MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1rlimmul Structured version   Visualization version   GIF version

Theorem o1rlimmul 15592
Description: The product of an eventually bounded function and a function of limit zero has limit zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
o1rlimmul ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹f · 𝐺) ⇝𝑟 0)

Proof of Theorem o1rlimmul
Dummy variables 𝑥 𝑦 𝑧 𝑎 𝑏 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1f 15502 . . . . 5 (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)
21adantr 480 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐹:dom 𝐹⟶ℂ)
32ffnd 6692 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐹 Fn dom 𝐹)
4 rlimf 15474 . . . . 5 (𝐺𝑟 0 → 𝐺:dom 𝐺⟶ℂ)
54adantl 481 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺:dom 𝐺⟶ℂ)
65ffnd 6692 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺 Fn dom 𝐺)
7 o1dm 15503 . . . . 5 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
87adantr 480 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐹 ⊆ ℝ)
9 reex 11166 . . . 4 ℝ ∈ V
10 ssexg 5281 . . . 4 ((dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐹 ∈ V)
118, 9, 10sylancl 586 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐹 ∈ V)
12 rlimss 15475 . . . . 5 (𝐺𝑟 0 → dom 𝐺 ⊆ ℝ)
1312adantl 481 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐺 ⊆ ℝ)
14 ssexg 5281 . . . 4 ((dom 𝐺 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐺 ∈ V)
1513, 9, 14sylancl 586 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐺 ∈ V)
16 eqid 2730 . . 3 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
17 eqidd 2731 . . 3 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
18 eqidd 2731 . . 3 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐺𝑥))
193, 6, 11, 15, 16, 17, 18offval 7665 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹f · 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))))
20 o1bdd 15504 . . . . . . 7 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:dom 𝐹⟶ℂ) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
211, 20mpdan 687 . . . . . 6 (𝐹 ∈ 𝑂(1) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
2221ad2antrr 726 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
23 fvexd 6876 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ V)
2423ralrimiva 3126 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ∀𝑥 ∈ dom 𝐺(𝐺𝑥) ∈ V)
25 simplr 768 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑦 ∈ ℝ+)
26 recn 11165 . . . . . . . . . . . 12 (𝑚 ∈ ℝ → 𝑚 ∈ ℂ)
2726ad2antll 729 . . . . . . . . . . 11 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ∈ ℂ)
2827abscld 15412 . . . . . . . . . 10 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (abs‘𝑚) ∈ ℝ)
2927absge0d 15420 . . . . . . . . . 10 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 0 ≤ (abs‘𝑚))
3028, 29ge0p1rpd 13032 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝑚) + 1) ∈ ℝ+)
3125, 30rpdivcld 13019 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ+)
325feqmptd 6932 . . . . . . . . . 10 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)))
33 simpr 484 . . . . . . . . . 10 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺𝑟 0)
3432, 33eqbrtrrd 5134 . . . . . . . . 9 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ⇝𝑟 0)
3534ad2antrr 726 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ⇝𝑟 0)
3624, 31, 35rlimi 15486 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))))
37 inss1 4203 . . . . . . . . . . . . . 14 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
38 ssralv 4018 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
3937, 38ax-mp 5 . . . . . . . . . . . . 13 (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
40 inss2 4204 . . . . . . . . . . . . . 14 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
41 ssralv 4018 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4240, 41ax-mp 5 . . . . . . . . . . . . 13 (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))))
4339, 42anim12i 613 . . . . . . . . . . . 12 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
44 r19.26 3092 . . . . . . . . . . . 12 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) ↔ (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4543, 44sylibr 234 . . . . . . . . . . 11 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
46 anim12 808 . . . . . . . . . . . 12 (((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4746ralimi 3067 . . . . . . . . . . 11 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4845, 47syl 17 . . . . . . . . . 10 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
49 simplrl 776 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑎 ∈ ℝ)
50 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑏 ∈ ℝ)
5137, 8sstrid 3961 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
5251ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
53 simprr 772 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))
5452, 53sseldd 3950 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ ℝ)
55 maxle 13158 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 ↔ (𝑎𝑥𝑏𝑥)))
5649, 50, 54, 55syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 ↔ (𝑎𝑥𝑏𝑥)))
5756biimpd 229 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (𝑎𝑥𝑏𝑥)))
585ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝐺:dom 𝐺⟶ℂ)
5940sseli 3945 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺)
6059ad2antll 729 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ dom 𝐺)
6158, 60ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝐺𝑥) ∈ ℂ)
6261subid1d 11529 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝐺𝑥) − 0) = (𝐺𝑥))
6362fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐺𝑥) − 0)) = (abs‘(𝐺𝑥)))
6463breq1d 5120 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)) ↔ (abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1))))
6561abscld 15412 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘(𝐺𝑥)) ∈ ℝ)
6631adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ+)
6766rpred 13002 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ)
68 ltle 11269 . . . . . . . . . . . . . . . . . 18 (((abs‘(𝐺𝑥)) ∈ ℝ ∧ (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ) → ((abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
6965, 67, 68syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
7064, 69sylbid 240 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
7170anim2d 612 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1)))))
722ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝐹:dom 𝐹⟶ℂ)
7337sseli 3945 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹)
7473ad2antll 729 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ dom 𝐹)
7572, 74ffvelcdmd 7060 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝐹𝑥) ∈ ℂ)
7675abscld 15412 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘(𝐹𝑥)) ∈ ℝ)
7775absge0d 15420 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 0 ≤ (abs‘(𝐹𝑥)))
7876, 77jca 511 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐹𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑥))))
79 simplrr 777 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ∈ ℝ)
8061absge0d 15420 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 0 ≤ (abs‘(𝐺𝑥)))
8165, 80jca 511 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐺𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑥))))
82 lemul12a 12047 . . . . . . . . . . . . . . . 16 (((((abs‘(𝐹𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑥))) ∧ 𝑚 ∈ ℝ) ∧ (((abs‘(𝐺𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑥))) ∧ (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ)) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8378, 79, 81, 67, 82syl22anc 838 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8475, 61absmuld 15430 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) = ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))))
8584breq1d 5120 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ↔ ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8679recnd 11209 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ∈ ℂ)
8725adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℝ+)
8887rpcnd 13004 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℂ)
8930adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℝ+)
9089rpcnd 13004 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℂ)
9189rpne0d 13007 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ≠ 0)
9286, 88, 90, 91divassd 12000 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) = (𝑚 · (𝑦 / ((abs‘𝑚) + 1))))
93 peano2re 11354 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘𝑚) ∈ ℝ → ((abs‘𝑚) + 1) ∈ ℝ)
9428, 93syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝑚) + 1) ∈ ℝ)
9594adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℝ)
9628adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘𝑚) ∈ ℝ)
9779leabsd 15388 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ≤ (abs‘𝑚))
9896ltp1d 12120 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘𝑚) < ((abs‘𝑚) + 1))
9979, 96, 95, 97, 98lelttrd 11339 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 < ((abs‘𝑚) + 1))
10079, 95, 87, 99ltmul1dd 13057 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · 𝑦) < (((abs‘𝑚) + 1) · 𝑦))
10187rpred 13002 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℝ)
10279, 101remulcld 11211 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · 𝑦) ∈ ℝ)
103102, 101, 89ltdivmuld 13053 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) < 𝑦 ↔ (𝑚 · 𝑦) < (((abs‘𝑚) + 1) · 𝑦)))
104100, 103mpbird 257 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) < 𝑦)
10592, 104eqbrtrrd 5134 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦)
10675, 61mulcld 11201 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
107106abscld 15412 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) ∈ ℝ)
10879, 67remulcld 11211 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∈ ℝ)
109 lelttr 11271 . . . . . . . . . . . . . . . . . 18 (((abs‘((𝐹𝑥) · (𝐺𝑥))) ∈ ℝ ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
110107, 108, 101, 109syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
111105, 110mpan2d 694 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11285, 111sylbird 260 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11371, 83, 1123syld 60 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11457, 113imim12d 81 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
115114anassrs 467 . . . . . . . . . . . 12 ((((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
116115ralimdva 3146 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
117 simpr 484 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
118 simplrl 776 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → 𝑎 ∈ ℝ)
119117, 118ifcld 4538 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
120116, 119jctild 525 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
121 breq1 5113 . . . . . . . . . . 11 (𝑧 = if(𝑎𝑏, 𝑏, 𝑎) → (𝑧𝑥 ↔ if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥))
122121rspceaimv 3597 . . . . . . . . . 10 ((if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
12348, 120, 122syl56 36 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
124123expcomd 416 . . . . . . . 8 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
125124rexlimdva 3135 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
12636, 125mpd 15 . . . . . 6 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
127126rexlimdvva 3195 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → (∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
12822, 127mpd 15 . . . 4 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
129128ralrimiva 3126 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
130 ffvelcdm 7056 . . . . . . 7 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ℂ)
1312, 73, 130syl2an 596 . . . . . 6 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑥) ∈ ℂ)
132 ffvelcdm 7056 . . . . . . 7 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℂ)
1335, 59, 132syl2an 596 . . . . . 6 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑥) ∈ ℂ)
134131, 133mulcld 11201 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
135134ralrimiva 3126 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
136135, 51rlim0 15481 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
137129, 136mpbird 257 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ⇝𝑟 0)
13819, 137eqbrtrd 5132 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹f · 𝐺) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  +crp 12958  abscabs 15207  𝑟 crli 15458  𝑂(1)co1 15459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-rlim 15462  df-o1 15463
This theorem is referenced by:  chtppilimlem2  27392  chpchtlim  27397
  Copyright terms: Public domain W3C validator