Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heicant Structured version   Visualization version   GIF version

Theorem heicant 37637
Description: Heine-Cantor theorem: a continuous mapping between metric spaces whose domain is compact is uniformly continuous. Theorem on [Rosenlicht] p. 80. (Contributed by Brendan Leahy, 13-Aug-2018.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
heicant.c (𝜑𝐶 ∈ (∞Met‘𝑋))
heicant.d (𝜑𝐷 ∈ (∞Met‘𝑌))
heicant.j (𝜑 → (MetOpen‘𝐶) ∈ Comp)
heicant.x (𝜑𝑋 ≠ ∅)
heicant.y (𝜑𝑌 ≠ ∅)
Assertion
Ref Expression
heicant (𝜑 → ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) = ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)))

Proof of Theorem heicant
Dummy variables 𝑏 𝑐 𝑑 𝑓 𝑔 𝑝 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5099 . . . . . . . . . . 11 (𝑑 = 𝑦 → (((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑 ↔ ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
21imbi2d 340 . . . . . . . . . 10 (𝑑 = 𝑦 → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
322ralbidv 3193 . . . . . . . . 9 (𝑑 = 𝑦 → (∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
43rexbidv 3153 . . . . . . . 8 (𝑑 = 𝑦 → (∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
54cbvralvw 3207 . . . . . . 7 (∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
6 r19.12 3279 . . . . . . . 8 (∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
76ralimi 3066 . . . . . . 7 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
85, 7sylbi 217 . . . . . 6 (∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) → ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
9 rphalfcl 12940 . . . . . . . . 9 (𝑑 ∈ ℝ+ → (𝑑 / 2) ∈ ℝ+)
10 breq2 5099 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑑 / 2) → (((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦 ↔ ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)))
1110imbi2d 340 . . . . . . . . . . . . . . 15 (𝑦 = (𝑑 / 2) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
1211ralbidv 3152 . . . . . . . . . . . . . 14 (𝑦 = (𝑑 / 2) → (∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
1312rexbidv 3153 . . . . . . . . . . . . 13 (𝑦 = (𝑑 / 2) → (∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
1413ralbidv 3152 . . . . . . . . . . . 12 (𝑦 = (𝑑 / 2) → (∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
1514rspcva 3577 . . . . . . . . . . 11 (((𝑑 / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)) → ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)))
16 heicant.j . . . . . . . . . . . . . . 15 (𝜑 → (MetOpen‘𝐶) ∈ Comp)
1716ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → (MetOpen‘𝐶) ∈ Comp)
18 heicant.c . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐶 ∈ (∞Met‘𝑋))
1918ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → 𝐶 ∈ (∞Met‘𝑋))
2019anim1i 615 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) → (𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋))
21 rphalfcl 12940 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
2221rpxrd 12956 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ*)
23 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (MetOpen‘𝐶) = (MetOpen‘𝐶)
2423blopn 24404 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑧 / 2) ∈ ℝ*) → (𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶))
25243expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧 / 2) ∈ ℝ*) → (𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶))
2620, 22, 25syl2an 596 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) → (𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶))
2726adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → (𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶))
2821rpgt0d 12958 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℝ+ → 0 < (𝑧 / 2))
2922, 28jca 511 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ+ → ((𝑧 / 2) ∈ ℝ* ∧ 0 < (𝑧 / 2)))
30 xblcntr 24315 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑧 / 2) ∈ ℝ* ∧ 0 < (𝑧 / 2))) → 𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)))
31303expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ ((𝑧 / 2) ∈ ℝ* ∧ 0 < (𝑧 / 2))) → 𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)))
3220, 29, 31syl2an 596 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)))
3332adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → 𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)))
34 opelxpi 5660 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑋 ∧ (𝑧 / 2) ∈ ℝ+) → ⟨𝑥, (𝑧 / 2)⟩ ∈ (𝑋 × ℝ+))
3521, 34sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑋𝑧 ∈ ℝ+) → ⟨𝑥, (𝑧 / 2)⟩ ∈ (𝑋 × ℝ+))
3635ad4ant23 753 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ⟨𝑥, (𝑧 / 2)⟩ ∈ (𝑋 × ℝ+))
37 rpcn 12922 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ℝ+𝑧 ∈ ℂ)
38372halvesd 12388 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ℝ+ → ((𝑧 / 2) + (𝑧 / 2)) = 𝑧)
3938breq2d 5107 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ℝ+ → ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) ↔ (𝑥𝐶𝑐) < 𝑧))
4039imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ+ → (((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ((𝑥𝐶𝑐) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
4140ralbidv 3152 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℝ+ → (∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑐𝑋 ((𝑥𝐶𝑐) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
42 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = 𝑤 → (𝑥𝐶𝑐) = (𝑥𝐶𝑤))
4342breq1d 5105 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑤 → ((𝑥𝐶𝑐) < 𝑧 ↔ (𝑥𝐶𝑤) < 𝑧))
44 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑐 = 𝑤 → (𝑓𝑐) = (𝑓𝑤))
4544oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = 𝑤 → ((𝑓𝑥)𝐷(𝑓𝑐)) = ((𝑓𝑥)𝐷(𝑓𝑤)))
4645breq1d 5105 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = 𝑤 → (((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)))
4743, 46imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = 𝑤 → (((𝑥𝐶𝑐) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
4847cbvralvw 3207 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑐𝑋 ((𝑥𝐶𝑐) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)))
4941, 48bitrdi 287 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ℝ+ → (∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))))
5049biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ+ ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)))
5150adantll 714 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)))
52 vex 3442 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 ∈ V
53 ovex 7386 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 / 2) ∈ V
5452, 53op1std 7941 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (1st𝑝) = 𝑥)
5552, 53op2ndd 7942 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (2nd𝑝) = (𝑧 / 2))
5654, 55oveq12d 7371 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((1st𝑝)(ball‘𝐶)(2nd𝑝)) = (𝑥(ball‘𝐶)(𝑧 / 2)))
5756eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)))
5857biantrurd 532 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
5954oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((1st𝑝)𝐶𝑐) = (𝑥𝐶𝑐))
6055, 55oveq12d 7371 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((2nd𝑝) + (2nd𝑝)) = ((𝑧 / 2) + (𝑧 / 2)))
6159, 60breq12d 5108 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) ↔ (𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2))))
6254fveq2d 6830 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (𝑓‘(1st𝑝)) = (𝑓𝑥))
6362oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) = ((𝑓𝑥)𝐷(𝑓𝑐)))
6463breq1d 5105 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2)))
6561, 64imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → ((((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
6665ralbidv 3152 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
6758, 66bitr3d 281 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = ⟨𝑥, (𝑧 / 2)⟩ → (((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))) ↔ ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))))
6867rspcev 3579 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑥, (𝑧 / 2)⟩ ∈ (𝑋 × ℝ+) ∧ ∀𝑐𝑋 ((𝑥𝐶𝑐) < ((𝑧 / 2) + (𝑧 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑐)) < (𝑑 / 2))) → ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))
6936, 51, 68syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))
70 eleq2 2817 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → (𝑥𝑏𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2))))
71 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → (𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ↔ (𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝))))
7271anbi1d 631 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → ((𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))) ↔ ((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
7372rexbidv 3153 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → (∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))) ↔ ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
7470, 73anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑥(ball‘𝐶)(𝑧 / 2)) → ((𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ↔ (𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)) ∧ ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
7574rspcev 3579 . . . . . . . . . . . . . . . . . . 19 (((𝑥(ball‘𝐶)(𝑧 / 2)) ∈ (MetOpen‘𝐶) ∧ (𝑥 ∈ (𝑥(ball‘𝐶)(𝑧 / 2)) ∧ ∃𝑝 ∈ (𝑋 × ℝ+)((𝑥(ball‘𝐶)(𝑧 / 2)) = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
7627, 33, 69, 75syl12anc 836 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) ∧ 𝑧 ∈ ℝ+) ∧ ∀𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
7776rexlimdva2 3132 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥𝑋) → (∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)) → ∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
7877ralimdva 3141 . . . . . . . . . . . . . . . 16 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)) → ∀𝑥𝑋𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
7978imp 406 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∀𝑥𝑋𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
8023mopnuni 24345 . . . . . . . . . . . . . . . . . 18 (𝐶 ∈ (∞Met‘𝑋) → 𝑋 = (MetOpen‘𝐶))
8118, 80syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 = (MetOpen‘𝐶))
8281raleqdv 3290 . . . . . . . . . . . . . . . 16 (𝜑 → (∀𝑥𝑋𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ↔ ∀𝑥 (MetOpen‘𝐶)∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
8382ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → (∀𝑥𝑋𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ↔ ∀𝑥 (MetOpen‘𝐶)∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
8479, 83mpbid 232 . . . . . . . . . . . . . 14 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∀𝑥 (MetOpen‘𝐶)∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
85 eqid 2729 . . . . . . . . . . . . . . 15 (MetOpen‘𝐶) = (MetOpen‘𝐶)
86 fveq2 6826 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑔𝑏) → (1st𝑝) = (1st ‘(𝑔𝑏)))
87 fveq2 6826 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑔𝑏) → (2nd𝑝) = (2nd ‘(𝑔𝑏)))
8886, 87oveq12d 7371 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑔𝑏) → ((1st𝑝)(ball‘𝐶)(2nd𝑝)) = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))))
8988eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑔𝑏) → (𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ↔ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))))
9086oveq1d 7368 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑔𝑏) → ((1st𝑝)𝐶𝑐) = ((1st ‘(𝑔𝑏))𝐶𝑐))
9187, 87oveq12d 7371 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑔𝑏) → ((2nd𝑝) + (2nd𝑝)) = ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
9290, 91breq12d 5108 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑔𝑏) → (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) ↔ ((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))))
9386fveq2d 6830 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = (𝑔𝑏) → (𝑓‘(1st𝑝)) = (𝑓‘(1st ‘(𝑔𝑏))))
9493oveq1d 7368 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑔𝑏) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)))
9594breq1d 5105 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑔𝑏) → (((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))
9692, 95imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑔𝑏) → ((((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))
9796ralbidv 3152 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑔𝑏) → (∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))
9889, 97anbi12d 632 . . . . . . . . . . . . . . 15 (𝑝 = (𝑔𝑏) → ((𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))) ↔ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))))
9985, 98cmpcovf 23294 . . . . . . . . . . . . . 14 (((MetOpen‘𝐶) ∈ Comp ∧ ∀𝑥 (MetOpen‘𝐶)∃𝑏 ∈ (MetOpen‘𝐶)(𝑥𝑏 ∧ ∃𝑝 ∈ (𝑋 × ℝ+)(𝑏 = ((1st𝑝)(ball‘𝐶)(2nd𝑝)) ∧ ∀𝑐𝑋 (((1st𝑝)𝐶𝑐) < ((2nd𝑝) + (2nd𝑝)) → ((𝑓‘(1st𝑝))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
10017, 84, 99syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2))) → ∃𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))))
101100ex 412 . . . . . . . . . . . 12 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)) → ∃𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))))))
102 elinel2 4155 . . . . . . . . . . . . . 14 (𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin) → 𝑠 ∈ Fin)
103 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → 𝜑)
104103anim1i 615 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) → (𝜑𝑠 ∈ Fin))
105 frn 6663 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:𝑠⟶(𝑋 × ℝ+) → ran 𝑔 ⊆ (𝑋 × ℝ+))
106 rnss 5885 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑔 ⊆ (𝑋 × ℝ+) → ran ran 𝑔 ⊆ ran (𝑋 × ℝ+))
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:𝑠⟶(𝑋 × ℝ+) → ran ran 𝑔 ⊆ ran (𝑋 × ℝ+))
108 rnxpss 6125 . . . . . . . . . . . . . . . . . . . . . . 23 ran (𝑋 × ℝ+) ⊆ ℝ+
109107, 108sstrdi 3950 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:𝑠⟶(𝑋 × ℝ+) → ran ran 𝑔 ⊆ ℝ+)
110109adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ⊆ ℝ+)
111 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → 𝑠 ∈ Fin)
112 ffun 6659 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔:𝑠⟶(𝑋 × ℝ+) → Fun 𝑔)
113 vex 3442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑔 ∈ V
114113fundmen 8963 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun 𝑔 → dom 𝑔𝑔)
115114ensymd 8937 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Fun 𝑔𝑔 ≈ dom 𝑔)
116112, 115syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:𝑠⟶(𝑋 × ℝ+) → 𝑔 ≈ dom 𝑔)
117 fdm 6665 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:𝑠⟶(𝑋 × ℝ+) → dom 𝑔 = 𝑠)
118116, 117breqtrd 5121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔:𝑠⟶(𝑋 × ℝ+) → 𝑔𝑠)
119 enfii 9110 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑠 ∈ Fin ∧ 𝑔𝑠) → 𝑔 ∈ Fin)
120118, 119sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ Fin ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝑔 ∈ Fin)
121 rnfi 9249 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔 ∈ Fin → ran 𝑔 ∈ Fin)
122 rnfi 9249 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑔 ∈ Fin → ran ran 𝑔 ∈ Fin)
123120, 121, 1223syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 ∈ Fin ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ∈ Fin)
124111, 123sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ∈ Fin)
125117adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → dom 𝑔 = 𝑠)
126 eqtr 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠) → 𝑋 = 𝑠)
12781, 126sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 (MetOpen‘𝐶) = 𝑠) → 𝑋 = 𝑠)
128 heicant.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑋 ≠ ∅)
129128adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 (MetOpen‘𝐶) = 𝑠) → 𝑋 ≠ ∅)
130127, 129eqnetrrd 2993 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 (MetOpen‘𝐶) = 𝑠) → 𝑠 ≠ ∅)
131 unieq 4872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑠 = ∅ → 𝑠 = ∅)
132 uni0 4889 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ∅ = ∅
133131, 132eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = ∅ → 𝑠 = ∅)
134133necon3i 2957 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( 𝑠 ≠ ∅ → 𝑠 ≠ ∅)
135130, 134syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 (MetOpen‘𝐶) = 𝑠) → 𝑠 ≠ ∅)
136135adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝑠 ≠ ∅)
137125, 136eqnetrd 2992 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → dom 𝑔 ≠ ∅)
138 dm0rn0 5871 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑔 = ∅ ↔ ran 𝑔 = ∅)
139138necon3bii 2977 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom 𝑔 ≠ ∅ ↔ ran 𝑔 ≠ ∅)
140137, 139sylib 218 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran 𝑔 ≠ ∅)
141 relxp 5641 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Rel (𝑋 × ℝ+)
142 relss 5729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ran 𝑔 ⊆ (𝑋 × ℝ+) → (Rel (𝑋 × ℝ+) → Rel ran 𝑔))
143105, 141, 142mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:𝑠⟶(𝑋 × ℝ+) → Rel ran 𝑔)
144 relrn0 5918 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Rel ran 𝑔 → (ran 𝑔 = ∅ ↔ ran ran 𝑔 = ∅))
145144necon3bid 2969 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Rel ran 𝑔 → (ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅))
146143, 145syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔:𝑠⟶(𝑋 × ℝ+) → (ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅))
147146adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → (ran 𝑔 ≠ ∅ ↔ ran ran 𝑔 ≠ ∅))
148140, 147mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ≠ ∅)
149148adantllr 719 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ≠ ∅)
150 rpssre 12919 . . . . . . . . . . . . . . . . . . . . . . 23 + ⊆ ℝ
151110, 150sstrdi 3950 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → ran ran 𝑔 ⊆ ℝ)
152 ltso 11214 . . . . . . . . . . . . . . . . . . . . . . 23 < Or ℝ
153 fiinfcl 9412 . . . . . . . . . . . . . . . . . . . . . . 23 (( < Or ℝ ∧ (ran ran 𝑔 ∈ Fin ∧ ran ran 𝑔 ≠ ∅ ∧ ran ran 𝑔 ⊆ ℝ)) → inf(ran ran 𝑔, ℝ, < ) ∈ ran ran 𝑔)
154152, 153mpan 690 . . . . . . . . . . . . . . . . . . . . . 22 ((ran ran 𝑔 ∈ Fin ∧ ran ran 𝑔 ≠ ∅ ∧ ran ran 𝑔 ⊆ ℝ) → inf(ran ran 𝑔, ℝ, < ) ∈ ran ran 𝑔)
155124, 149, 151, 154syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → inf(ran ran 𝑔, ℝ, < ) ∈ ran ran 𝑔)
156110, 155sseldd 3938 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ+)
157104, 156sylanl1 680 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ+)
158157adantr 480 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ+)
15981ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) → 𝑋 = (MetOpen‘𝐶))
160159anim1i 615 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → (𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠))
161160ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → (𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠))
162 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑋𝑤𝑋) → 𝑥𝑋)
163126eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠) → (𝑥𝑋𝑥 𝑠))
164 eluni2 4865 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 𝑠 ↔ ∃𝑏𝑠 𝑥𝑏)
165163, 164bitrdi 287 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠) → (𝑥𝑋 ↔ ∃𝑏𝑠 𝑥𝑏))
166165biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 = (MetOpen‘𝐶) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑥𝑋) → ∃𝑏𝑠 𝑥𝑏)
167161, 162, 166syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋)) → ∃𝑏𝑠 𝑥𝑏)
168 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏(((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+))
169 nfra1 3253 . . . . . . . . . . . . . . . . . . . . . . 23 𝑏𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))
170168, 169nfan 1899 . . . . . . . . . . . . . . . . . . . . . 22 𝑏((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))
171 nfv 1914 . . . . . . . . . . . . . . . . . . . . . 22 𝑏(𝑥𝑋𝑤𝑋)
172170, 171nfan 1899 . . . . . . . . . . . . . . . . . . . . 21 𝑏(((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋))
173 nfv 1914 . . . . . . . . . . . . . . . . . . . . 21 𝑏((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)
174 rspa 3218 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) ∧ 𝑏𝑠) → (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))
175 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑥 → ((1st ‘(𝑔𝑏))𝐶𝑐) = ((1st ‘(𝑔𝑏))𝐶𝑥))
176175breq1d 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑥 → (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ↔ ((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))))
177 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑐 = 𝑥 → (𝑓𝑐) = (𝑓𝑥))
178177oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑥 → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
179178breq1d 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑥 → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)))
180176, 179imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑥 → ((((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ (((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2))))
181180rspcva 3577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥𝑋 ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) → (((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)))
182 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑤 → ((1st ‘(𝑔𝑏))𝐶𝑐) = ((1st ‘(𝑔𝑏))𝐶𝑤))
183182breq1d 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ↔ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))))
18444oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑤 → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)))
185184breq1d 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2) ↔ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)))
186183, 185imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑤 → ((((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)) ↔ (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
187186rspcva 3577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑤𝑋 ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) → (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)))
188181, 187anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑥𝑋 ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) ∧ (𝑤𝑋 ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
189188anandirs 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥𝑋𝑤𝑋) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
190 anim12 808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
191189, 190syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥𝑋𝑤𝑋) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
192191adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥𝑋𝑤𝑋) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
193192ad4ant23 753 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑏𝑠𝑥𝑏)) → ((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))))
194 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → ((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+))
195194anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)))
196195anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)))
197109, 150sstrdi 3950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑔:𝑠⟶(𝑋 × ℝ+) → ran ran 𝑔 ⊆ ℝ)
198197adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → ran ran 𝑔 ⊆ ℝ)
199 0re 11136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 0 ∈ ℝ
200 rpge0 12925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦 ∈ ℝ+ → 0 ≤ 𝑦)
201200rgen 3046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 𝑦 ∈ ℝ+ 0 ≤ 𝑦
202 ssralv 4006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (ran ran 𝑔 ⊆ ℝ+ → (∀𝑦 ∈ ℝ+ 0 ≤ 𝑦 → ∀𝑦 ∈ ran ran 𝑔0 ≤ 𝑦))
203109, 201, 202mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑔:𝑠⟶(𝑋 × ℝ+) → ∀𝑦 ∈ ran ran 𝑔0 ≤ 𝑦)
204 breq1 5098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
205204ralbidv 3152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 = 0 → (∀𝑦 ∈ ran ran 𝑔 𝑥𝑦 ↔ ∀𝑦 ∈ ran ran 𝑔0 ≤ 𝑦))
206205rspcev 3579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((0 ∈ ℝ ∧ ∀𝑦 ∈ ran ran 𝑔0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦)
207199, 203, 206sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑔:𝑠⟶(𝑋 × ℝ+) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦)
208207adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦)
209143adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → Rel ran 𝑔)
210 ffn 6656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑔:𝑠⟶(𝑋 × ℝ+) → 𝑔 Fn 𝑠)
211 fnfvelrn 7018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑔 Fn 𝑠𝑏𝑠) → (𝑔𝑏) ∈ ran 𝑔)
212210, 211sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (𝑔𝑏) ∈ ran 𝑔)
213 2ndrn 7983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((Rel ran 𝑔 ∧ (𝑔𝑏) ∈ ran 𝑔) → (2nd ‘(𝑔𝑏)) ∈ ran ran 𝑔)
214209, 212, 213syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ran ran 𝑔)
215 infrelb 12128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((ran ran 𝑔 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦 ∧ (2nd ‘(𝑔𝑏)) ∈ ran ran 𝑔) → inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏)))
216198, 208, 214, 215syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏)))
217216adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏)))
218217ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏)))
21918ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝐶 ∈ (∞Met‘𝑋))
220 xmetcl 24235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → (𝑥𝐶𝑤) ∈ ℝ*)
2212203expb 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑤𝑋)) → (𝑥𝐶𝑤) ∈ ℝ*)
222219, 221sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → (𝑥𝐶𝑤) ∈ ℝ*)
223222adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → (𝑥𝐶𝑤) ∈ ℝ*)
224 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → 𝑔:𝑠⟶(𝑋 × ℝ+))
225 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑏𝑠𝑥𝑏) → 𝑏𝑠)
226214ne0d 4295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → ran ran 𝑔 ≠ ∅)
227 infrecl 12125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((ran ran 𝑔 ⊆ ℝ ∧ ran ran 𝑔 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran ran 𝑔 𝑥𝑦) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ)
228198, 226, 208, 227syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ)
229228rexrd 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ*)
230224, 225, 229syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → inf(ran ran 𝑔, ℝ, < ) ∈ ℝ*)
231 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝑔:𝑠⟶(𝑋 × ℝ+))
232231ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → (𝑔𝑏) ∈ (𝑋 × ℝ+))
233 xp2nd 7964 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔𝑏) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
234232, 233syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
235234rpxrd 12956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
236235ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
237 xrltletr 13077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑥𝐶𝑤) ∈ ℝ* ∧ inf(ran ran 𝑔, ℝ, < ) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ*) → (((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) ∧ inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))))
238223, 230, 236, 237syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → (((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) ∧ inf(ran ran 𝑔, ℝ, < ) ≤ (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))))
239218, 238mpan2d 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))))
240239adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))))
24118ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → 𝐶 ∈ (∞Met‘𝑋))
242 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) → 𝑔:𝑠⟶(𝑋 × ℝ+))
243 ffvelcdm 7019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (𝑔𝑏) ∈ (𝑋 × ℝ+))
244 xp1st 7963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑔𝑏) ∈ (𝑋 × ℝ+) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
245243, 244syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
246242, 225, 245syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
247 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥𝑋𝑤𝑋) → 𝑤𝑋)
248247ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → 𝑤𝑋)
249 xmetcl 24235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐶 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔𝑏)) ∈ 𝑋𝑤𝑋) → ((1st ‘(𝑔𝑏))𝐶𝑤) ∈ ℝ*)
250241, 246, 248, 249syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑤) ∈ ℝ*)
251250adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑤) ∈ ℝ*)
252243, 233syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
253224, 252sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
254253ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ+)
255254rpred 12955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
256162ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → 𝑥𝑋)
257 xmetcl 24235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐶 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔𝑏)) ∈ 𝑋𝑥𝑋) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ*)
258241, 246, 256, 257syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ*)
259252rpxrd 12956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
260242, 225, 259syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
261 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) → (𝑥𝑏𝑥 ∈ ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))))
26218ad5antr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 𝐶 ∈ (∞Met‘𝑋))
263224, 245sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
264253rpxrd 12956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ*)
265 elbl 24292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐶 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔𝑏)) ∈ 𝑋 ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ*) → (𝑥 ∈ ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ↔ (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
266262, 263, 264, 265syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑥 ∈ ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ↔ (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
267261, 266sylan9bbr 510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) → (𝑥𝑏 ↔ (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
268267biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) → (𝑥𝑏 → (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
269268an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ 𝑏𝑠) → (𝑥𝑏 → (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))))
270269impr 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (𝑥𝑋 ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏))))
271270simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))
272258, 260, 271xrltled 13070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏)))
273224ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑔𝑏) ∈ (𝑋 × ℝ+))
274273, 244syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (1st ‘(𝑔𝑏)) ∈ 𝑋)
275 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 𝑥𝑋)
276262, 274, 275, 257syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ*)
277 xmetge0 24248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐶 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔𝑏)) ∈ 𝑋𝑥𝑋) → 0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥))
278262, 274, 275, 277syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥))
279 xrrege0 13094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ) ∧ (0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥) ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏)))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ)
280279an4s 660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ* ∧ 0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥)) ∧ ((2nd ‘(𝑔𝑏)) ∈ ℝ ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏)))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ)
281280ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ* ∧ 0 ≤ ((1st ‘(𝑔𝑏))𝐶𝑥)) → (((2nd ‘(𝑔𝑏)) ∈ ℝ ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ))
282276, 278, 281syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((2nd ‘(𝑔𝑏)) ∈ ℝ ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ))
283282ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((2nd ‘(𝑔𝑏)) ∈ ℝ ∧ ((1st ‘(𝑔𝑏))𝐶𝑥) ≤ (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ))
284255, 272, 283mp2and 699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ)
285284adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ)
286 xrltle 13069 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑥𝐶𝑤) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ*) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏))))
287223, 236, 286syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏))))
288 xmetge0 24248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → 0 ≤ (𝑥𝐶𝑤))
2892883expb 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑤𝑋)) → 0 ≤ (𝑥𝐶𝑤))
290219, 289sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → 0 ≤ (𝑥𝐶𝑤))
291290adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → 0 ≤ (𝑥𝐶𝑤))
292234rpred 12955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
293292ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
294 xrrege0 13094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑥𝐶𝑤) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ) ∧ (0 ≤ (𝑥𝐶𝑤) ∧ (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏)))) → (𝑥𝐶𝑤) ∈ ℝ)
295294ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑥𝐶𝑤) ∈ ℝ* ∧ (2nd ‘(𝑔𝑏)) ∈ ℝ) → ((0 ≤ (𝑥𝐶𝑤) ∧ (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) ∈ ℝ))
296223, 293, 295syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((0 ≤ (𝑥𝐶𝑤) ∧ (𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) ∈ ℝ))
297291, 296mpand 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) ≤ (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ∈ ℝ))
298287, 297syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ∈ ℝ))
299298adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (𝑥𝐶𝑤) ∈ ℝ))
300299imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) ∈ ℝ)
301285, 300readdcld 11163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)) ∈ ℝ)
302301rexrd 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)) ∈ ℝ*)
303254, 254rpaddcld 12970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∈ ℝ+)
304303rpxrd 12956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∈ ℝ*)
305304adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∈ ℝ*)
306 xmettri 24255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐶 ∈ (∞Met‘𝑋) ∧ ((1st ‘(𝑔𝑏)) ∈ 𝑋𝑤𝑋𝑥𝑋)) → ((1st ‘(𝑔𝑏))𝐶𝑤) ≤ (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)))
307241, 246, 248, 256, 306syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑤) ≤ (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)))
308307adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑤) ≤ (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)))
309 rexadd 13152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((1st ‘(𝑔𝑏))𝐶𝑥) ∈ ℝ ∧ (𝑥𝐶𝑤) ∈ ℝ) → (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)) = (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)))
310285, 300, 309syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (((1st ‘(𝑔𝑏))𝐶𝑥) +𝑒 (𝑥𝐶𝑤)) = (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)))
311308, 310breqtrd 5121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑤) ≤ (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)))
312255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
313271adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑥) < (2nd ‘(𝑔𝑏)))
314 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)))
315285, 300, 312, 312, 313, 314lt2addd 11761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → (((1st ‘(𝑔𝑏))𝐶𝑥) + (𝑥𝐶𝑤)) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
316251, 302, 305, 311, 315xrlelttrd 13080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏))) → ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
317316ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))))
318252rpred 12955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) ∈ ℝ)
319318, 252ltaddrpd 12988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ 𝑏𝑠) → (2nd ‘(𝑔𝑏)) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
320242, 225, 319syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (2nd ‘(𝑔𝑏)) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
321258, 260, 304, 271, 320xrlttrd 13079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))
322317, 321jctild 525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < (2nd ‘(𝑔𝑏)) → (((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))))
323240, 322syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → (((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))))))
324 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → (𝜑𝑓:𝑋𝑌))
325 heicant.d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝐷 ∈ (∞Met‘𝑌))
326 ffvelcdm 7019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑓:𝑋𝑌𝑥𝑋) → (𝑓𝑥) ∈ 𝑌)
327 ffvelcdm 7019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑓:𝑋𝑌𝑤𝑋) → (𝑓𝑤) ∈ 𝑌)
328326, 327anim12dan 619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:𝑋𝑌 ∧ (𝑥𝑋𝑤𝑋)) → ((𝑓𝑥) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌))
329 xmetcl 24235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓𝑥) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
3303293expb 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐷 ∈ (∞Met‘𝑌) ∧ ((𝑓𝑥) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
331325, 328, 330syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑓:𝑋𝑌 ∧ (𝑥𝑋𝑤𝑋))) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
332331anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑓:𝑋𝑌) ∧ (𝑥𝑋𝑤𝑋)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
333324, 332sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
334333ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓𝑤)) ∈ ℝ*)
335325ad5antr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 𝐷 ∈ (∞Met‘𝑌))
336 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 𝑓:𝑋𝑌)
337336, 274ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌)
338 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) → 𝑓:𝑋𝑌)
339338ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ 𝑌)
340339adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → (𝑓𝑥) ∈ 𝑌)
341340adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑓𝑥) ∈ 𝑌)
342 xmetcl 24235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌 ∧ (𝑓𝑥) ∈ 𝑌) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ*)
343335, 337, 341, 342syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ*)
3449rpxrd 12956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑑 ∈ ℝ+ → (𝑑 / 2) ∈ ℝ*)
345344ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑑 / 2) ∈ ℝ*)
346 xrltle 13069 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ*) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2)))
347343, 345, 346syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2)))
348 xmetge0 24248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌 ∧ (𝑓𝑥) ∈ 𝑌) → 0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
349335, 337, 341, 348syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
3509rpred 12955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑑 ∈ ℝ+ → (𝑑 / 2) ∈ ℝ)
351350ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑑 / 2) ∈ ℝ)
352 xrrege0 13094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ) ∧ (0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ)
353352ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ) → ((0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
354343, 351, 353syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
355349, 354mpand 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ≤ (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
356347, 355syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
357356ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ))
358357imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ)
359338ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ 𝑤𝑋) → (𝑓𝑤) ∈ 𝑌)
360359adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) → (𝑓𝑤) ∈ 𝑌)
361360adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (𝑓𝑤) ∈ 𝑌)
362 xmetcl 24235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ*)
363335, 337, 361, 362syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ*)
364 xrltle 13069 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ*) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2)))
365363, 345, 364syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2)))
366 xmetge0 24248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌) → 0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)))
367335, 337, 361, 366syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → 0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)))
368 xrrege0 13094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ) ∧ (0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ)
369368ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ* ∧ (𝑑 / 2) ∈ ℝ) → ((0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
370363, 351, 369syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((0 ≤ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
371367, 370mpand 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ≤ (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
372365, 371syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
373372ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ))
374373imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ)
375 readdcl 11111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) ∈ ℝ)
376358, 374, 375syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) ∈ ℝ)
377376anandis 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) ∈ ℝ)
378377rexrd 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) ∈ ℝ*)
379 rpxr 12921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑑 ∈ ℝ+𝑑 ∈ ℝ*)
380379ad6antlr 737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → 𝑑 ∈ ℝ*)
381 xmettri 24255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐷 ∈ (∞Met‘𝑌) ∧ ((𝑓𝑥) ∈ 𝑌 ∧ (𝑓𝑤) ∈ 𝑌 ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
382335, 341, 361, 337, 381syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
383382ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
384383adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
385 xmetsym 24251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝑓𝑥) ∈ 𝑌 ∧ (𝑓‘(1st ‘(𝑔𝑏))) ∈ 𝑌) → ((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
386335, 341, 337, 385syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
387386ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
388387adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) = ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)))
389388oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
390 rexadd 13152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
391358, 374, 390syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2)) ∧ (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
392391anandis 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
393389, 392eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓𝑥)𝐷(𝑓‘(1st ‘(𝑔𝑏)))) +𝑒 ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) = (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
394384, 393breqtrd 5121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓𝑤)) ≤ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))))
395 lt2add 11623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) ∧ ((𝑑 / 2) ∈ ℝ ∧ (𝑑 / 2) ∈ ℝ)) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2))))
396395expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑑 / 2) ∈ ℝ ∧ (𝑑 / 2) ∈ ℝ) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2)))))
397351, 351, 396syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) ∈ ℝ ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) ∈ ℝ) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2)))))
398356, 372, 397syl2and 608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2)))))
399398pm2.43d 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏𝑠) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2))))
400399ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2))))
401400imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < ((𝑑 / 2) + (𝑑 / 2)))
402 rpcn 12922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑑 ∈ ℝ+𝑑 ∈ ℂ)
4034022halvesd 12388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑑 ∈ ℝ+ → ((𝑑 / 2) + (𝑑 / 2)) = 𝑑)
404403ad6antlr 737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑑 / 2) + (𝑑 / 2)) = 𝑑)
405401, 404breqtrd 5121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) + ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤))) < 𝑑)
406334, 378, 380, 394, 405xrlelttrd 13080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) ∧ (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)
407406ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → ((((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2)) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
408323, 407imim12d 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
409196, 408sylanl1 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ 𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏)))) ∧ (𝑏𝑠𝑥𝑏)) → (((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
410409adantlrr 721 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑏𝑠𝑥𝑏)) → (((((1st ‘(𝑔𝑏))𝐶𝑥) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) ∧ ((1st ‘(𝑔𝑏))𝐶𝑤) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏)))) → (((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑥)) < (𝑑 / 2) ∧ ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑤)) < (𝑑 / 2))) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
411193, 410mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑏𝑠𝑥𝑏)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
412411exp32 420 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
413174, 412sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ (∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))) ∧ 𝑏𝑠)) → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
414413expr 456 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → (𝑏𝑠 → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))))
415414pm2.43d 53 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ (𝑥𝑋𝑤𝑋)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
416415an32s 652 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋)) → (𝑏𝑠 → (𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
417172, 173, 416rexlimd 3236 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋)) → (∃𝑏𝑠 𝑥𝑏 → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
418167, 417mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) ∧ (𝑥𝑋𝑤𝑋)) → ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
419418ralrimivva 3172 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
420 breq2 5099 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = inf(ran ran 𝑔, ℝ, < ) → ((𝑥𝐶𝑤) < 𝑧 ↔ (𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < )))
421420imbi1d 341 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = inf(ran ran 𝑔, ℝ, < ) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
4224212ralbidv 3193 . . . . . . . . . . . . . . . . . . 19 (𝑧 = inf(ran ran 𝑔, ℝ, < ) → (∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
423422rspcev 3579 . . . . . . . . . . . . . . . . . 18 ((inf(ran ran 𝑔, ℝ, < ) ∈ ℝ+ ∧ ∀𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < inf(ran ran 𝑔, ℝ, < ) → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
424158, 419, 423syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) ∧ 𝑔:𝑠⟶(𝑋 × ℝ+)) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))
425424expl 457 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → ((𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
426425exlimdv 1933 . . . . . . . . . . . . . . 15 (((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) ∧ (MetOpen‘𝐶) = 𝑠) → (∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2)))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
427426expimpd 453 . . . . . . . . . . . . . 14 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ Fin) → (( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
428102, 427sylan2 593 . . . . . . . . . . . . 13 ((((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)) → (( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
429428rexlimdva 3130 . . . . . . . . . . . 12 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∃𝑠 ∈ (𝒫 (MetOpen‘𝐶) ∩ Fin)( (MetOpen‘𝐶) = 𝑠 ∧ ∃𝑔(𝑔:𝑠⟶(𝑋 × ℝ+) ∧ ∀𝑏𝑠 (𝑏 = ((1st ‘(𝑔𝑏))(ball‘𝐶)(2nd ‘(𝑔𝑏))) ∧ ∀𝑐𝑋 (((1st ‘(𝑔𝑏))𝐶𝑐) < ((2nd ‘(𝑔𝑏)) + (2nd ‘(𝑔𝑏))) → ((𝑓‘(1st ‘(𝑔𝑏)))𝐷(𝑓𝑐)) < (𝑑 / 2))))) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
430101, 429syld 47 . . . . . . . . . . 11 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∀𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < (𝑑 / 2)) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
43115, 430syl5 34 . . . . . . . . . 10 (((𝜑𝑓:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (((𝑑 / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
432431exp4b 430 . . . . . . . . 9 ((𝜑𝑓:𝑋𝑌) → (𝑑 ∈ ℝ+ → ((𝑑 / 2) ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))))
4339, 432mpdi 45 . . . . . . . 8 ((𝜑𝑓:𝑋𝑌) → (𝑑 ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
434433ralrimiv 3120 . . . . . . 7 ((𝜑𝑓:𝑋𝑌) → ∀𝑑 ∈ ℝ+ (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
435 r19.21v 3154 . . . . . . 7 (∀𝑑 ∈ ℝ+ (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∃𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)) ↔ (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
436434, 435sylib 218 . . . . . 6 ((𝜑𝑓:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) → ∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)))
4378, 436impbid2 226 . . . . 5 ((𝜑𝑓:𝑋𝑌) → (∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
438 ralcom 3257 . . . . 5 (∀𝑦 ∈ ℝ+𝑥𝑋𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))
439437, 438bitrdi 287 . . . 4 ((𝜑𝑓:𝑋𝑌) → (∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑) ↔ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)))
440439pm5.32da 579 . . 3 (𝜑 → ((𝑓:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑)) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
441 eqid 2729 . . . 4 (metUnif‘𝐶) = (metUnif‘𝐶)
442 eqid 2729 . . . 4 (metUnif‘𝐷) = (metUnif‘𝐷)
443 heicant.y . . . 4 (𝜑𝑌 ≠ ∅)
444 xmetpsmet 24252 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → 𝐶 ∈ (PsMet‘𝑋))
44518, 444syl 17 . . . 4 (𝜑𝐶 ∈ (PsMet‘𝑋))
446 xmetpsmet 24252 . . . . 5 (𝐷 ∈ (∞Met‘𝑌) → 𝐷 ∈ (PsMet‘𝑌))
447325, 446syl 17 . . . 4 (𝜑𝐷 ∈ (PsMet‘𝑌))
448441, 442, 128, 443, 445, 447metucn 24475 . . 3 (𝜑 → (𝑓 ∈ ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑧 ∈ ℝ+𝑥𝑋𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑑))))
449 eqid 2729 . . . . 5 (MetOpen‘𝐷) = (MetOpen‘𝐷)
45023, 449metcn 24447 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝑓 ∈ ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
45118, 325, 450syl2anc 584 . . 3 (𝜑 → (𝑓 ∈ ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
452440, 448, 4513bitr4d 311 . 2 (𝜑 → (𝑓 ∈ ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) ↔ 𝑓 ∈ ((MetOpen‘𝐶) Cn (MetOpen‘𝐷))))
453452eqrdv 2727 1 (𝜑 → ((metUnif‘𝐶) Cnu(metUnif‘𝐷)) = ((MetOpen‘𝐶) Cn (MetOpen‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  cop 4585   cuni 4861   class class class wbr 5095   Or wor 5530   × cxp 5621  dom cdm 5623  ran crn 5624  Rel wrel 5628  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  cen 8876  Fincfn 8879  infcinf 9350  cr 11027  0cc0 11028   + caddc 11031  *cxr 11167   < clt 11168  cle 11169   / cdiv 11795  2c2 12201  +crp 12911   +𝑒 cxad 13030  PsMetcpsmet 21263  ∞Metcxmet 21264  ballcbl 21266  MetOpencmopn 21269  metUnifcmetu 21270   Cn ccn 23127  Compccmp 23289   Cnucucn 24178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ico 13272  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-metu 21278  df-top 22797  df-topon 22814  df-bases 22849  df-cn 23130  df-cnp 23131  df-cmp 23290  df-fil 23749  df-ust 24104  df-ucn 24179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator