Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanre Structured version   Visualization version   GIF version

Theorem rexanre 14701
 Description: Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
Assertion
Ref Expression
rexanre (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝜑,𝑗   𝜓,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑘)

Proof of Theorem rexanre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . . . 6 ((𝜑𝜓) → 𝜑)
21imim2i 16 . . . . 5 ((𝑗𝑘 → (𝜑𝜓)) → (𝑗𝑘𝜑))
32ralimi 3131 . . . 4 (∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∀𝑘𝐴 (𝑗𝑘𝜑))
43reximi 3209 . . 3 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑))
5 simpr 488 . . . . . 6 ((𝜑𝜓) → 𝜓)
65imim2i 16 . . . . 5 ((𝑗𝑘 → (𝜑𝜓)) → (𝑗𝑘𝜓))
76ralimi 3131 . . . 4 (∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∀𝑘𝐴 (𝑗𝑘𝜓))
87reximi 3209 . . 3 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))
94, 8jca 515 . 2 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)))
10 breq1 5036 . . . . . . . 8 (𝑗 = 𝑥 → (𝑗𝑘𝑥𝑘))
1110imbi1d 345 . . . . . . 7 (𝑗 = 𝑥 → ((𝑗𝑘𝜑) ↔ (𝑥𝑘𝜑)))
1211ralbidv 3165 . . . . . 6 (𝑗 = 𝑥 → (∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∀𝑘𝐴 (𝑥𝑘𝜑)))
1312cbvrexvw 3400 . . . . 5 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝐴 (𝑥𝑘𝜑))
14 breq1 5036 . . . . . . . 8 (𝑗 = 𝑦 → (𝑗𝑘𝑦𝑘))
1514imbi1d 345 . . . . . . 7 (𝑗 = 𝑦 → ((𝑗𝑘𝜓) ↔ (𝑦𝑘𝜓)))
1615ralbidv 3165 . . . . . 6 (𝑗 = 𝑦 → (∀𝑘𝐴 (𝑗𝑘𝜓) ↔ ∀𝑘𝐴 (𝑦𝑘𝜓)))
1716cbvrexvw 3400 . . . . 5 (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓) ↔ ∃𝑦 ∈ ℝ ∀𝑘𝐴 (𝑦𝑘𝜓))
1813, 17anbi12i 629 . . . 4 ((∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘𝐴 (𝑦𝑘𝜓)))
19 reeanv 3323 . . . 4 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘𝐴 (𝑦𝑘𝜓)))
2018, 19bitr4i 281 . . 3 ((∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)))
21 ifcl 4472 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ)
2221ancoms 462 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ)
2322adantl 485 . . . . 5 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ)
24 r19.26 3140 . . . . . 6 (∀𝑘𝐴 ((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) ↔ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)))
25 anim12 808 . . . . . . . 8 (((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) → ((𝑥𝑘𝑦𝑘) → (𝜑𝜓)))
26 simplrl 776 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → 𝑥 ∈ ℝ)
27 simplrr 777 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → 𝑦 ∈ ℝ)
28 simpl 486 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2928sselda 3918 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → 𝑘 ∈ ℝ)
30 maxle 12576 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 ↔ (𝑥𝑘𝑦𝑘)))
3126, 27, 29, 30syl3anc 1368 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 ↔ (𝑥𝑘𝑦𝑘)))
3231imbi1d 345 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → ((if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓)) ↔ ((𝑥𝑘𝑦𝑘) → (𝜑𝜓))))
3325, 32syl5ibr 249 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘𝐴) → (((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) → (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
3433ralimdva 3147 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (∀𝑘𝐴 ((𝑥𝑘𝜑) ∧ (𝑦𝑘𝜓)) → ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
3524, 34syl5bir 246 . . . . 5 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) → ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))))
36 breq1 5036 . . . . . 6 (𝑗 = if(𝑥𝑦, 𝑦, 𝑥) → (𝑗𝑘 ↔ if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘))
3736rspceaimv 3579 . . . . 5 ((if(𝑥𝑦, 𝑦, 𝑥) ∈ ℝ ∧ ∀𝑘𝐴 (if(𝑥𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑𝜓))) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)))
3823, 35, 37syl6an 683 . . . 4 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓))))
3938rexlimdvva 3256 . . 3 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘𝐴 (𝑥𝑘𝜑) ∧ ∀𝑘𝐴 (𝑦𝑘𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓))))
4020, 39syl5bi 245 . 2 (𝐴 ⊆ ℝ → ((∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓))))
419, 40impbid2 229 1 (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110   ⊆ wss 3884  ifcif 4428   class class class wbr 5033  ℝcr 10529   ≤ cle 10669 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-pre-lttri 10604  ax-pre-lttrn 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674 This theorem is referenced by:  o1lo1  14889  rlimuni  14902  lo1add  14978  lo1mul  14979  rlimno1  15005
 Copyright terms: Public domain W3C validator