MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1rlimmul Structured version   Visualization version   GIF version

Theorem o1rlimmul 14634
Description: The product of an eventually bounded function and a function of limit zero has limit zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
o1rlimmul ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹𝑓 · 𝐺) ⇝𝑟 0)

Proof of Theorem o1rlimmul
Dummy variables 𝑥 𝑦 𝑧 𝑎 𝑏 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1f 14545 . . . . 5 (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)
21adantr 472 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐹:dom 𝐹⟶ℂ)
32ffnd 6224 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐹 Fn dom 𝐹)
4 rlimf 14517 . . . . 5 (𝐺𝑟 0 → 𝐺:dom 𝐺⟶ℂ)
54adantl 473 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺:dom 𝐺⟶ℂ)
65ffnd 6224 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺 Fn dom 𝐺)
7 o1dm 14546 . . . . 5 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
87adantr 472 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐹 ⊆ ℝ)
9 reex 10280 . . . 4 ℝ ∈ V
10 ssexg 4965 . . . 4 ((dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐹 ∈ V)
118, 9, 10sylancl 580 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐹 ∈ V)
12 rlimss 14518 . . . . 5 (𝐺𝑟 0 → dom 𝐺 ⊆ ℝ)
1312adantl 473 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐺 ⊆ ℝ)
14 ssexg 4965 . . . 4 ((dom 𝐺 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐺 ∈ V)
1513, 9, 14sylancl 580 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐺 ∈ V)
16 eqid 2765 . . 3 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
17 eqidd 2766 . . 3 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
18 eqidd 2766 . . 3 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐺𝑥))
193, 6, 11, 15, 16, 17, 18offval 7102 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹𝑓 · 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))))
20 o1bdd 14547 . . . . . . 7 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:dom 𝐹⟶ℂ) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
211, 20mpdan 678 . . . . . 6 (𝐹 ∈ 𝑂(1) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
2221ad2antrr 717 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
23 fvexd 6390 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ V)
2423ralrimiva 3113 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ∀𝑥 ∈ dom 𝐺(𝐺𝑥) ∈ V)
25 simplr 785 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑦 ∈ ℝ+)
26 recn 10279 . . . . . . . . . . . 12 (𝑚 ∈ ℝ → 𝑚 ∈ ℂ)
2726ad2antll 720 . . . . . . . . . . 11 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ∈ ℂ)
2827abscld 14460 . . . . . . . . . 10 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (abs‘𝑚) ∈ ℝ)
2927absge0d 14468 . . . . . . . . . 10 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 0 ≤ (abs‘𝑚))
3028, 29ge0p1rpd 12100 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝑚) + 1) ∈ ℝ+)
3125, 30rpdivcld 12087 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ+)
325feqmptd 6438 . . . . . . . . . 10 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)))
33 simpr 477 . . . . . . . . . 10 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺𝑟 0)
3432, 33eqbrtrrd 4833 . . . . . . . . 9 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ⇝𝑟 0)
3534ad2antrr 717 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ⇝𝑟 0)
3624, 31, 35rlimi 14529 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))))
37 inss1 3992 . . . . . . . . . . . . . 14 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
38 ssralv 3826 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
3937, 38ax-mp 5 . . . . . . . . . . . . 13 (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
40 inss2 3993 . . . . . . . . . . . . . 14 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
41 ssralv 3826 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4240, 41ax-mp 5 . . . . . . . . . . . . 13 (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))))
4339, 42anim12i 606 . . . . . . . . . . . 12 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
44 r19.26 3211 . . . . . . . . . . . 12 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) ↔ (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4543, 44sylibr 225 . . . . . . . . . . 11 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
46 prth 843 . . . . . . . . . . . 12 (((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4746ralimi 3099 . . . . . . . . . . 11 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4845, 47syl 17 . . . . . . . . . 10 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
49 simplrl 795 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑎 ∈ ℝ)
50 simprl 787 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑏 ∈ ℝ)
5137, 8syl5ss 3772 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
5251ad3antrrr 721 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
53 simprr 789 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))
5452, 53sseldd 3762 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ ℝ)
55 maxle 12224 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 ↔ (𝑎𝑥𝑏𝑥)))
5649, 50, 54, 55syl3anc 1490 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 ↔ (𝑎𝑥𝑏𝑥)))
5756biimpd 220 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (𝑎𝑥𝑏𝑥)))
585ad3antrrr 721 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝐺:dom 𝐺⟶ℂ)
5940sseli 3757 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺)
6059ad2antll 720 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ dom 𝐺)
6158, 60ffvelrnd 6550 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝐺𝑥) ∈ ℂ)
6261subid1d 10635 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝐺𝑥) − 0) = (𝐺𝑥))
6362fveq2d 6379 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐺𝑥) − 0)) = (abs‘(𝐺𝑥)))
6463breq1d 4819 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)) ↔ (abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1))))
6561abscld 14460 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘(𝐺𝑥)) ∈ ℝ)
6631adantr 472 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ+)
6766rpred 12070 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ)
68 ltle 10380 . . . . . . . . . . . . . . . . . 18 (((abs‘(𝐺𝑥)) ∈ ℝ ∧ (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ) → ((abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
6965, 67, 68syl2anc 579 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
7064, 69sylbid 231 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
7170anim2d 605 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1)))))
722ad3antrrr 721 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝐹:dom 𝐹⟶ℂ)
7337sseli 3757 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹)
7473ad2antll 720 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ dom 𝐹)
7572, 74ffvelrnd 6550 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝐹𝑥) ∈ ℂ)
7675abscld 14460 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘(𝐹𝑥)) ∈ ℝ)
7775absge0d 14468 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 0 ≤ (abs‘(𝐹𝑥)))
7876, 77jca 507 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐹𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑥))))
79 simplrr 796 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ∈ ℝ)
8061absge0d 14468 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 0 ≤ (abs‘(𝐺𝑥)))
8165, 80jca 507 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐺𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑥))))
82 lemul12a 11135 . . . . . . . . . . . . . . . 16 (((((abs‘(𝐹𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑥))) ∧ 𝑚 ∈ ℝ) ∧ (((abs‘(𝐺𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑥))) ∧ (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ)) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8378, 79, 81, 67, 82syl22anc 867 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8475, 61absmuld 14478 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) = ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))))
8584breq1d 4819 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ↔ ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8679recnd 10322 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ∈ ℂ)
8725adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℝ+)
8887rpcnd 12072 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℂ)
8930adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℝ+)
9089rpcnd 12072 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℂ)
9189rpne0d 12075 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ≠ 0)
9286, 88, 90, 91divassd 11090 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) = (𝑚 · (𝑦 / ((abs‘𝑚) + 1))))
93 peano2re 10463 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘𝑚) ∈ ℝ → ((abs‘𝑚) + 1) ∈ ℝ)
9428, 93syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝑚) + 1) ∈ ℝ)
9594adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℝ)
9628adantr 472 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘𝑚) ∈ ℝ)
9779leabsd 14438 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ≤ (abs‘𝑚))
9896ltp1d 11208 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘𝑚) < ((abs‘𝑚) + 1))
9979, 96, 95, 97, 98lelttrd 10449 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 < ((abs‘𝑚) + 1))
10079, 95, 87, 99ltmul1dd 12125 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · 𝑦) < (((abs‘𝑚) + 1) · 𝑦))
10187rpred 12070 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℝ)
10279, 101remulcld 10324 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · 𝑦) ∈ ℝ)
103102, 101, 89ltdivmuld 12121 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) < 𝑦 ↔ (𝑚 · 𝑦) < (((abs‘𝑚) + 1) · 𝑦)))
104100, 103mpbird 248 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) < 𝑦)
10592, 104eqbrtrrd 4833 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦)
10675, 61mulcld 10314 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
107106abscld 14460 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) ∈ ℝ)
10879, 67remulcld 10324 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∈ ℝ)
109 lelttr 10382 . . . . . . . . . . . . . . . . . 18 (((abs‘((𝐹𝑥) · (𝐺𝑥))) ∈ ℝ ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
110107, 108, 101, 109syl3anc 1490 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
111105, 110mpan2d 685 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11285, 111sylbird 251 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11371, 83, 1123syld 60 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11457, 113imim12d 81 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
115114anassrs 459 . . . . . . . . . . . 12 ((((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
116115ralimdva 3109 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
117 simpr 477 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
118 simplrl 795 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → 𝑎 ∈ ℝ)
119117, 118ifcld 4288 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
120116, 119jctild 521 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
121 breq1 4812 . . . . . . . . . . 11 (𝑧 = if(𝑎𝑏, 𝑏, 𝑎) → (𝑧𝑥 ↔ if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥))
122121rspceaimv 3469 . . . . . . . . . 10 ((if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
12348, 120, 122syl56 36 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
124123expcomd 406 . . . . . . . 8 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
125124rexlimdva 3178 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
12636, 125mpd 15 . . . . . 6 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
127126rexlimdvva 3185 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → (∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
12822, 127mpd 15 . . . 4 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
129128ralrimiva 3113 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
130 ffvelrn 6547 . . . . . . 7 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ℂ)
1312, 73, 130syl2an 589 . . . . . 6 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑥) ∈ ℂ)
132 ffvelrn 6547 . . . . . . 7 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℂ)
1335, 59, 132syl2an 589 . . . . . 6 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑥) ∈ ℂ)
134131, 133mulcld 10314 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
135134ralrimiva 3113 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
136135, 51rlim0 14524 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
137129, 136mpbird 248 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ⇝𝑟 0)
13819, 137eqbrtrd 4831 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹𝑓 · 𝐺) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wcel 2155  wral 3055  wrex 3056  Vcvv 3350  cin 3731  wss 3732  ifcif 4243   class class class wbr 4809  cmpt 4888  dom cdm 5277  wf 6064  cfv 6068  (class class class)co 6842  𝑓 cof 7093  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329  cmin 10520   / cdiv 10938  +crp 12028  abscabs 14259  𝑟 crli 14501  𝑂(1)co1 14502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-ico 12383  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-rlim 14505  df-o1 14506
This theorem is referenced by:  chtppilimlem2  25454  chpchtlim  25459
  Copyright terms: Public domain W3C validator