MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanre Structured version   Visualization version   GIF version

Theorem rexanre 14544
Description: Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
Assertion
Ref Expression
rexanre (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝜑,𝑗   𝜓,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑘)

Proof of Theorem rexanre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . 6 ((𝜑𝜓) → 𝜑)
21imim2i 16 . . . . 5 ((𝑗𝑘 → (𝜑𝜓)) → (𝑗𝑘𝜑))
32ralimi 3129 . . . 4 (∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∀𝑘𝐴 (𝑗𝑘𝜑))
43reximi 3209 . . 3 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑))
5 simpr 485 . . . . . 6 ((𝜑𝜓) → 𝜓)
65imim2i 16 . . . . 5 ((𝑗𝑘 → (𝜑𝜓)) → (𝑗𝑘𝜓))
76ralimi 3129 . . . 4 (∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∀𝑘𝐴 (𝑗𝑘𝜓))
87reximi 3209 . . 3 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))
94, 8jca 512 . 2 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)))
10 breq1 4971 . . . . . . . 8 (𝑗 = 𝑥 → (𝑗𝑘𝑥𝑘))
1110imbi1d 343 . . . . . . 7 (𝑗 = 𝑥 → ((𝑗𝑘𝜑) ↔ (𝑥𝑘𝜑)))
1211ralbidv 3166 . . . . . 6 (𝑗 = 𝑥 → (∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∀𝑘𝐴 (𝑥𝑘𝜑)))
1312cbvrexv 3406 . . . . 5 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝐴 (𝑥𝑘𝜑))
14 breq1 4971 . . . . . . . 8 (𝑗 = 𝑦 → (𝑗𝑘𝑦𝑘))
1514imbi1d 343 . . . . . . 7 (𝑗 = 𝑦 → ((𝑗𝑘𝜓) ↔ (𝑦𝑘𝜓)))
1615ralbidv 3166 . . . . . 6 (𝑗 = 𝑦 → (∀𝑘𝐴 (𝑗𝑘𝜓) ↔ ∀𝑘𝐴 (𝑦𝑘𝜓)))
1716cbvrexv 3406 . . . . 5 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓) ↔ ∃𝑦 ∈ ℝ ∀𝑘𝐴 (𝑦𝑘𝜓))
1813, 17anbi12i 626 . . . 4 ((∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘𝐴 (𝑦𝑘𝜓)))
19 reeanv 3330 . . . 4 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘𝐴 (𝑦𝑘𝜓)))
2018, 19bitr4i 279 . . 3 ((∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)))
21 ifcl 4431 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ)
2221ancoms 459 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ)
2322adantl 482 . . . . 5 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ)
24 r19.26 3139 . . . . . 6 (∀𝑘𝐴 ((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) ↔ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)))
25 prth 805 . . . . . . . 8 (((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) → ((𝑥𝑘𝑦𝑘) → (𝜑𝜓)))
26 simplrl 773 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → 𝑥 ∈ ℝ)
27 simplrr 774 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → 𝑦 ∈ ℝ)
28 simpl 483 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2928sselda 3895 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → 𝑘 ∈ ℝ)
30 maxle 12438 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 ↔ (𝑥𝑘𝑦𝑘)))
3126, 27, 29, 30syl3anc 1364 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 ↔ (𝑥𝑘𝑦𝑘)))
3231imbi1d 343 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → ((if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓)) ↔ ((𝑥𝑘𝑦𝑘) → (𝜑𝜓))))
3325, 32syl5ibr 247 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → (((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) → (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
3433ralimdva 3146 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (∀𝑘𝐴 ((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) → ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
3524, 34syl5bir 244 . . . . 5 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) → ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
36 breq1 4971 . . . . . 6 (𝑗 = if(𝑥𝑦, 𝑦, 𝑥) → (𝑗𝑘 ↔ if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘))
3736rspceaimv 3569 . . . . 5 ((if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ ∧ ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)))
3823, 35, 37syl6an 680 . . . 4 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓))))
3938rexlimdvva 3259 . . 3 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓))))
4020, 39syl5bi 243 . 2 (𝐴 ⊆ ℝ → ((∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓))))
419, 40impbid2 227 1 (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2083  wral 3107  wrex 3108  wss 3865  ifcif 4387   class class class wbr 4968  cr 10389  cle 10529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-pre-lttri 10464  ax-pre-lttrn 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-po 5369  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534
This theorem is referenced by:  o1lo1  14732  rlimuni  14745  lo1add  14821  lo1mul  14822  rlimno1  14848
  Copyright terms: Public domain W3C validator