Step | Hyp | Ref
| Expression |
1 | | wemaplem2.px1 |
. . . 4
⊢ (𝜑 → 𝑎 ∈ 𝐴) |
2 | | wemaplem2.xq1 |
. . . 4
⊢ (𝜑 → 𝑏 ∈ 𝐴) |
3 | 1, 2 | ifcld 4502 |
. . 3
⊢ (𝜑 → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝐴) |
4 | | wemaplem2.px2 |
. . . . . . 7
⊢ (𝜑 → (𝑃‘𝑎)𝑆(𝑋‘𝑎)) |
5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎𝑅𝑏) → (𝑃‘𝑎)𝑆(𝑋‘𝑎)) |
6 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑐 = 𝑎 → (𝑐𝑅𝑏 ↔ 𝑎𝑅𝑏)) |
7 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑎 → (𝑋‘𝑐) = (𝑋‘𝑎)) |
8 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑎 → (𝑄‘𝑐) = (𝑄‘𝑎)) |
9 | 7, 8 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑐 = 𝑎 → ((𝑋‘𝑐) = (𝑄‘𝑐) ↔ (𝑋‘𝑎) = (𝑄‘𝑎))) |
10 | 6, 9 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑐 = 𝑎 → ((𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐)) ↔ (𝑎𝑅𝑏 → (𝑋‘𝑎) = (𝑄‘𝑎)))) |
11 | | wemaplem2.xq3 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) |
12 | 10, 11, 1 | rspcdva 3554 |
. . . . . . 7
⊢ (𝜑 → (𝑎𝑅𝑏 → (𝑋‘𝑎) = (𝑄‘𝑎))) |
13 | 12 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎𝑅𝑏) → (𝑋‘𝑎) = (𝑄‘𝑎)) |
14 | 5, 13 | breqtrd 5096 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎𝑅𝑏) → (𝑃‘𝑎)𝑆(𝑄‘𝑎)) |
15 | | iftrue 4462 |
. . . . . . . 8
⊢ (𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑎) |
16 | 15 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑎𝑅𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃‘𝑎)) |
17 | 15 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑎𝑅𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄‘𝑎)) |
18 | 16, 17 | breq12d 5083 |
. . . . . 6
⊢ (𝑎𝑅𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃‘𝑎)𝑆(𝑄‘𝑎))) |
19 | 18 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎𝑅𝑏) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃‘𝑎)𝑆(𝑄‘𝑎))) |
20 | 14, 19 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑎𝑅𝑏) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
21 | | wemaplem2.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 Po 𝐵) |
22 | 21 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → 𝑆 Po 𝐵) |
23 | | wemaplem2.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑m 𝐴)) |
24 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (𝐵 ↑m 𝐴) → 𝑃:𝐴⟶𝐵) |
25 | 23, 24 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃:𝐴⟶𝐵) |
26 | 25, 2 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (𝑃‘𝑏) ∈ 𝐵) |
27 | | wemaplem2.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m 𝐴)) |
28 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (𝐵 ↑m 𝐴) → 𝑋:𝐴⟶𝐵) |
29 | 27, 28 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋:𝐴⟶𝐵) |
30 | 29, 2 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (𝑋‘𝑏) ∈ 𝐵) |
31 | | wemaplem2.q |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑m 𝐴)) |
32 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝑄 ∈ (𝐵 ↑m 𝐴) → 𝑄:𝐴⟶𝐵) |
33 | 31, 32 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄:𝐴⟶𝐵) |
34 | 33, 2 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘𝑏) ∈ 𝐵) |
35 | 26, 30, 34 | 3jca 1126 |
. . . . . . 7
⊢ (𝜑 → ((𝑃‘𝑏) ∈ 𝐵 ∧ (𝑋‘𝑏) ∈ 𝐵 ∧ (𝑄‘𝑏) ∈ 𝐵)) |
36 | 35 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → ((𝑃‘𝑏) ∈ 𝐵 ∧ (𝑋‘𝑏) ∈ 𝐵 ∧ (𝑄‘𝑏) ∈ 𝐵)) |
37 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (𝑃‘𝑎) = (𝑃‘𝑏)) |
38 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (𝑋‘𝑎) = (𝑋‘𝑏)) |
39 | 37, 38 | breq12d 5083 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ↔ (𝑃‘𝑏)𝑆(𝑋‘𝑏))) |
40 | 4, 39 | syl5ibcom 244 |
. . . . . . 7
⊢ (𝜑 → (𝑎 = 𝑏 → (𝑃‘𝑏)𝑆(𝑋‘𝑏))) |
41 | 40 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → (𝑃‘𝑏)𝑆(𝑋‘𝑏)) |
42 | | wemaplem2.xq2 |
. . . . . . 7
⊢ (𝜑 → (𝑋‘𝑏)𝑆(𝑄‘𝑏)) |
43 | 42 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → (𝑋‘𝑏)𝑆(𝑄‘𝑏)) |
44 | | potr 5507 |
. . . . . . 7
⊢ ((𝑆 Po 𝐵 ∧ ((𝑃‘𝑏) ∈ 𝐵 ∧ (𝑋‘𝑏) ∈ 𝐵 ∧ (𝑄‘𝑏) ∈ 𝐵)) → (((𝑃‘𝑏)𝑆(𝑋‘𝑏) ∧ (𝑋‘𝑏)𝑆(𝑄‘𝑏)) → (𝑃‘𝑏)𝑆(𝑄‘𝑏))) |
45 | 44 | imp 406 |
. . . . . 6
⊢ (((𝑆 Po 𝐵 ∧ ((𝑃‘𝑏) ∈ 𝐵 ∧ (𝑋‘𝑏) ∈ 𝐵 ∧ (𝑄‘𝑏) ∈ 𝐵)) ∧ ((𝑃‘𝑏)𝑆(𝑋‘𝑏) ∧ (𝑋‘𝑏)𝑆(𝑄‘𝑏))) → (𝑃‘𝑏)𝑆(𝑄‘𝑏)) |
46 | 22, 36, 41, 43, 45 | syl22anc 835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → (𝑃‘𝑏)𝑆(𝑄‘𝑏)) |
47 | | ifeq1 4460 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = if(𝑎𝑅𝑏, 𝑏, 𝑏)) |
48 | | ifid 4496 |
. . . . . . . . 9
⊢ if(𝑎𝑅𝑏, 𝑏, 𝑏) = 𝑏 |
49 | 47, 48 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏) |
50 | 49 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃‘𝑏)) |
51 | 49 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄‘𝑏)) |
52 | 50, 51 | breq12d 5083 |
. . . . . 6
⊢ (𝑎 = 𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃‘𝑏)𝑆(𝑄‘𝑏))) |
53 | 52 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃‘𝑏)𝑆(𝑄‘𝑏))) |
54 | 46, 53 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
55 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → (𝑐𝑅𝑎 ↔ 𝑏𝑅𝑎)) |
56 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → (𝑃‘𝑐) = (𝑃‘𝑏)) |
57 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → (𝑋‘𝑐) = (𝑋‘𝑏)) |
58 | 56, 57 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → ((𝑃‘𝑐) = (𝑋‘𝑐) ↔ (𝑃‘𝑏) = (𝑋‘𝑏))) |
59 | 55, 58 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑐 = 𝑏 → ((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ↔ (𝑏𝑅𝑎 → (𝑃‘𝑏) = (𝑋‘𝑏)))) |
60 | | wemaplem2.px3 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))) |
61 | 59, 60, 2 | rspcdva 3554 |
. . . . . . 7
⊢ (𝜑 → (𝑏𝑅𝑎 → (𝑃‘𝑏) = (𝑋‘𝑏))) |
62 | 61 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏𝑅𝑎) → (𝑃‘𝑏) = (𝑋‘𝑏)) |
63 | 42 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏𝑅𝑎) → (𝑋‘𝑏)𝑆(𝑄‘𝑏)) |
64 | 62, 63 | eqbrtrd 5092 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏𝑅𝑎) → (𝑃‘𝑏)𝑆(𝑄‘𝑏)) |
65 | | wemaplem2.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 Or 𝐴) |
66 | | sopo 5513 |
. . . . . . . . 9
⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
67 | 65, 66 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Po 𝐴) |
68 | | po2nr 5508 |
. . . . . . . 8
⊢ ((𝑅 Po 𝐴 ∧ (𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴)) → ¬ (𝑏𝑅𝑎 ∧ 𝑎𝑅𝑏)) |
69 | 67, 2, 1, 68 | syl12anc 833 |
. . . . . . 7
⊢ (𝜑 → ¬ (𝑏𝑅𝑎 ∧ 𝑎𝑅𝑏)) |
70 | | nan 826 |
. . . . . . 7
⊢ ((𝜑 → ¬ (𝑏𝑅𝑎 ∧ 𝑎𝑅𝑏)) ↔ ((𝜑 ∧ 𝑏𝑅𝑎) → ¬ 𝑎𝑅𝑏)) |
71 | 69, 70 | mpbi 229 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏𝑅𝑎) → ¬ 𝑎𝑅𝑏) |
72 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏) |
73 | 72 | fveq2d 6760 |
. . . . . . 7
⊢ (¬
𝑎𝑅𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃‘𝑏)) |
74 | 72 | fveq2d 6760 |
. . . . . . 7
⊢ (¬
𝑎𝑅𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄‘𝑏)) |
75 | 73, 74 | breq12d 5083 |
. . . . . 6
⊢ (¬
𝑎𝑅𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃‘𝑏)𝑆(𝑄‘𝑏))) |
76 | 71, 75 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏𝑅𝑎) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃‘𝑏)𝑆(𝑄‘𝑏))) |
77 | 64, 76 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑏𝑅𝑎) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
78 | | solin 5519 |
. . . . 5
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎)) |
79 | 65, 1, 2, 78 | syl12anc 833 |
. . . 4
⊢ (𝜑 → (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎)) |
80 | 20, 54, 77, 79 | mpjao3dan 1429 |
. . 3
⊢ (𝜑 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
81 | | r19.26 3094 |
. . . . 5
⊢
(∀𝑐 ∈
𝐴 ((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) ↔ (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐)))) |
82 | 60, 11, 81 | sylanbrc 582 |
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 ((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐)))) |
83 | 65, 1, 2 | 3jca 1126 |
. . . . 5
⊢ (𝜑 → (𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) |
84 | | anim12 805 |
. . . . . . 7
⊢ (((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) → ((𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏) → ((𝑃‘𝑐) = (𝑋‘𝑐) ∧ (𝑋‘𝑐) = (𝑄‘𝑐)))) |
85 | | eqtr 2761 |
. . . . . . 7
⊢ (((𝑃‘𝑐) = (𝑋‘𝑐) ∧ (𝑋‘𝑐) = (𝑄‘𝑐)) → (𝑃‘𝑐) = (𝑄‘𝑐)) |
86 | 84, 85 | syl6 35 |
. . . . . 6
⊢ (((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) → ((𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐))) |
87 | 86 | ralimi 3086 |
. . . . 5
⊢
(∀𝑐 ∈
𝐴 ((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) → ∀𝑐 ∈ 𝐴 ((𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐))) |
88 | | simpl1 1189 |
. . . . . . . . 9
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → 𝑅 Or 𝐴) |
89 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ 𝐴) |
90 | | simpl2 1190 |
. . . . . . . . 9
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
91 | | simpl3 1191 |
. . . . . . . . 9
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → 𝑏 ∈ 𝐴) |
92 | | soltmin 6030 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐴 ∧ (𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) ↔ (𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏))) |
93 | 88, 89, 90, 91, 92 | syl13anc 1370 |
. . . . . . . 8
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) ↔ (𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏))) |
94 | 93 | biimpd 228 |
. . . . . . 7
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏))) |
95 | 94 | imim1d 82 |
. . . . . 6
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → (((𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
96 | 95 | ralimdva 3102 |
. . . . 5
⊢ ((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (∀𝑐 ∈ 𝐴 ((𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)) → ∀𝑐 ∈ 𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
97 | 83, 87, 96 | syl2im 40 |
. . . 4
⊢ (𝜑 → (∀𝑐 ∈ 𝐴 ((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) → ∀𝑐 ∈ 𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
98 | 82, 97 | mpd 15 |
. . 3
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐))) |
99 | | fveq2 6756 |
. . . . . 6
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑑) = (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
100 | | fveq2 6756 |
. . . . . 6
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑄‘𝑑) = (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
101 | 99, 100 | breq12d 5083 |
. . . . 5
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → ((𝑃‘𝑑)𝑆(𝑄‘𝑑) ↔ (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))) |
102 | | breq2 5074 |
. . . . . . 7
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑐𝑅𝑑 ↔ 𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
103 | 102 | imbi1d 341 |
. . . . . 6
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → ((𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐)) ↔ (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
104 | 103 | ralbidv 3120 |
. . . . 5
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐)) ↔ ∀𝑐 ∈ 𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
105 | 101, 104 | anbi12d 630 |
. . . 4
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (((𝑃‘𝑑)𝑆(𝑄‘𝑑) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐))) ↔ ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐))))) |
106 | 105 | rspcev 3552 |
. . 3
⊢
((if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝐴 ∧ ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)))) → ∃𝑑 ∈ 𝐴 ((𝑃‘𝑑)𝑆(𝑄‘𝑑) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
107 | 3, 80, 98, 106 | syl12anc 833 |
. 2
⊢ (𝜑 → ∃𝑑 ∈ 𝐴 ((𝑃‘𝑑)𝑆(𝑄‘𝑑) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
108 | | wemapso.t |
. . . 4
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
109 | 108 | wemaplem1 9235 |
. . 3
⊢ ((𝑃 ∈ (𝐵 ↑m 𝐴) ∧ 𝑄 ∈ (𝐵 ↑m 𝐴)) → (𝑃𝑇𝑄 ↔ ∃𝑑 ∈ 𝐴 ((𝑃‘𝑑)𝑆(𝑄‘𝑑) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐))))) |
110 | 23, 31, 109 | syl2anc 583 |
. 2
⊢ (𝜑 → (𝑃𝑇𝑄 ↔ ∃𝑑 ∈ 𝐴 ((𝑃‘𝑑)𝑆(𝑄‘𝑑) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐))))) |
111 | 107, 110 | mpbird 256 |
1
⊢ (𝜑 → 𝑃𝑇𝑄) |