MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem6 Structured version   Visualization version   GIF version

Theorem 2sqlem6 26005
Description: Lemma for 2sq 26012. If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem6.1 (𝜑𝐴 ∈ ℕ)
2sqlem6.2 (𝜑𝐵 ∈ ℕ)
2sqlem6.3 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))
2sqlem6.4 (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)
Assertion
Ref Expression
2sqlem6 (𝜑𝐴𝑆)
Distinct variable groups:   𝑤,𝑝   𝜑,𝑝   𝐵,𝑝   𝑆,𝑝
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤,𝑝)   𝐵(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem6
Dummy variables 𝑛 𝑥 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem6.1 . 2 (𝜑𝐴 ∈ ℕ)
2 2sqlem6.2 . . 3 (𝜑𝐵 ∈ ℕ)
3 2sqlem6.3 . . 3 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))
4 breq2 5057 . . . . . . 7 (𝑥 = 1 → (𝑝𝑥𝑝 ∥ 1))
54imbi1d 345 . . . . . 6 (𝑥 = 1 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝 ∥ 1 → 𝑝𝑆)))
65ralbidv 3192 . . . . 5 (𝑥 = 1 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆)))
7 oveq2 7154 . . . . . . . 8 (𝑥 = 1 → (𝑚 · 𝑥) = (𝑚 · 1))
87eleq1d 2900 . . . . . . 7 (𝑥 = 1 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 1) ∈ 𝑆))
98imbi1d 345 . . . . . 6 (𝑥 = 1 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)))
109ralbidv 3192 . . . . 5 (𝑥 = 1 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)))
116, 10imbi12d 348 . . . 4 (𝑥 = 1 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆))))
12 breq2 5057 . . . . . . 7 (𝑥 = 𝑦 → (𝑝𝑥𝑝𝑦))
1312imbi1d 345 . . . . . 6 (𝑥 = 𝑦 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝑦𝑝𝑆)))
1413ralbidv 3192 . . . . 5 (𝑥 = 𝑦 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆)))
15 oveq2 7154 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚 · 𝑥) = (𝑚 · 𝑦))
1615eleq1d 2900 . . . . . . 7 (𝑥 = 𝑦 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝑦) ∈ 𝑆))
1716imbi1d 345 . . . . . 6 (𝑥 = 𝑦 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)))
1817ralbidv 3192 . . . . 5 (𝑥 = 𝑦 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)))
1914, 18imbi12d 348 . . . 4 (𝑥 = 𝑦 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆))))
20 breq2 5057 . . . . . . 7 (𝑥 = 𝑧 → (𝑝𝑥𝑝𝑧))
2120imbi1d 345 . . . . . 6 (𝑥 = 𝑧 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝑧𝑝𝑆)))
2221ralbidv 3192 . . . . 5 (𝑥 = 𝑧 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
23 oveq2 7154 . . . . . . . 8 (𝑥 = 𝑧 → (𝑚 · 𝑥) = (𝑚 · 𝑧))
2423eleq1d 2900 . . . . . . 7 (𝑥 = 𝑧 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝑧) ∈ 𝑆))
2524imbi1d 345 . . . . . 6 (𝑥 = 𝑧 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)))
2625ralbidv 3192 . . . . 5 (𝑥 = 𝑧 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)))
2722, 26imbi12d 348 . . . 4 (𝑥 = 𝑧 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))))
28 breq2 5057 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑝𝑥𝑝 ∥ (𝑦 · 𝑧)))
2928imbi1d 345 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → ((𝑝𝑥𝑝𝑆) ↔ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)))
3029ralbidv 3192 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)))
31 oveq2 7154 . . . . . . . 8 (𝑥 = (𝑦 · 𝑧) → (𝑚 · 𝑥) = (𝑚 · (𝑦 · 𝑧)))
3231eleq1d 2900 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · (𝑦 · 𝑧)) ∈ 𝑆))
3332imbi1d 345 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
3433ralbidv 3192 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
3530, 34imbi12d 348 . . . 4 (𝑥 = (𝑦 · 𝑧) → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
36 breq2 5057 . . . . . . 7 (𝑥 = 𝐵 → (𝑝𝑥𝑝𝐵))
3736imbi1d 345 . . . . . 6 (𝑥 = 𝐵 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝐵𝑝𝑆)))
3837ralbidv 3192 . . . . 5 (𝑥 = 𝐵 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆)))
39 oveq2 7154 . . . . . . . 8 (𝑥 = 𝐵 → (𝑚 · 𝑥) = (𝑚 · 𝐵))
4039eleq1d 2900 . . . . . . 7 (𝑥 = 𝐵 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝐵) ∈ 𝑆))
4140imbi1d 345 . . . . . 6 (𝑥 = 𝐵 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
4241ralbidv 3192 . . . . 5 (𝑥 = 𝐵 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
4338, 42imbi12d 348 . . . 4 (𝑥 = 𝐵 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆))))
44 nncn 11640 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4544mulid1d 10652 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑚 · 1) = 𝑚)
4645eleq1d 2900 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
4746biimpd 232 . . . . . 6 (𝑚 ∈ ℕ → ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
4847rgen 3143 . . . . 5 𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)
4948a1i 11 . . . 4 (∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
50 breq1 5056 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑥𝑥𝑥))
51 eleq1 2903 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑆𝑥𝑆))
5250, 51imbi12d 348 . . . . . 6 (𝑝 = 𝑥 → ((𝑝𝑥𝑝𝑆) ↔ (𝑥𝑥𝑥𝑆)))
5352rspcv 3604 . . . . 5 (𝑥 ∈ ℙ → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → (𝑥𝑥𝑥𝑆)))
54 prmz 16015 . . . . . . 7 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
55 iddvds 15621 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥𝑥)
5654, 55syl 17 . . . . . 6 (𝑥 ∈ ℙ → 𝑥𝑥)
57 2sq.1 . . . . . . . . . 10 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
58 simprl 770 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑚 ∈ ℕ)
59 simpll 766 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑥 ∈ ℙ)
60 simprr 772 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → (𝑚 · 𝑥) ∈ 𝑆)
61 simplr 768 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑥𝑆)
6257, 58, 59, 60, 612sqlem5 26004 . . . . . . . . 9 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑚𝑆)
6362expr 460 . . . . . . . 8 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆))
6463ralrimiva 3177 . . . . . . 7 ((𝑥 ∈ ℙ ∧ 𝑥𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆))
6564ex 416 . . . . . 6 (𝑥 ∈ ℙ → (𝑥𝑆 → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
6656, 65embantd 59 . . . . 5 (𝑥 ∈ ℙ → ((𝑥𝑥𝑥𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
6753, 66syld 47 . . . 4 (𝑥 ∈ ℙ → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
68 anim12 808 . . . . 5 (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) ∧ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))))
69 simpr 488 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
70 eluzelz 12248 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
7170ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℤ)
72 eluzelz 12248 . . . . . . . . . . . . . . 15 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
7372ad2antlr 726 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑧 ∈ ℤ)
74 euclemma 16053 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑝 ∥ (𝑦 · 𝑧) ↔ (𝑝𝑦𝑝𝑧)))
7569, 71, 73, 74syl3anc 1368 . . . . . . . . . . . . 13 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑦 · 𝑧) ↔ (𝑝𝑦𝑝𝑧)))
7675imbi1d 345 . . . . . . . . . . . 12 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑧) → 𝑝𝑆)))
77 jaob 959 . . . . . . . . . . . 12 (((𝑝𝑦𝑝𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆)))
7876, 77syl6bb 290 . . . . . . . . . . 11 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆))))
7978ralbidva 3191 . . . . . . . . . 10 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ∀𝑝 ∈ ℙ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆))))
80 r19.26 3165 . . . . . . . . . 10 (∀𝑝 ∈ ℙ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
8179, 80syl6bb 290 . . . . . . . . 9 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆))))
8281biimpa 480 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
83 oveq1 7153 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 · 𝑦) = (𝑛 · 𝑦))
8483eleq1d 2900 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 · 𝑦) ∈ 𝑆 ↔ (𝑛 · 𝑦) ∈ 𝑆))
85 eleq1 2903 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚𝑆𝑛𝑆))
8684, 85imbi12d 348 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ↔ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)))
8786cbvralvw 3435 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ↔ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆))
8844adantl 485 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
89 uzssz 12259 . . . . . . . . . . . . . . . . 17 (ℤ‘2) ⊆ ℤ
90 zsscn 11984 . . . . . . . . . . . . . . . . 17 ℤ ⊆ ℂ
9189, 90sstri 3962 . . . . . . . . . . . . . . . 16 (ℤ‘2) ⊆ ℂ
92 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → 𝑦 ∈ (ℤ‘2))
9392ad2antrr 725 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ (ℤ‘2))
9491, 93sseldi 3951 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ ℂ)
95 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → 𝑧 ∈ (ℤ‘2))
9695ad2antrr 725 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ (ℤ‘2))
9791, 96sseldi 3951 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℂ)
98 mul32 10800 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑦) · 𝑧) = ((𝑚 · 𝑧) · 𝑦))
99 mulass 10619 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑦) · 𝑧) = (𝑚 · (𝑦 · 𝑧)))
10098, 99eqtr3d 2861 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑧) · 𝑦) = (𝑚 · (𝑦 · 𝑧)))
10188, 94, 97, 100syl3anc 1368 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑧) · 𝑦) = (𝑚 · (𝑦 · 𝑧)))
102101eleq1d 2900 . . . . . . . . . . . . 13 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 ↔ (𝑚 · (𝑦 · 𝑧)) ∈ 𝑆))
103 simpr 488 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
104 eluz2nn 12279 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ)
10596, 104syl 17 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℕ)
106103, 105nnmulcld 11685 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑧) ∈ ℕ)
107 simplr 768 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆))
108 oveq1 7153 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑚 · 𝑧) → (𝑛 · 𝑦) = ((𝑚 · 𝑧) · 𝑦))
109108eleq1d 2900 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚 · 𝑧) → ((𝑛 · 𝑦) ∈ 𝑆 ↔ ((𝑚 · 𝑧) · 𝑦) ∈ 𝑆))
110 eleq1 2903 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚 · 𝑧) → (𝑛𝑆 ↔ (𝑚 · 𝑧) ∈ 𝑆))
111109, 110imbi12d 348 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚 · 𝑧) → (((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆) ↔ (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆)))
112111rspcv 3604 . . . . . . . . . . . . . 14 ((𝑚 · 𝑧) ∈ ℕ → (∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆)))
113106, 107, 112sylc 65 . . . . . . . . . . . . 13 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆))
114102, 113sylbird 263 . . . . . . . . . . . 12 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆))
115114imim1d 82 . . . . . . . . . . 11 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
116115ralimdva 3172 . . . . . . . . . 10 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
11787, 116sylan2b 596 . . . . . . . . 9 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
118117expimpd 457 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → ((∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
11982, 118embantd 59 . . . . . . 7 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
120119ex 416 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
121120com23 86 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
12268, 121syl5 34 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) ∧ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
12311, 19, 27, 35, 43, 49, 67, 122prmind 16026 . . 3 (𝐵 ∈ ℕ → (∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
1242, 3, 123sylc 65 . 2 (𝜑 → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆))
125 2sqlem6.4 . 2 (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)
126 oveq1 7153 . . . . 5 (𝑚 = 𝐴 → (𝑚 · 𝐵) = (𝐴 · 𝐵))
127126eleq1d 2900 . . . 4 (𝑚 = 𝐴 → ((𝑚 · 𝐵) ∈ 𝑆 ↔ (𝐴 · 𝐵) ∈ 𝑆))
128 eleq1 2903 . . . 4 (𝑚 = 𝐴 → (𝑚𝑆𝐴𝑆))
129127, 128imbi12d 348 . . 3 (𝑚 = 𝐴 → (((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆) ↔ ((𝐴 · 𝐵) ∈ 𝑆𝐴𝑆)))
130129rspcv 3604 . 2 (𝐴 ∈ ℕ → (∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆) → ((𝐴 · 𝐵) ∈ 𝑆𝐴𝑆)))
1311, 124, 125, 130syl3c 66 1 (𝜑𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  wral 3133   class class class wbr 5053  cmpt 5133  ran crn 5544  cfv 6344  (class class class)co 7146  cc 10529  1c1 10532   · cmul 10536  cn 11632  2c2 11687  cz 11976  cuz 12238  cexp 13432  abscabs 14591  cdvds 15605  cprime 16011  ℤ[i]cgz 16261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8899  df-inf 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-z 11977  df-uz 12239  df-rp 12385  df-fz 12893  df-fl 13164  df-mod 13240  df-seq 13372  df-exp 13433  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593  df-dvds 15606  df-gcd 15840  df-prm 16012  df-gz 16262
This theorem is referenced by:  2sqlem8  26008
  Copyright terms: Public domain W3C validator