MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanre Structured version   Visualization version   GIF version

Theorem rexanre 15331
Description: Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
Assertion
Ref Expression
rexanre (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝜑,𝑗   𝜓,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑘)

Proof of Theorem rexanre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 481 . . . . . 6 ((𝜑𝜓) → 𝜑)
21imim2i 16 . . . . 5 ((𝑗𝑘 → (𝜑𝜓)) → (𝑗𝑘𝜑))
32ralimi 3079 . . . 4 (∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∀𝑘𝐴 (𝑗𝑘𝜑))
43reximi 3080 . . 3 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑))
5 simpr 483 . . . . . 6 ((𝜑𝜓) → 𝜓)
65imim2i 16 . . . . 5 ((𝑗𝑘 → (𝜑𝜓)) → (𝑗𝑘𝜓))
76ralimi 3079 . . . 4 (∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∀𝑘𝐴 (𝑗𝑘𝜓))
87reximi 3080 . . 3 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))
94, 8jca 510 . 2 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)))
10 breq1 5153 . . . . . . . 8 (𝑗 = 𝑥 → (𝑗𝑘𝑥𝑘))
1110imbi1d 340 . . . . . . 7 (𝑗 = 𝑥 → ((𝑗𝑘𝜑) ↔ (𝑥𝑘𝜑)))
1211ralbidv 3173 . . . . . 6 (𝑗 = 𝑥 → (∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∀𝑘𝐴 (𝑥𝑘𝜑)))
1312cbvrexvw 3231 . . . . 5 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝐴 (𝑥𝑘𝜑))
14 breq1 5153 . . . . . . . 8 (𝑗 = 𝑦 → (𝑗𝑘𝑦𝑘))
1514imbi1d 340 . . . . . . 7 (𝑗 = 𝑦 → ((𝑗𝑘𝜓) ↔ (𝑦𝑘𝜓)))
1615ralbidv 3173 . . . . . 6 (𝑗 = 𝑦 → (∀𝑘𝐴 (𝑗𝑘𝜓) ↔ ∀𝑘𝐴 (𝑦𝑘𝜓)))
1716cbvrexvw 3231 . . . . 5 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓) ↔ ∃𝑦 ∈ ℝ ∀𝑘𝐴 (𝑦𝑘𝜓))
1813, 17anbi12i 626 . . . 4 ((∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘𝐴 (𝑦𝑘𝜓)))
19 reeanv 3222 . . . 4 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘𝐴 (𝑦𝑘𝜓)))
2018, 19bitr4i 277 . . 3 ((∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)))
21 ifcl 4575 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ)
2221ancoms 457 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ)
2322adantl 480 . . . . 5 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ)
24 r19.26 3107 . . . . . 6 (∀𝑘𝐴 ((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) ↔ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)))
25 anim12 807 . . . . . . . 8 (((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) → ((𝑥𝑘𝑦𝑘) → (𝜑𝜓)))
26 simplrl 775 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → 𝑥 ∈ ℝ)
27 simplrr 776 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → 𝑦 ∈ ℝ)
28 simpl 481 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2928sselda 3980 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → 𝑘 ∈ ℝ)
30 maxle 13208 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 ↔ (𝑥𝑘𝑦𝑘)))
3126, 27, 29, 30syl3anc 1368 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 ↔ (𝑥𝑘𝑦𝑘)))
3231imbi1d 340 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → ((if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓)) ↔ ((𝑥𝑘𝑦𝑘) → (𝜑𝜓))))
3325, 32imbitrrid 245 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → (((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) → (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
3433ralimdva 3163 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (∀𝑘𝐴 ((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) → ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
3524, 34biimtrrid 242 . . . . 5 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) → ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
36 breq1 5153 . . . . . 6 (𝑗 = if(𝑥𝑦, 𝑦, 𝑥) → (𝑗𝑘 ↔ if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘))
3736rspceaimv 3615 . . . . 5 ((if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ ∧ ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)))
3823, 35, 37syl6an 682 . . . 4 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓))))
3938rexlimdvva 3207 . . 3 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓))))
4020, 39biimtrid 241 . 2 (𝐴 ⊆ ℝ → ((∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓))))
419, 40impbid2 225 1 (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  wral 3057  wrex 3066  wss 3947  ifcif 4530   class class class wbr 5150  cr 11143  cle 11285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-pre-lttri 11218  ax-pre-lttrn 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-po 5592  df-so 5593  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290
This theorem is referenced by:  o1lo1  15519  rlimuni  15532  lo1add  15609  lo1mul  15610  rlimno1  15638
  Copyright terms: Public domain W3C validator