MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem6 Structured version   Visualization version   GIF version

Theorem 2sqlem6 26007
Description: Lemma for 2sq 26014. If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem6.1 (𝜑𝐴 ∈ ℕ)
2sqlem6.2 (𝜑𝐵 ∈ ℕ)
2sqlem6.3 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))
2sqlem6.4 (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)
Assertion
Ref Expression
2sqlem6 (𝜑𝐴𝑆)
Distinct variable groups:   𝑤,𝑝   𝜑,𝑝   𝐵,𝑝   𝑆,𝑝
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤,𝑝)   𝐵(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem6
Dummy variables 𝑛 𝑥 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem6.1 . 2 (𝜑𝐴 ∈ ℕ)
2 2sqlem6.2 . . 3 (𝜑𝐵 ∈ ℕ)
3 2sqlem6.3 . . 3 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))
4 breq2 5034 . . . . . . 7 (𝑥 = 1 → (𝑝𝑥𝑝 ∥ 1))
54imbi1d 345 . . . . . 6 (𝑥 = 1 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝 ∥ 1 → 𝑝𝑆)))
65ralbidv 3162 . . . . 5 (𝑥 = 1 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆)))
7 oveq2 7143 . . . . . . . 8 (𝑥 = 1 → (𝑚 · 𝑥) = (𝑚 · 1))
87eleq1d 2874 . . . . . . 7 (𝑥 = 1 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 1) ∈ 𝑆))
98imbi1d 345 . . . . . 6 (𝑥 = 1 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)))
109ralbidv 3162 . . . . 5 (𝑥 = 1 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)))
116, 10imbi12d 348 . . . 4 (𝑥 = 1 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆))))
12 breq2 5034 . . . . . . 7 (𝑥 = 𝑦 → (𝑝𝑥𝑝𝑦))
1312imbi1d 345 . . . . . 6 (𝑥 = 𝑦 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝑦𝑝𝑆)))
1413ralbidv 3162 . . . . 5 (𝑥 = 𝑦 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆)))
15 oveq2 7143 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚 · 𝑥) = (𝑚 · 𝑦))
1615eleq1d 2874 . . . . . . 7 (𝑥 = 𝑦 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝑦) ∈ 𝑆))
1716imbi1d 345 . . . . . 6 (𝑥 = 𝑦 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)))
1817ralbidv 3162 . . . . 5 (𝑥 = 𝑦 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)))
1914, 18imbi12d 348 . . . 4 (𝑥 = 𝑦 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆))))
20 breq2 5034 . . . . . . 7 (𝑥 = 𝑧 → (𝑝𝑥𝑝𝑧))
2120imbi1d 345 . . . . . 6 (𝑥 = 𝑧 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝑧𝑝𝑆)))
2221ralbidv 3162 . . . . 5 (𝑥 = 𝑧 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
23 oveq2 7143 . . . . . . . 8 (𝑥 = 𝑧 → (𝑚 · 𝑥) = (𝑚 · 𝑧))
2423eleq1d 2874 . . . . . . 7 (𝑥 = 𝑧 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝑧) ∈ 𝑆))
2524imbi1d 345 . . . . . 6 (𝑥 = 𝑧 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)))
2625ralbidv 3162 . . . . 5 (𝑥 = 𝑧 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)))
2722, 26imbi12d 348 . . . 4 (𝑥 = 𝑧 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))))
28 breq2 5034 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑝𝑥𝑝 ∥ (𝑦 · 𝑧)))
2928imbi1d 345 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → ((𝑝𝑥𝑝𝑆) ↔ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)))
3029ralbidv 3162 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)))
31 oveq2 7143 . . . . . . . 8 (𝑥 = (𝑦 · 𝑧) → (𝑚 · 𝑥) = (𝑚 · (𝑦 · 𝑧)))
3231eleq1d 2874 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · (𝑦 · 𝑧)) ∈ 𝑆))
3332imbi1d 345 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
3433ralbidv 3162 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
3530, 34imbi12d 348 . . . 4 (𝑥 = (𝑦 · 𝑧) → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
36 breq2 5034 . . . . . . 7 (𝑥 = 𝐵 → (𝑝𝑥𝑝𝐵))
3736imbi1d 345 . . . . . 6 (𝑥 = 𝐵 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝐵𝑝𝑆)))
3837ralbidv 3162 . . . . 5 (𝑥 = 𝐵 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆)))
39 oveq2 7143 . . . . . . . 8 (𝑥 = 𝐵 → (𝑚 · 𝑥) = (𝑚 · 𝐵))
4039eleq1d 2874 . . . . . . 7 (𝑥 = 𝐵 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝐵) ∈ 𝑆))
4140imbi1d 345 . . . . . 6 (𝑥 = 𝐵 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
4241ralbidv 3162 . . . . 5 (𝑥 = 𝐵 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
4338, 42imbi12d 348 . . . 4 (𝑥 = 𝐵 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆))))
44 nncn 11633 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4544mulid1d 10647 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑚 · 1) = 𝑚)
4645eleq1d 2874 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
4746biimpd 232 . . . . . 6 (𝑚 ∈ ℕ → ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
4847rgen 3116 . . . . 5 𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)
4948a1i 11 . . . 4 (∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
50 breq1 5033 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑥𝑥𝑥))
51 eleq1 2877 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑆𝑥𝑆))
5250, 51imbi12d 348 . . . . . 6 (𝑝 = 𝑥 → ((𝑝𝑥𝑝𝑆) ↔ (𝑥𝑥𝑥𝑆)))
5352rspcv 3566 . . . . 5 (𝑥 ∈ ℙ → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → (𝑥𝑥𝑥𝑆)))
54 prmz 16009 . . . . . . 7 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
55 iddvds 15615 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥𝑥)
5654, 55syl 17 . . . . . 6 (𝑥 ∈ ℙ → 𝑥𝑥)
57 2sq.1 . . . . . . . . . 10 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
58 simprl 770 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑚 ∈ ℕ)
59 simpll 766 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑥 ∈ ℙ)
60 simprr 772 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → (𝑚 · 𝑥) ∈ 𝑆)
61 simplr 768 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑥𝑆)
6257, 58, 59, 60, 612sqlem5 26006 . . . . . . . . 9 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑚𝑆)
6362expr 460 . . . . . . . 8 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆))
6463ralrimiva 3149 . . . . . . 7 ((𝑥 ∈ ℙ ∧ 𝑥𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆))
6564ex 416 . . . . . 6 (𝑥 ∈ ℙ → (𝑥𝑆 → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
6656, 65embantd 59 . . . . 5 (𝑥 ∈ ℙ → ((𝑥𝑥𝑥𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
6753, 66syld 47 . . . 4 (𝑥 ∈ ℙ → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
68 anim12 808 . . . . 5 (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) ∧ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))))
69 simpr 488 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
70 eluzelz 12241 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
7170ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℤ)
72 eluzelz 12241 . . . . . . . . . . . . . . 15 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
7372ad2antlr 726 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑧 ∈ ℤ)
74 euclemma 16047 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑝 ∥ (𝑦 · 𝑧) ↔ (𝑝𝑦𝑝𝑧)))
7569, 71, 73, 74syl3anc 1368 . . . . . . . . . . . . 13 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑦 · 𝑧) ↔ (𝑝𝑦𝑝𝑧)))
7675imbi1d 345 . . . . . . . . . . . 12 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑧) → 𝑝𝑆)))
77 jaob 959 . . . . . . . . . . . 12 (((𝑝𝑦𝑝𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆)))
7876, 77syl6bb 290 . . . . . . . . . . 11 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆))))
7978ralbidva 3161 . . . . . . . . . 10 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ∀𝑝 ∈ ℙ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆))))
80 r19.26 3137 . . . . . . . . . 10 (∀𝑝 ∈ ℙ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
8179, 80syl6bb 290 . . . . . . . . 9 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆))))
8281biimpa 480 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
83 oveq1 7142 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 · 𝑦) = (𝑛 · 𝑦))
8483eleq1d 2874 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 · 𝑦) ∈ 𝑆 ↔ (𝑛 · 𝑦) ∈ 𝑆))
85 eleq1 2877 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚𝑆𝑛𝑆))
8684, 85imbi12d 348 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ↔ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)))
8786cbvralvw 3396 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ↔ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆))
8844adantl 485 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
89 uzssz 12252 . . . . . . . . . . . . . . . . 17 (ℤ‘2) ⊆ ℤ
90 zsscn 11977 . . . . . . . . . . . . . . . . 17 ℤ ⊆ ℂ
9189, 90sstri 3924 . . . . . . . . . . . . . . . 16 (ℤ‘2) ⊆ ℂ
92 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → 𝑦 ∈ (ℤ‘2))
9392ad2antrr 725 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ (ℤ‘2))
9491, 93sseldi 3913 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ ℂ)
95 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → 𝑧 ∈ (ℤ‘2))
9695ad2antrr 725 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ (ℤ‘2))
9791, 96sseldi 3913 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℂ)
98 mul32 10795 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑦) · 𝑧) = ((𝑚 · 𝑧) · 𝑦))
99 mulass 10614 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑦) · 𝑧) = (𝑚 · (𝑦 · 𝑧)))
10098, 99eqtr3d 2835 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑧) · 𝑦) = (𝑚 · (𝑦 · 𝑧)))
10188, 94, 97, 100syl3anc 1368 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑧) · 𝑦) = (𝑚 · (𝑦 · 𝑧)))
102101eleq1d 2874 . . . . . . . . . . . . 13 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 ↔ (𝑚 · (𝑦 · 𝑧)) ∈ 𝑆))
103 simpr 488 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
104 eluz2nn 12272 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ)
10596, 104syl 17 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℕ)
106103, 105nnmulcld 11678 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑧) ∈ ℕ)
107 simplr 768 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆))
108 oveq1 7142 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑚 · 𝑧) → (𝑛 · 𝑦) = ((𝑚 · 𝑧) · 𝑦))
109108eleq1d 2874 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚 · 𝑧) → ((𝑛 · 𝑦) ∈ 𝑆 ↔ ((𝑚 · 𝑧) · 𝑦) ∈ 𝑆))
110 eleq1 2877 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚 · 𝑧) → (𝑛𝑆 ↔ (𝑚 · 𝑧) ∈ 𝑆))
111109, 110imbi12d 348 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚 · 𝑧) → (((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆) ↔ (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆)))
112111rspcv 3566 . . . . . . . . . . . . . 14 ((𝑚 · 𝑧) ∈ ℕ → (∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆)))
113106, 107, 112sylc 65 . . . . . . . . . . . . 13 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆))
114102, 113sylbird 263 . . . . . . . . . . . 12 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆))
115114imim1d 82 . . . . . . . . . . 11 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
116115ralimdva 3144 . . . . . . . . . 10 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
11787, 116sylan2b 596 . . . . . . . . 9 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
118117expimpd 457 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → ((∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
11982, 118embantd 59 . . . . . . 7 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
120119ex 416 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
121120com23 86 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
12268, 121syl5 34 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) ∧ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
12311, 19, 27, 35, 43, 49, 67, 122prmind 16020 . . 3 (𝐵 ∈ ℕ → (∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
1242, 3, 123sylc 65 . 2 (𝜑 → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆))
125 2sqlem6.4 . 2 (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)
126 oveq1 7142 . . . . 5 (𝑚 = 𝐴 → (𝑚 · 𝐵) = (𝐴 · 𝐵))
127126eleq1d 2874 . . . 4 (𝑚 = 𝐴 → ((𝑚 · 𝐵) ∈ 𝑆 ↔ (𝐴 · 𝐵) ∈ 𝑆))
128 eleq1 2877 . . . 4 (𝑚 = 𝐴 → (𝑚𝑆𝐴𝑆))
129127, 128imbi12d 348 . . 3 (𝑚 = 𝐴 → (((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆) ↔ ((𝐴 · 𝐵) ∈ 𝑆𝐴𝑆)))
130129rspcv 3566 . 2 (𝐴 ∈ ℕ → (∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆) → ((𝐴 · 𝐵) ∈ 𝑆𝐴𝑆)))
1311, 124, 125, 130syl3c 66 1 (𝜑𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wral 3106   class class class wbr 5030  cmpt 5110  ran crn 5520  cfv 6324  (class class class)co 7135  cc 10524  1c1 10527   · cmul 10531  cn 11625  2c2 11680  cz 11969  cuz 12231  cexp 13425  abscabs 14585  cdvds 15599  cprime 16005  ℤ[i]cgz 16255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-gz 16256
This theorem is referenced by:  2sqlem8  26010
  Copyright terms: Public domain W3C validator