MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemaplem2 Structured version   Visualization version   GIF version

Theorem wemaplem2 9306
Description: Lemma for wemapso 9310. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Revised by AV, 21-Jul-2024.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemaplem2.p (𝜑𝑃 ∈ (𝐵m 𝐴))
wemaplem2.x (𝜑𝑋 ∈ (𝐵m 𝐴))
wemaplem2.q (𝜑𝑄 ∈ (𝐵m 𝐴))
wemaplem2.r (𝜑𝑅 Or 𝐴)
wemaplem2.s (𝜑𝑆 Po 𝐵)
wemaplem2.px1 (𝜑𝑎𝐴)
wemaplem2.px2 (𝜑 → (𝑃𝑎)𝑆(𝑋𝑎))
wemaplem2.px3 (𝜑 → ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))
wemaplem2.xq1 (𝜑𝑏𝐴)
wemaplem2.xq2 (𝜑 → (𝑋𝑏)𝑆(𝑄𝑏))
wemaplem2.xq3 (𝜑 → ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))
Assertion
Ref Expression
wemaplem2 (𝜑𝑃𝑇𝑄)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑥,𝐵   𝑇,𝑎,𝑏,𝑐   𝑤,𝑎,𝑦,𝑧,𝑋,𝑏,𝑐,𝑥   𝐴,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧   𝑃,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧   𝑄,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧   𝑅,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑐)   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemaplem2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 wemaplem2.px1 . . . 4 (𝜑𝑎𝐴)
2 wemaplem2.xq1 . . . 4 (𝜑𝑏𝐴)
31, 2ifcld 4505 . . 3 (𝜑 → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝐴)
4 wemaplem2.px2 . . . . . . 7 (𝜑 → (𝑃𝑎)𝑆(𝑋𝑎))
54adantr 481 . . . . . 6 ((𝜑𝑎𝑅𝑏) → (𝑃𝑎)𝑆(𝑋𝑎))
6 breq1 5077 . . . . . . . . 9 (𝑐 = 𝑎 → (𝑐𝑅𝑏𝑎𝑅𝑏))
7 fveq2 6774 . . . . . . . . . 10 (𝑐 = 𝑎 → (𝑋𝑐) = (𝑋𝑎))
8 fveq2 6774 . . . . . . . . . 10 (𝑐 = 𝑎 → (𝑄𝑐) = (𝑄𝑎))
97, 8eqeq12d 2754 . . . . . . . . 9 (𝑐 = 𝑎 → ((𝑋𝑐) = (𝑄𝑐) ↔ (𝑋𝑎) = (𝑄𝑎)))
106, 9imbi12d 345 . . . . . . . 8 (𝑐 = 𝑎 → ((𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)) ↔ (𝑎𝑅𝑏 → (𝑋𝑎) = (𝑄𝑎))))
11 wemaplem2.xq3 . . . . . . . 8 (𝜑 → ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))
1210, 11, 1rspcdva 3562 . . . . . . 7 (𝜑 → (𝑎𝑅𝑏 → (𝑋𝑎) = (𝑄𝑎)))
1312imp 407 . . . . . 6 ((𝜑𝑎𝑅𝑏) → (𝑋𝑎) = (𝑄𝑎))
145, 13breqtrd 5100 . . . . 5 ((𝜑𝑎𝑅𝑏) → (𝑃𝑎)𝑆(𝑄𝑎))
15 iftrue 4465 . . . . . . . 8 (𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑎)
1615fveq2d 6778 . . . . . . 7 (𝑎𝑅𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃𝑎))
1715fveq2d 6778 . . . . . . 7 (𝑎𝑅𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄𝑎))
1816, 17breq12d 5087 . . . . . 6 (𝑎𝑅𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑎)𝑆(𝑄𝑎)))
1918adantl 482 . . . . 5 ((𝜑𝑎𝑅𝑏) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑎)𝑆(𝑄𝑎)))
2014, 19mpbird 256 . . . 4 ((𝜑𝑎𝑅𝑏) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
21 wemaplem2.s . . . . . . 7 (𝜑𝑆 Po 𝐵)
2221adantr 481 . . . . . 6 ((𝜑𝑎 = 𝑏) → 𝑆 Po 𝐵)
23 wemaplem2.p . . . . . . . . . 10 (𝜑𝑃 ∈ (𝐵m 𝐴))
24 elmapi 8637 . . . . . . . . . 10 (𝑃 ∈ (𝐵m 𝐴) → 𝑃:𝐴𝐵)
2523, 24syl 17 . . . . . . . . 9 (𝜑𝑃:𝐴𝐵)
2625, 2ffvelrnd 6962 . . . . . . . 8 (𝜑 → (𝑃𝑏) ∈ 𝐵)
27 wemaplem2.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵m 𝐴))
28 elmapi 8637 . . . . . . . . . 10 (𝑋 ∈ (𝐵m 𝐴) → 𝑋:𝐴𝐵)
2927, 28syl 17 . . . . . . . . 9 (𝜑𝑋:𝐴𝐵)
3029, 2ffvelrnd 6962 . . . . . . . 8 (𝜑 → (𝑋𝑏) ∈ 𝐵)
31 wemaplem2.q . . . . . . . . . 10 (𝜑𝑄 ∈ (𝐵m 𝐴))
32 elmapi 8637 . . . . . . . . . 10 (𝑄 ∈ (𝐵m 𝐴) → 𝑄:𝐴𝐵)
3331, 32syl 17 . . . . . . . . 9 (𝜑𝑄:𝐴𝐵)
3433, 2ffvelrnd 6962 . . . . . . . 8 (𝜑 → (𝑄𝑏) ∈ 𝐵)
3526, 30, 343jca 1127 . . . . . . 7 (𝜑 → ((𝑃𝑏) ∈ 𝐵 ∧ (𝑋𝑏) ∈ 𝐵 ∧ (𝑄𝑏) ∈ 𝐵))
3635adantr 481 . . . . . 6 ((𝜑𝑎 = 𝑏) → ((𝑃𝑏) ∈ 𝐵 ∧ (𝑋𝑏) ∈ 𝐵 ∧ (𝑄𝑏) ∈ 𝐵))
37 fveq2 6774 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑃𝑎) = (𝑃𝑏))
38 fveq2 6774 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
3937, 38breq12d 5087 . . . . . . . 8 (𝑎 = 𝑏 → ((𝑃𝑎)𝑆(𝑋𝑎) ↔ (𝑃𝑏)𝑆(𝑋𝑏)))
404, 39syl5ibcom 244 . . . . . . 7 (𝜑 → (𝑎 = 𝑏 → (𝑃𝑏)𝑆(𝑋𝑏)))
4140imp 407 . . . . . 6 ((𝜑𝑎 = 𝑏) → (𝑃𝑏)𝑆(𝑋𝑏))
42 wemaplem2.xq2 . . . . . . 7 (𝜑 → (𝑋𝑏)𝑆(𝑄𝑏))
4342adantr 481 . . . . . 6 ((𝜑𝑎 = 𝑏) → (𝑋𝑏)𝑆(𝑄𝑏))
44 potr 5516 . . . . . . 7 ((𝑆 Po 𝐵 ∧ ((𝑃𝑏) ∈ 𝐵 ∧ (𝑋𝑏) ∈ 𝐵 ∧ (𝑄𝑏) ∈ 𝐵)) → (((𝑃𝑏)𝑆(𝑋𝑏) ∧ (𝑋𝑏)𝑆(𝑄𝑏)) → (𝑃𝑏)𝑆(𝑄𝑏)))
4544imp 407 . . . . . 6 (((𝑆 Po 𝐵 ∧ ((𝑃𝑏) ∈ 𝐵 ∧ (𝑋𝑏) ∈ 𝐵 ∧ (𝑄𝑏) ∈ 𝐵)) ∧ ((𝑃𝑏)𝑆(𝑋𝑏) ∧ (𝑋𝑏)𝑆(𝑄𝑏))) → (𝑃𝑏)𝑆(𝑄𝑏))
4622, 36, 41, 43, 45syl22anc 836 . . . . 5 ((𝜑𝑎 = 𝑏) → (𝑃𝑏)𝑆(𝑄𝑏))
47 ifeq1 4463 . . . . . . . . 9 (𝑎 = 𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = if(𝑎𝑅𝑏, 𝑏, 𝑏))
48 ifid 4499 . . . . . . . . 9 if(𝑎𝑅𝑏, 𝑏, 𝑏) = 𝑏
4947, 48eqtrdi 2794 . . . . . . . 8 (𝑎 = 𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)
5049fveq2d 6778 . . . . . . 7 (𝑎 = 𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃𝑏))
5149fveq2d 6778 . . . . . . 7 (𝑎 = 𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄𝑏))
5250, 51breq12d 5087 . . . . . 6 (𝑎 = 𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑏)𝑆(𝑄𝑏)))
5352adantl 482 . . . . 5 ((𝜑𝑎 = 𝑏) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑏)𝑆(𝑄𝑏)))
5446, 53mpbird 256 . . . 4 ((𝜑𝑎 = 𝑏) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
55 breq1 5077 . . . . . . . . 9 (𝑐 = 𝑏 → (𝑐𝑅𝑎𝑏𝑅𝑎))
56 fveq2 6774 . . . . . . . . . 10 (𝑐 = 𝑏 → (𝑃𝑐) = (𝑃𝑏))
57 fveq2 6774 . . . . . . . . . 10 (𝑐 = 𝑏 → (𝑋𝑐) = (𝑋𝑏))
5856, 57eqeq12d 2754 . . . . . . . . 9 (𝑐 = 𝑏 → ((𝑃𝑐) = (𝑋𝑐) ↔ (𝑃𝑏) = (𝑋𝑏)))
5955, 58imbi12d 345 . . . . . . . 8 (𝑐 = 𝑏 → ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ↔ (𝑏𝑅𝑎 → (𝑃𝑏) = (𝑋𝑏))))
60 wemaplem2.px3 . . . . . . . 8 (𝜑 → ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))
6159, 60, 2rspcdva 3562 . . . . . . 7 (𝜑 → (𝑏𝑅𝑎 → (𝑃𝑏) = (𝑋𝑏)))
6261imp 407 . . . . . 6 ((𝜑𝑏𝑅𝑎) → (𝑃𝑏) = (𝑋𝑏))
6342adantr 481 . . . . . 6 ((𝜑𝑏𝑅𝑎) → (𝑋𝑏)𝑆(𝑄𝑏))
6462, 63eqbrtrd 5096 . . . . 5 ((𝜑𝑏𝑅𝑎) → (𝑃𝑏)𝑆(𝑄𝑏))
65 wemaplem2.r . . . . . . . . 9 (𝜑𝑅 Or 𝐴)
66 sopo 5522 . . . . . . . . 9 (𝑅 Or 𝐴𝑅 Po 𝐴)
6765, 66syl 17 . . . . . . . 8 (𝜑𝑅 Po 𝐴)
68 po2nr 5517 . . . . . . . 8 ((𝑅 Po 𝐴 ∧ (𝑏𝐴𝑎𝐴)) → ¬ (𝑏𝑅𝑎𝑎𝑅𝑏))
6967, 2, 1, 68syl12anc 834 . . . . . . 7 (𝜑 → ¬ (𝑏𝑅𝑎𝑎𝑅𝑏))
70 nan 827 . . . . . . 7 ((𝜑 → ¬ (𝑏𝑅𝑎𝑎𝑅𝑏)) ↔ ((𝜑𝑏𝑅𝑎) → ¬ 𝑎𝑅𝑏))
7169, 70mpbi 229 . . . . . 6 ((𝜑𝑏𝑅𝑎) → ¬ 𝑎𝑅𝑏)
72 iffalse 4468 . . . . . . . 8 𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)
7372fveq2d 6778 . . . . . . 7 𝑎𝑅𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃𝑏))
7472fveq2d 6778 . . . . . . 7 𝑎𝑅𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄𝑏))
7573, 74breq12d 5087 . . . . . 6 𝑎𝑅𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑏)𝑆(𝑄𝑏)))
7671, 75syl 17 . . . . 5 ((𝜑𝑏𝑅𝑎) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑏)𝑆(𝑄𝑏)))
7764, 76mpbird 256 . . . 4 ((𝜑𝑏𝑅𝑎) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
78 solin 5528 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
7965, 1, 2, 78syl12anc 834 . . . 4 (𝜑 → (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
8020, 54, 77, 79mpjao3dan 1430 . . 3 (𝜑 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
81 r19.26 3095 . . . . 5 (∀𝑐𝐴 ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) ↔ (∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))
8260, 11, 81sylanbrc 583 . . . 4 (𝜑 → ∀𝑐𝐴 ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))
8365, 1, 23jca 1127 . . . . 5 (𝜑 → (𝑅 Or 𝐴𝑎𝐴𝑏𝐴))
84 anim12 806 . . . . . . 7 (((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → ((𝑐𝑅𝑎𝑐𝑅𝑏) → ((𝑃𝑐) = (𝑋𝑐) ∧ (𝑋𝑐) = (𝑄𝑐))))
85 eqtr 2761 . . . . . . 7 (((𝑃𝑐) = (𝑋𝑐) ∧ (𝑋𝑐) = (𝑄𝑐)) → (𝑃𝑐) = (𝑄𝑐))
8684, 85syl6 35 . . . . . 6 (((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → ((𝑐𝑅𝑎𝑐𝑅𝑏) → (𝑃𝑐) = (𝑄𝑐)))
8786ralimi 3087 . . . . 5 (∀𝑐𝐴 ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → ∀𝑐𝐴 ((𝑐𝑅𝑎𝑐𝑅𝑏) → (𝑃𝑐) = (𝑄𝑐)))
88 simpl1 1190 . . . . . . . . 9 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → 𝑅 Or 𝐴)
89 simpr 485 . . . . . . . . 9 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → 𝑐𝐴)
90 simpl2 1191 . . . . . . . . 9 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → 𝑎𝐴)
91 simpl3 1192 . . . . . . . . 9 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → 𝑏𝐴)
92 soltmin 6041 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑐𝐴𝑎𝐴𝑏𝐴)) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) ↔ (𝑐𝑅𝑎𝑐𝑅𝑏)))
9388, 89, 90, 91, 92syl13anc 1371 . . . . . . . 8 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) ↔ (𝑐𝑅𝑎𝑐𝑅𝑏)))
9493biimpd 228 . . . . . . 7 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑐𝑅𝑎𝑐𝑅𝑏)))
9594imim1d 82 . . . . . 6 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → (((𝑐𝑅𝑎𝑐𝑅𝑏) → (𝑃𝑐) = (𝑄𝑐)) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
9695ralimdva 3108 . . . . 5 ((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) → (∀𝑐𝐴 ((𝑐𝑅𝑎𝑐𝑅𝑏) → (𝑃𝑐) = (𝑄𝑐)) → ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
9783, 87, 96syl2im 40 . . . 4 (𝜑 → (∀𝑐𝐴 ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
9882, 97mpd 15 . . 3 (𝜑 → ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐)))
99 fveq2 6774 . . . . . 6 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑑) = (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
100 fveq2 6774 . . . . . 6 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑄𝑑) = (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
10199, 100breq12d 5087 . . . . 5 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → ((𝑃𝑑)𝑆(𝑄𝑑) ↔ (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))))
102 breq2 5078 . . . . . . 7 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑐𝑅𝑑𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏)))
103102imbi1d 342 . . . . . 6 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → ((𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐)) ↔ (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
104103ralbidv 3112 . . . . 5 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐)) ↔ ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
105101, 104anbi12d 631 . . . 4 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐))) ↔ ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ∧ ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐)))))
106105rspcev 3561 . . 3 ((if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝐴 ∧ ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ∧ ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐)))) → ∃𝑑𝐴 ((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐))))
1073, 80, 98, 106syl12anc 834 . 2 (𝜑 → ∃𝑑𝐴 ((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐))))
108 wemapso.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
109108wemaplem1 9305 . . 3 ((𝑃 ∈ (𝐵m 𝐴) ∧ 𝑄 ∈ (𝐵m 𝐴)) → (𝑃𝑇𝑄 ↔ ∃𝑑𝐴 ((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐)))))
11023, 31, 109syl2anc 584 . 2 (𝜑 → (𝑃𝑇𝑄 ↔ ∃𝑑𝐴 ((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐)))))
111107, 110mpbird 256 1 (𝜑𝑃𝑇𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  ifcif 4459   class class class wbr 5074  {copab 5136   Po wpo 5501   Or wor 5502  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617
This theorem is referenced by:  wemaplem3  9307
  Copyright terms: Public domain W3C validator