MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemaplem2 Structured version   Visualization version   GIF version

Theorem wemaplem2 8609
Description: Lemma for wemapso 8613. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemaplem2.a (𝜑𝐴 ∈ V)
wemaplem2.p (𝜑𝑃 ∈ (𝐵𝑚 𝐴))
wemaplem2.x (𝜑𝑋 ∈ (𝐵𝑚 𝐴))
wemaplem2.q (𝜑𝑄 ∈ (𝐵𝑚 𝐴))
wemaplem2.r (𝜑𝑅 Or 𝐴)
wemaplem2.s (𝜑𝑆 Po 𝐵)
wemaplem2.px1 (𝜑𝑎𝐴)
wemaplem2.px2 (𝜑 → (𝑃𝑎)𝑆(𝑋𝑎))
wemaplem2.px3 (𝜑 → ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))
wemaplem2.xq1 (𝜑𝑏𝐴)
wemaplem2.xq2 (𝜑 → (𝑋𝑏)𝑆(𝑄𝑏))
wemaplem2.xq3 (𝜑 → ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))
Assertion
Ref Expression
wemaplem2 (𝜑𝑃𝑇𝑄)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑥,𝐵   𝑇,𝑎,𝑏,𝑐   𝑤,𝑎,𝑦,𝑧,𝑋,𝑏,𝑐,𝑥   𝐴,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧   𝑃,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧   𝑄,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧   𝑅,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑐,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑎,𝑏,𝑐)   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemaplem2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 wemaplem2.px1 . . . 4 (𝜑𝑎𝐴)
2 wemaplem2.xq1 . . . 4 (𝜑𝑏𝐴)
31, 2ifcld 4271 . . 3 (𝜑 → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝐴)
4 wemaplem2.px2 . . . . . . 7 (𝜑 → (𝑃𝑎)𝑆(𝑋𝑎))
54adantr 466 . . . . . 6 ((𝜑𝑎𝑅𝑏) → (𝑃𝑎)𝑆(𝑋𝑎))
6 breq1 4790 . . . . . . . . 9 (𝑐 = 𝑎 → (𝑐𝑅𝑏𝑎𝑅𝑏))
7 fveq2 6333 . . . . . . . . . 10 (𝑐 = 𝑎 → (𝑋𝑐) = (𝑋𝑎))
8 fveq2 6333 . . . . . . . . . 10 (𝑐 = 𝑎 → (𝑄𝑐) = (𝑄𝑎))
97, 8eqeq12d 2786 . . . . . . . . 9 (𝑐 = 𝑎 → ((𝑋𝑐) = (𝑄𝑐) ↔ (𝑋𝑎) = (𝑄𝑎)))
106, 9imbi12d 333 . . . . . . . 8 (𝑐 = 𝑎 → ((𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)) ↔ (𝑎𝑅𝑏 → (𝑋𝑎) = (𝑄𝑎))))
11 wemaplem2.xq3 . . . . . . . 8 (𝜑 → ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐)))
1210, 11, 1rspcdva 3467 . . . . . . 7 (𝜑 → (𝑎𝑅𝑏 → (𝑋𝑎) = (𝑄𝑎)))
1312imp 393 . . . . . 6 ((𝜑𝑎𝑅𝑏) → (𝑋𝑎) = (𝑄𝑎))
145, 13breqtrd 4813 . . . . 5 ((𝜑𝑎𝑅𝑏) → (𝑃𝑎)𝑆(𝑄𝑎))
15 iftrue 4232 . . . . . . . 8 (𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑎)
1615fveq2d 6337 . . . . . . 7 (𝑎𝑅𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃𝑎))
1715fveq2d 6337 . . . . . . 7 (𝑎𝑅𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄𝑎))
1816, 17breq12d 4800 . . . . . 6 (𝑎𝑅𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑎)𝑆(𝑄𝑎)))
1918adantl 467 . . . . 5 ((𝜑𝑎𝑅𝑏) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑎)𝑆(𝑄𝑎)))
2014, 19mpbird 247 . . . 4 ((𝜑𝑎𝑅𝑏) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
21 wemaplem2.s . . . . . . 7 (𝜑𝑆 Po 𝐵)
2221adantr 466 . . . . . 6 ((𝜑𝑎 = 𝑏) → 𝑆 Po 𝐵)
23 wemaplem2.p . . . . . . . . . 10 (𝜑𝑃 ∈ (𝐵𝑚 𝐴))
24 elmapi 8032 . . . . . . . . . 10 (𝑃 ∈ (𝐵𝑚 𝐴) → 𝑃:𝐴𝐵)
2523, 24syl 17 . . . . . . . . 9 (𝜑𝑃:𝐴𝐵)
2625, 2ffvelrnd 6504 . . . . . . . 8 (𝜑 → (𝑃𝑏) ∈ 𝐵)
27 wemaplem2.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵𝑚 𝐴))
28 elmapi 8032 . . . . . . . . . 10 (𝑋 ∈ (𝐵𝑚 𝐴) → 𝑋:𝐴𝐵)
2927, 28syl 17 . . . . . . . . 9 (𝜑𝑋:𝐴𝐵)
3029, 2ffvelrnd 6504 . . . . . . . 8 (𝜑 → (𝑋𝑏) ∈ 𝐵)
31 wemaplem2.q . . . . . . . . . 10 (𝜑𝑄 ∈ (𝐵𝑚 𝐴))
32 elmapi 8032 . . . . . . . . . 10 (𝑄 ∈ (𝐵𝑚 𝐴) → 𝑄:𝐴𝐵)
3331, 32syl 17 . . . . . . . . 9 (𝜑𝑄:𝐴𝐵)
3433, 2ffvelrnd 6504 . . . . . . . 8 (𝜑 → (𝑄𝑏) ∈ 𝐵)
3526, 30, 343jca 1122 . . . . . . 7 (𝜑 → ((𝑃𝑏) ∈ 𝐵 ∧ (𝑋𝑏) ∈ 𝐵 ∧ (𝑄𝑏) ∈ 𝐵))
3635adantr 466 . . . . . 6 ((𝜑𝑎 = 𝑏) → ((𝑃𝑏) ∈ 𝐵 ∧ (𝑋𝑏) ∈ 𝐵 ∧ (𝑄𝑏) ∈ 𝐵))
37 fveq2 6333 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑃𝑎) = (𝑃𝑏))
38 fveq2 6333 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
3937, 38breq12d 4800 . . . . . . . 8 (𝑎 = 𝑏 → ((𝑃𝑎)𝑆(𝑋𝑎) ↔ (𝑃𝑏)𝑆(𝑋𝑏)))
404, 39syl5ibcom 235 . . . . . . 7 (𝜑 → (𝑎 = 𝑏 → (𝑃𝑏)𝑆(𝑋𝑏)))
4140imp 393 . . . . . 6 ((𝜑𝑎 = 𝑏) → (𝑃𝑏)𝑆(𝑋𝑏))
42 wemaplem2.xq2 . . . . . . 7 (𝜑 → (𝑋𝑏)𝑆(𝑄𝑏))
4342adantr 466 . . . . . 6 ((𝜑𝑎 = 𝑏) → (𝑋𝑏)𝑆(𝑄𝑏))
44 potr 5183 . . . . . . 7 ((𝑆 Po 𝐵 ∧ ((𝑃𝑏) ∈ 𝐵 ∧ (𝑋𝑏) ∈ 𝐵 ∧ (𝑄𝑏) ∈ 𝐵)) → (((𝑃𝑏)𝑆(𝑋𝑏) ∧ (𝑋𝑏)𝑆(𝑄𝑏)) → (𝑃𝑏)𝑆(𝑄𝑏)))
4544imp 393 . . . . . 6 (((𝑆 Po 𝐵 ∧ ((𝑃𝑏) ∈ 𝐵 ∧ (𝑋𝑏) ∈ 𝐵 ∧ (𝑄𝑏) ∈ 𝐵)) ∧ ((𝑃𝑏)𝑆(𝑋𝑏) ∧ (𝑋𝑏)𝑆(𝑄𝑏))) → (𝑃𝑏)𝑆(𝑄𝑏))
4622, 36, 41, 43, 45syl22anc 1477 . . . . 5 ((𝜑𝑎 = 𝑏) → (𝑃𝑏)𝑆(𝑄𝑏))
47 ifeq1 4230 . . . . . . . . 9 (𝑎 = 𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = if(𝑎𝑅𝑏, 𝑏, 𝑏))
48 ifid 4265 . . . . . . . . 9 if(𝑎𝑅𝑏, 𝑏, 𝑏) = 𝑏
4947, 48syl6eq 2821 . . . . . . . 8 (𝑎 = 𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)
5049fveq2d 6337 . . . . . . 7 (𝑎 = 𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃𝑏))
5149fveq2d 6337 . . . . . . 7 (𝑎 = 𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄𝑏))
5250, 51breq12d 4800 . . . . . 6 (𝑎 = 𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑏)𝑆(𝑄𝑏)))
5352adantl 467 . . . . 5 ((𝜑𝑎 = 𝑏) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑏)𝑆(𝑄𝑏)))
5446, 53mpbird 247 . . . 4 ((𝜑𝑎 = 𝑏) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
55 breq1 4790 . . . . . . . . 9 (𝑐 = 𝑏 → (𝑐𝑅𝑎𝑏𝑅𝑎))
56 fveq2 6333 . . . . . . . . . 10 (𝑐 = 𝑏 → (𝑃𝑐) = (𝑃𝑏))
57 fveq2 6333 . . . . . . . . . 10 (𝑐 = 𝑏 → (𝑋𝑐) = (𝑋𝑏))
5856, 57eqeq12d 2786 . . . . . . . . 9 (𝑐 = 𝑏 → ((𝑃𝑐) = (𝑋𝑐) ↔ (𝑃𝑏) = (𝑋𝑏)))
5955, 58imbi12d 333 . . . . . . . 8 (𝑐 = 𝑏 → ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ↔ (𝑏𝑅𝑎 → (𝑃𝑏) = (𝑋𝑏))))
60 wemaplem2.px3 . . . . . . . 8 (𝜑 → ∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)))
6159, 60, 2rspcdva 3467 . . . . . . 7 (𝜑 → (𝑏𝑅𝑎 → (𝑃𝑏) = (𝑋𝑏)))
6261imp 393 . . . . . 6 ((𝜑𝑏𝑅𝑎) → (𝑃𝑏) = (𝑋𝑏))
6342adantr 466 . . . . . 6 ((𝜑𝑏𝑅𝑎) → (𝑋𝑏)𝑆(𝑄𝑏))
6462, 63eqbrtrd 4809 . . . . 5 ((𝜑𝑏𝑅𝑎) → (𝑃𝑏)𝑆(𝑄𝑏))
65 wemaplem2.r . . . . . . . . 9 (𝜑𝑅 Or 𝐴)
66 sopo 5188 . . . . . . . . 9 (𝑅 Or 𝐴𝑅 Po 𝐴)
6765, 66syl 17 . . . . . . . 8 (𝜑𝑅 Po 𝐴)
68 po2nr 5184 . . . . . . . 8 ((𝑅 Po 𝐴 ∧ (𝑏𝐴𝑎𝐴)) → ¬ (𝑏𝑅𝑎𝑎𝑅𝑏))
6967, 2, 1, 68syl12anc 1474 . . . . . . 7 (𝜑 → ¬ (𝑏𝑅𝑎𝑎𝑅𝑏))
70 nan 819 . . . . . . 7 ((𝜑 → ¬ (𝑏𝑅𝑎𝑎𝑅𝑏)) ↔ ((𝜑𝑏𝑅𝑎) → ¬ 𝑎𝑅𝑏))
7169, 70mpbi 220 . . . . . 6 ((𝜑𝑏𝑅𝑎) → ¬ 𝑎𝑅𝑏)
72 iffalse 4235 . . . . . . . 8 𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏)
7372fveq2d 6337 . . . . . . 7 𝑎𝑅𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃𝑏))
7472fveq2d 6337 . . . . . . 7 𝑎𝑅𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄𝑏))
7573, 74breq12d 4800 . . . . . 6 𝑎𝑅𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑏)𝑆(𝑄𝑏)))
7671, 75syl 17 . . . . 5 ((𝜑𝑏𝑅𝑎) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃𝑏)𝑆(𝑄𝑏)))
7764, 76mpbird 247 . . . 4 ((𝜑𝑏𝑅𝑎) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
78 solin 5194 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
7965, 1, 2, 78syl12anc 1474 . . . 4 (𝜑 → (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
8020, 54, 77, 79mpjao3dan 1543 . . 3 (𝜑 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
81 r19.26 3212 . . . . 5 (∀𝑐𝐴 ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) ↔ (∀𝑐𝐴 (𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ ∀𝑐𝐴 (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))
8260, 11, 81sylanbrc 566 . . . 4 (𝜑 → ∀𝑐𝐴 ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))))
8365, 1, 23jca 1122 . . . . 5 (𝜑 → (𝑅 Or 𝐴𝑎𝐴𝑏𝐴))
84 prth 803 . . . . . . 7 (((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → ((𝑐𝑅𝑎𝑐𝑅𝑏) → ((𝑃𝑐) = (𝑋𝑐) ∧ (𝑋𝑐) = (𝑄𝑐))))
85 eqtr 2790 . . . . . . 7 (((𝑃𝑐) = (𝑋𝑐) ∧ (𝑋𝑐) = (𝑄𝑐)) → (𝑃𝑐) = (𝑄𝑐))
8684, 85syl6 35 . . . . . 6 (((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → ((𝑐𝑅𝑎𝑐𝑅𝑏) → (𝑃𝑐) = (𝑄𝑐)))
8786ralimi 3101 . . . . 5 (∀𝑐𝐴 ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → ∀𝑐𝐴 ((𝑐𝑅𝑎𝑐𝑅𝑏) → (𝑃𝑐) = (𝑄𝑐)))
88 simpl1 1227 . . . . . . . . 9 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → 𝑅 Or 𝐴)
89 simpr 471 . . . . . . . . 9 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → 𝑐𝐴)
90 simpl2 1229 . . . . . . . . 9 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → 𝑎𝐴)
91 simpl3 1231 . . . . . . . . 9 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → 𝑏𝐴)
92 soltmin 5674 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑐𝐴𝑎𝐴𝑏𝐴)) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) ↔ (𝑐𝑅𝑎𝑐𝑅𝑏)))
9388, 89, 90, 91, 92syl13anc 1478 . . . . . . . 8 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) ↔ (𝑐𝑅𝑎𝑐𝑅𝑏)))
9493biimpd 219 . . . . . . 7 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑐𝑅𝑎𝑐𝑅𝑏)))
9594imim1d 82 . . . . . 6 (((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) ∧ 𝑐𝐴) → (((𝑐𝑅𝑎𝑐𝑅𝑏) → (𝑃𝑐) = (𝑄𝑐)) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
9695ralimdva 3111 . . . . 5 ((𝑅 Or 𝐴𝑎𝐴𝑏𝐴) → (∀𝑐𝐴 ((𝑐𝑅𝑎𝑐𝑅𝑏) → (𝑃𝑐) = (𝑄𝑐)) → ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
9783, 87, 96syl2im 40 . . . 4 (𝜑 → (∀𝑐𝐴 ((𝑐𝑅𝑎 → (𝑃𝑐) = (𝑋𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋𝑐) = (𝑄𝑐))) → ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
9882, 97mpd 15 . . 3 (𝜑 → ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐)))
99 fveq2 6333 . . . . . 6 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑑) = (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
100 fveq2 6333 . . . . . 6 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑄𝑑) = (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))
10199, 100breq12d 4800 . . . . 5 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → ((𝑃𝑑)𝑆(𝑄𝑑) ↔ (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))))
102 breq2 4791 . . . . . . 7 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑐𝑅𝑑𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏)))
103102imbi1d 330 . . . . . 6 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → ((𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐)) ↔ (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
104103ralbidv 3135 . . . . 5 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐)) ↔ ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐))))
105101, 104anbi12d 610 . . . 4 (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐))) ↔ ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ∧ ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐)))))
106105rspcev 3461 . . 3 ((if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝐴 ∧ ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ∧ ∀𝑐𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃𝑐) = (𝑄𝑐)))) → ∃𝑑𝐴 ((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐))))
1073, 80, 98, 106syl12anc 1474 . 2 (𝜑 → ∃𝑑𝐴 ((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐))))
108 wemapso.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
109108wemaplem1 8608 . . 3 ((𝑃 ∈ (𝐵𝑚 𝐴) ∧ 𝑄 ∈ (𝐵𝑚 𝐴)) → (𝑃𝑇𝑄 ↔ ∃𝑑𝐴 ((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐)))))
11023, 31, 109syl2anc 567 . 2 (𝜑 → (𝑃𝑇𝑄 ↔ ∃𝑑𝐴 ((𝑃𝑑)𝑆(𝑄𝑑) ∧ ∀𝑐𝐴 (𝑐𝑅𝑑 → (𝑃𝑐) = (𝑄𝑐)))))
111107, 110mpbird 247 1 (𝜑𝑃𝑇𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3o 1070  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wrex 3062  Vcvv 3351  ifcif 4226   class class class wbr 4787  {copab 4847   Po wpo 5169   Or wor 5170  wf 6028  cfv 6032  (class class class)co 6794  𝑚 cmap 8010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-fv 6040  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-1st 7316  df-2nd 7317  df-map 8012
This theorem is referenced by:  wemaplem3  8610
  Copyright terms: Public domain W3C validator