤) ≤ (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)))
308307adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑤) ≤ (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)))
309 rexadd 13072 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ ∧ (𝑥𝐶𝑤) ∈ ℝ) → (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)) = (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)))
310285, 300, 309syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)) = (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)))
311308, 310breqtrd 5123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑤) ≤ (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)))
312255adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
313271adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))
314 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)))
315285, 300, 312, 312, 313, 314lt2addd 11704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
316251, 302, 305, 311, 315xrlelttrd 13000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
317316ex 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))))
318252rpred 12878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
319318, 252ltaddrpd 12911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
320242, 225, 319syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
321258, 260, 304, 271, 320xrlttrd 12999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
322317, 321jctild 527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))))
323240, 322syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → (((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))))
324 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → (𝜑𝑓:𝑋𝑌))
325 heicant.d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝐷 ∈ (∞Met‘𝑌))
326 ffvelcdm 7020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑓:𝑋𝑌𝑥𝑋) → (𝑓𝑥) ∈ 𝑌)
327 ffvelcdm 7020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑓:𝑋𝑌𝑤𝑋) → (𝑓𝑤) ∈ 𝑌)
328326, 327anim12dan 620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:𝑋𝑌 ∧ (𝑥𝑋𝑤𝑋)) → ((𝑓𝑥) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌))
329 xmetcl 23590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓𝑥) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
3303293expb 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐷 ∈ (∞Met‘𝑌) ∧ ((𝑓𝑥) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
331325, 328, 330syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑓:𝑋𝑌 ∧ (𝑥𝑋𝑤𝑋))) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
332331anassrs 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑓:𝑋𝑌) ∧ (𝑥𝑋𝑤𝑋)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
333324, 332sylan 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
334333ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
335325ad5antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 𝐷 ∈ (∞Met‘𝑌))
336 simp-5r 784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 𝑓:𝑋𝑌)
337336, 274ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌)
338 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝑓:𝑋𝑌)
339338ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ 𝑌)
340339adantrr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → (𝑓𝑥) ∈ 𝑌)
341340adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑓𝑥) ∈ 𝑌)
342 xmetcl 23590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌 ∧ (𝑓𝑥) ∈ 𝑌) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ*)
343335, 337, 341, 342syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ*)
3449rpxrd 12879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑑 ∈ ℝ+ → (𝑑 / 2) ∈ ℝ*)
345344ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑑 / 2) ∈ ℝ*)
346 xrltle 12989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ*) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2)))
347343, 345, 346syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2)))
348 xmetge0 23603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌 ∧ (𝑓𝑥) ∈ 𝑌) → 0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
349335, 337, 341, 348syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
3509rpred 12878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑑 ∈ ℝ+ → (𝑑 / 2) ∈ ℝ)
351350ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑑 / 2) ∈ ℝ)
352 xrrege0 13014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ) ∧ (0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ)
353352ex 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ) → ((0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
354343, 351, 353syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
355349, 354mpand 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
356347, 355syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
357356ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
358357imp 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ)
359338ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑤𝑋) → (𝑓𝑤) ∈ 𝑌)
360359adantrl 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → (𝑓𝑤) ∈ 𝑌)
361360adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑓𝑤) ∈ 𝑌)
362 xmetcl 23590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ*)
363335, 337, 361, 362syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ*)
364 xrltle 12989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ*) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2)))
365363, 345, 364syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2)))
366 xmetge0 23603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌) → 0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)))
367335, 337, 361, 366syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)))
368 xrrege0 13014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ) ∧ (0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ)
369368ex 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ) → ((0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
370363, 351, 369syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
371367, 370mpand 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
372365, 371syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
373372ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
374373imp 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ)
375 readdcl 11060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) ∈ ℝ)
376358, 374, 375syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) ∈ ℝ)
377376anandis 676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) ∈ ℝ)
378377rexrd 11131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) ∈ ℝ*)
379 rpxr 12845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑑 ∈ ℝ+𝑑 ∈ ℝ*)
380379ad6antlr 735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → 𝑑 ∈ ℝ*)
381 xmettri 23610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐷 ∈ (∞Met‘𝑌) ∧ ((𝑓𝑥) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌 ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
382335, 341, 361, 337, 381syl13anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
383382ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
384383adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
385 xmetsym 23606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓𝑥) ∈ 𝑌 ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌) → ((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
386335, 341, 337, 385syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
387386ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
388387adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
389388oveq1d 7357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
390 rexadd 13072 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
391358, 374, 390syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
392391anandis 676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
393389, 392eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
394384, 393breqtrd 5123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
395 lt2add 11566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) ∧ ((𝑑 / 2) ∈ ℝ ∧ (𝑑 / 2) ∈ ℝ)) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2))))
396395expcom 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑑 / 2) ∈ ℝ ∧ (𝑑 / 2) ∈ ℝ) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2)))))
397351, 351, 396syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2)))))
398356, 372, 397syl2and 609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2)))))
399398pm2.43d 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2))))
400399ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2))))
401400imp 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2)))
402 rpcn 12846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 ∈ ℝ+𝑑 ∈ ℂ)
4034022halvesd 12325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑 ∈ ℝ+ → ((𝑑 / 2) + (𝑑 / 2)) = 𝑑)
404403ad6antlr 735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑑 / 2) + (𝑑 / 2)) = 𝑑)
405401, 404breqtrd 5123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < 𝑑)
406334, 378, 380, 394, 405xrlelttrd 13000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)
407406ex 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
408323, 407imim12d 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
409196, 408sylanl1 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
410409adantlrr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑏𝑠𝑥𝑏)) → (((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
411193, 410mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
412411exp32 422 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
413174, 412sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) ∧ 𝑏𝑠)) → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
414413expr 458 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → (𝑏𝑠 → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))))
415414pm2.43d 53 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
416415an32s 650 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋)) → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
417172, 173, 416rexlimd 3246 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋)) → (∃𝑏𝑠 𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
418167, 417mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
419418ralrimivva 3194 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
420 breq2 5101 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = inf(ran ran 𝑔, ℝ, < ) → ((𝑥𝐶𝑤) < 𝑧 ↔ (𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < )))
421420imbi1d 342 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = inf(ran ran 𝑔, ℝ, < ) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
4224212ralbidv 3209 . . . . . . . . . . . . . . . . . . 19 (𝑧 = inf(ran ran 𝑔, ℝ, < ) → (∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
423422rspcev 3574 . . . . . . . . . . . . . . . . . 18 ((inf(ran ran 𝑔, ℝ, < ) ∈ ℝ+ ∧ ∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
424158, 419, 423syl2anc 585 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
425424expl 459 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
426425exlimdv 1936 . . . . . . . . . . . . . . 15 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → (∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
427426expimpd 455 . . . . . . . . . . . . . 14 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) → (( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
428102, 427sylan2 594 . . . . . . . . . . . . 13 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)) → (( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
429428rexlimdva 3149 . . . . . . . . . . . 12 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∃𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
430101, 429syld 47 . . . . . . . . . . 11 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
43115, 430syl5 34 . . . . . . . . . 10 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (((𝑑 / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
432431exp4b 432 . . . . . . . . 9 ((𝜑𝑓:𝑋𝑌) → (𝑑 ∈ ℝ+ → ((𝑑 / 2) ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))))
4339, 432mpdi 45 . . . . . . . 8 ((𝜑𝑓:𝑋𝑌) → (𝑑 ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
434433ralrimiv 3139 . . . . . . 7 ((𝜑𝑓:𝑋𝑌) → ∀𝑑 ∈ ℝ+ (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
435 r19.21v 3173 . . . . . . 7 (∀𝑑 ∈ ℝ+ (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)) ↔ (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
436434, 435sylib 217 . . . . . 6 ((𝜑𝑓:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
4378, 436impbid2 225 . . . . 5 ((𝜑𝑓:𝑋𝑌) → (∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
438 ralcom 3269 . . . . 5 (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
439437, 438bitrdi 287 . . . 4 ((𝜑𝑓:𝑋𝑌) → (∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
440439pm5.32da 580 . . 3 (𝜑 → ((𝑓:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
441 eqid 2737 . . . 4 (metUnif‘𝐶) = (metUnif‘𝐶)
442 eqid 2737 . . . 4 (metUnif‘𝐷) = (metUnif‘𝐷)
443 heicant.y . . . 4 (𝜑𝑌 ≠ ∅)
444 xmetpsmet 23607 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → 𝐶 ∈ (PsMet‘𝑋))
44518, 444syl 17 . . . 4 (𝜑𝐶 ∈ (PsMet‘𝑋))
446 xmetpsmet 23607 . . . . 5 (𝐷 ∈ (∞Met‘𝑌) → 𝐷 ∈ (PsMet‘𝑌))
447325, 446syl 17 . . . 4 (𝜑𝐷 ∈ (PsMet‘𝑌))
448441, 442, 128, 443, 445, 447metucn 23833 . . 3 (𝜑 → (𝑓 ∈ ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
449 eqid 2737 . . . . 5 (MetOpen‘𝐷) = (MetOpen‘𝐷)
45023, 449metcn 23805 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝑓 ∈ ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
45118, 325, 450syl2anc 585 . . 3 (𝜑 → (𝑓 ∈ ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
452440, 448, 4513bitr4d 311 . 2 (𝜑 → (𝑓 ∈ ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) ↔ 𝑓 ∈ ((MetOpen‘𝐶) Cn (MetOpen‘𝐷))))
453452eqrdv 2735 1 (𝜑 → ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) = ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2941  wral 3062  wrex 3071  cin 3901  wss 3902  c0 4274  𝒫 cpw 4552  cop 4584   cuni 4857   class class class wbr 5097   Or wor 5536   × cxp 5623  dom cdm 5625  ran crn 5626  Rel wrel 5630  Fun wfun 6478   Fn wfn 6479  wf 6480  cfv 6484  (class class class)co 7342  1st c1st 7902  2nd c2nd 7903  cen 8806  Fincfn 8809  infcinf 9303  cr 10976  0cc0 10977   + caddc 10980  *cxr 11114   < clt 11115  cle 11116   / cdiv 11738  2c2 12134  +crp 12836   +𝑒 cxad 12952  PsMetcpsmet 20687  ∞Metcxmet 20688  ballcbl 20690  MetOpencmopn 20693  metUnifcmetu 20694   Cn ccn 22481  Compccmp 22643   Cnucucn 23533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-map 8693  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-sup 9304  df-inf 9305  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-n0 12340  df-z 12426  df-uz 12689  df-q 12795  df-rp 12837  df-xneg 12954  df-xadd 12955  df-xmul 12956  df-ico 13191  df-topgen 17252  df-psmet 20695  df-xmet 20696  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-metu 20702  df-top 22149  df-topon 22166  df-bases 22202  df-cn 22484  df-cnp 22485  df-cmp 22644  df-fil 23103  df-ust 23458  df-ucn 23534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator