MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1rlimmul Structured version   Visualization version   GIF version

Theorem o1rlimmul 15655
Description: The product of an eventually bounded function and a function of limit zero has limit zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
o1rlimmul ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹f · 𝐺) ⇝𝑟 0)

Proof of Theorem o1rlimmul
Dummy variables 𝑥 𝑦 𝑧 𝑎 𝑏 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1f 15565 . . . . 5 (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)
21adantr 480 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐹:dom 𝐹⟶ℂ)
32ffnd 6737 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐹 Fn dom 𝐹)
4 rlimf 15537 . . . . 5 (𝐺𝑟 0 → 𝐺:dom 𝐺⟶ℂ)
54adantl 481 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺:dom 𝐺⟶ℂ)
65ffnd 6737 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺 Fn dom 𝐺)
7 o1dm 15566 . . . . 5 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
87adantr 480 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐹 ⊆ ℝ)
9 reex 11246 . . . 4 ℝ ∈ V
10 ssexg 5323 . . . 4 ((dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐹 ∈ V)
118, 9, 10sylancl 586 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐹 ∈ V)
12 rlimss 15538 . . . . 5 (𝐺𝑟 0 → dom 𝐺 ⊆ ℝ)
1312adantl 481 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐺 ⊆ ℝ)
14 ssexg 5323 . . . 4 ((dom 𝐺 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐺 ∈ V)
1513, 9, 14sylancl 586 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐺 ∈ V)
16 eqid 2737 . . 3 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
17 eqidd 2738 . . 3 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
18 eqidd 2738 . . 3 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐺𝑥))
193, 6, 11, 15, 16, 17, 18offval 7706 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹f · 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))))
20 o1bdd 15567 . . . . . . 7 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:dom 𝐹⟶ℂ) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
211, 20mpdan 687 . . . . . 6 (𝐹 ∈ 𝑂(1) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
2221ad2antrr 726 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
23 fvexd 6921 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ V)
2423ralrimiva 3146 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ∀𝑥 ∈ dom 𝐺(𝐺𝑥) ∈ V)
25 simplr 769 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑦 ∈ ℝ+)
26 recn 11245 . . . . . . . . . . . 12 (𝑚 ∈ ℝ → 𝑚 ∈ ℂ)
2726ad2antll 729 . . . . . . . . . . 11 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ∈ ℂ)
2827abscld 15475 . . . . . . . . . 10 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (abs‘𝑚) ∈ ℝ)
2927absge0d 15483 . . . . . . . . . 10 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 0 ≤ (abs‘𝑚))
3028, 29ge0p1rpd 13107 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝑚) + 1) ∈ ℝ+)
3125, 30rpdivcld 13094 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ+)
325feqmptd 6977 . . . . . . . . . 10 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)))
33 simpr 484 . . . . . . . . . 10 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺𝑟 0)
3432, 33eqbrtrrd 5167 . . . . . . . . 9 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ⇝𝑟 0)
3534ad2antrr 726 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ⇝𝑟 0)
3624, 31, 35rlimi 15549 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))))
37 inss1 4237 . . . . . . . . . . . . . 14 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
38 ssralv 4052 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
3937, 38ax-mp 5 . . . . . . . . . . . . 13 (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
40 inss2 4238 . . . . . . . . . . . . . 14 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
41 ssralv 4052 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4240, 41ax-mp 5 . . . . . . . . . . . . 13 (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))))
4339, 42anim12i 613 . . . . . . . . . . . 12 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
44 r19.26 3111 . . . . . . . . . . . 12 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) ↔ (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4543, 44sylibr 234 . . . . . . . . . . 11 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
46 anim12 809 . . . . . . . . . . . 12 (((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4746ralimi 3083 . . . . . . . . . . 11 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4845, 47syl 17 . . . . . . . . . 10 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
49 simplrl 777 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑎 ∈ ℝ)
50 simprl 771 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑏 ∈ ℝ)
5137, 8sstrid 3995 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
5251ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
53 simprr 773 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))
5452, 53sseldd 3984 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ ℝ)
55 maxle 13233 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 ↔ (𝑎𝑥𝑏𝑥)))
5649, 50, 54, 55syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 ↔ (𝑎𝑥𝑏𝑥)))
5756biimpd 229 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (𝑎𝑥𝑏𝑥)))
585ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝐺:dom 𝐺⟶ℂ)
5940sseli 3979 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺)
6059ad2antll 729 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ dom 𝐺)
6158, 60ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝐺𝑥) ∈ ℂ)
6261subid1d 11609 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝐺𝑥) − 0) = (𝐺𝑥))
6362fveq2d 6910 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐺𝑥) − 0)) = (abs‘(𝐺𝑥)))
6463breq1d 5153 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)) ↔ (abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1))))
6561abscld 15475 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘(𝐺𝑥)) ∈ ℝ)
6631adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ+)
6766rpred 13077 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ)
68 ltle 11349 . . . . . . . . . . . . . . . . . 18 (((abs‘(𝐺𝑥)) ∈ ℝ ∧ (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ) → ((abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
6965, 67, 68syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
7064, 69sylbid 240 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
7170anim2d 612 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1)))))
722ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝐹:dom 𝐹⟶ℂ)
7337sseli 3979 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹)
7473ad2antll 729 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ dom 𝐹)
7572, 74ffvelcdmd 7105 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝐹𝑥) ∈ ℂ)
7675abscld 15475 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘(𝐹𝑥)) ∈ ℝ)
7775absge0d 15483 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 0 ≤ (abs‘(𝐹𝑥)))
7876, 77jca 511 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐹𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑥))))
79 simplrr 778 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ∈ ℝ)
8061absge0d 15483 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 0 ≤ (abs‘(𝐺𝑥)))
8165, 80jca 511 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐺𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑥))))
82 lemul12a 12125 . . . . . . . . . . . . . . . 16 (((((abs‘(𝐹𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑥))) ∧ 𝑚 ∈ ℝ) ∧ (((abs‘(𝐺𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑥))) ∧ (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ)) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8378, 79, 81, 67, 82syl22anc 839 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8475, 61absmuld 15493 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) = ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))))
8584breq1d 5153 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ↔ ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8679recnd 11289 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ∈ ℂ)
8725adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℝ+)
8887rpcnd 13079 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℂ)
8930adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℝ+)
9089rpcnd 13079 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℂ)
9189rpne0d 13082 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ≠ 0)
9286, 88, 90, 91divassd 12078 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) = (𝑚 · (𝑦 / ((abs‘𝑚) + 1))))
93 peano2re 11434 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘𝑚) ∈ ℝ → ((abs‘𝑚) + 1) ∈ ℝ)
9428, 93syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝑚) + 1) ∈ ℝ)
9594adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℝ)
9628adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘𝑚) ∈ ℝ)
9779leabsd 15453 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ≤ (abs‘𝑚))
9896ltp1d 12198 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘𝑚) < ((abs‘𝑚) + 1))
9979, 96, 95, 97, 98lelttrd 11419 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 < ((abs‘𝑚) + 1))
10079, 95, 87, 99ltmul1dd 13132 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · 𝑦) < (((abs‘𝑚) + 1) · 𝑦))
10187rpred 13077 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℝ)
10279, 101remulcld 11291 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · 𝑦) ∈ ℝ)
103102, 101, 89ltdivmuld 13128 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) < 𝑦 ↔ (𝑚 · 𝑦) < (((abs‘𝑚) + 1) · 𝑦)))
104100, 103mpbird 257 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) < 𝑦)
10592, 104eqbrtrrd 5167 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦)
10675, 61mulcld 11281 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
107106abscld 15475 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) ∈ ℝ)
10879, 67remulcld 11291 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∈ ℝ)
109 lelttr 11351 . . . . . . . . . . . . . . . . . 18 (((abs‘((𝐹𝑥) · (𝐺𝑥))) ∈ ℝ ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
110107, 108, 101, 109syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
111105, 110mpan2d 694 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11285, 111sylbird 260 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11371, 83, 1123syld 60 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11457, 113imim12d 81 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
115114anassrs 467 . . . . . . . . . . . 12 ((((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
116115ralimdva 3167 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
117 simpr 484 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
118 simplrl 777 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → 𝑎 ∈ ℝ)
119117, 118ifcld 4572 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
120116, 119jctild 525 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
121 breq1 5146 . . . . . . . . . . 11 (𝑧 = if(𝑎𝑏, 𝑏, 𝑎) → (𝑧𝑥 ↔ if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥))
122121rspceaimv 3628 . . . . . . . . . 10 ((if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
12348, 120, 122syl56 36 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
124123expcomd 416 . . . . . . . 8 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
125124rexlimdva 3155 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
12636, 125mpd 15 . . . . . 6 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
127126rexlimdvva 3213 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → (∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
12822, 127mpd 15 . . . 4 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
129128ralrimiva 3146 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
130 ffvelcdm 7101 . . . . . . 7 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ℂ)
1312, 73, 130syl2an 596 . . . . . 6 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑥) ∈ ℂ)
132 ffvelcdm 7101 . . . . . . 7 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℂ)
1335, 59, 132syl2an 596 . . . . . 6 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑥) ∈ ℂ)
134131, 133mulcld 11281 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
135134ralrimiva 3146 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
136135, 51rlim0 15544 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
137129, 136mpbird 257 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ⇝𝑟 0)
13819, 137eqbrtrd 5165 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹f · 𝐺) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  cin 3950  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  +crp 13034  abscabs 15273  𝑟 crli 15521  𝑂(1)co1 15522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-rlim 15525  df-o1 15526
This theorem is referenced by:  chtppilimlem2  27518  chpchtlim  27523
  Copyright terms: Public domain W3C validator