| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → 𝜑) |
| 2 | 1 | imim2i 16 |
. . . . 5
⊢ ((𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → (𝑗 ≤ 𝑘 → 𝜑)) |
| 3 | 2 | ralimi 3082 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑)) |
| 4 | 3 | reximi 3083 |
. . 3
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑)) |
| 5 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
| 6 | 5 | imim2i 16 |
. . . . 5
⊢ ((𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → (𝑗 ≤ 𝑘 → 𝜓)) |
| 7 | 6 | ralimi 3082 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) |
| 8 | 7 | reximi 3083 |
. . 3
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) |
| 9 | 4, 8 | jca 511 |
. 2
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) → (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓))) |
| 10 | | breq1 5145 |
. . . . . . . 8
⊢ (𝑗 = 𝑥 → (𝑗 ≤ 𝑘 ↔ 𝑥 ≤ 𝑘)) |
| 11 | 10 | imbi1d 341 |
. . . . . . 7
⊢ (𝑗 = 𝑥 → ((𝑗 ≤ 𝑘 → 𝜑) ↔ (𝑥 ≤ 𝑘 → 𝜑))) |
| 12 | 11 | ralbidv 3177 |
. . . . . 6
⊢ (𝑗 = 𝑥 → (∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑))) |
| 13 | 12 | cbvrexvw 3237 |
. . . . 5
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑)) |
| 14 | | breq1 5145 |
. . . . . . . 8
⊢ (𝑗 = 𝑦 → (𝑗 ≤ 𝑘 ↔ 𝑦 ≤ 𝑘)) |
| 15 | 14 | imbi1d 341 |
. . . . . . 7
⊢ (𝑗 = 𝑦 → ((𝑗 ≤ 𝑘 → 𝜓) ↔ (𝑦 ≤ 𝑘 → 𝜓))) |
| 16 | 15 | ralbidv 3177 |
. . . . . 6
⊢ (𝑗 = 𝑦 → (∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓) ↔ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
| 17 | 16 | cbvrexvw 3237 |
. . . . 5
⊢
(∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → 𝜓) ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) |
| 18 | 13, 17 | anbi12i 628 |
. . . 4
⊢
((∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
| 19 | | reeanv 3228 |
. . . 4
⊢
(∃𝑥 ∈
ℝ ∃𝑦 ∈
ℝ (∀𝑘 ∈
𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
| 20 | 18, 19 | bitr4i 278 |
. . 3
⊢
((∃𝑗 ∈
ℝ ∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
| 21 | | ifcl 4570 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℝ) |
| 22 | 21 | ancoms 458 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℝ) |
| 23 | 22 | adantl 481 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℝ) |
| 24 | | r19.26 3110 |
. . . . . 6
⊢
(∀𝑘 ∈
𝐴 ((𝑥 ≤ 𝑘 → 𝜑) ∧ (𝑦 ≤ 𝑘 → 𝜓)) ↔ (∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓))) |
| 25 | | anim12 808 |
. . . . . . . 8
⊢ (((𝑥 ≤ 𝑘 → 𝜑) ∧ (𝑦 ≤ 𝑘 → 𝜓)) → ((𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘) → (𝜑 ∧ 𝜓))) |
| 26 | | simplrl 776 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 27 | | simplrr 777 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 28 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ⊆
ℝ) |
| 29 | 28 | sselda 3982 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℝ) |
| 30 | | maxle 13234 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑘 ∈ ℝ) →
(if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ≤ 𝑘 ↔ (𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘))) |
| 31 | 26, 27, 29, 30 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → (if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ≤ 𝑘 ↔ (𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘))) |
| 32 | 31 | imbi1d 341 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → ((if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ ((𝑥 ≤ 𝑘 ∧ 𝑦 ≤ 𝑘) → (𝜑 ∧ 𝜓)))) |
| 33 | 25, 32 | imbitrrid 246 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑘 ∈ 𝐴) → (((𝑥 ≤ 𝑘 → 𝜑) ∧ (𝑦 ≤ 𝑘 → 𝜓)) → (if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 34 | 33 | ralimdva 3166 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
(∀𝑘 ∈ 𝐴 ((𝑥 ≤ 𝑘 → 𝜑) ∧ (𝑦 ≤ 𝑘 → 𝜓)) → ∀𝑘 ∈ 𝐴 (if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 35 | 24, 34 | biimtrrid 243 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
((∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) → ∀𝑘 ∈ 𝐴 (if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 36 | | breq1 5145 |
. . . . . 6
⊢ (𝑗 = if(𝑥 ≤ 𝑦, 𝑦, 𝑥) → (𝑗 ≤ 𝑘 ↔ if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ≤ 𝑘)) |
| 37 | 36 | rspceaimv 3627 |
. . . . 5
⊢
((if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℝ ∧ ∀𝑘 ∈ 𝐴 (if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ≤ 𝑘 → (𝜑 ∧ 𝜓))) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓))) |
| 38 | 23, 35, 37 | syl6an 684 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
((∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 39 | 38 | rexlimdvva 3212 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
∃𝑦 ∈ ℝ
(∀𝑘 ∈ 𝐴 (𝑥 ≤ 𝑘 → 𝜑) ∧ ∀𝑘 ∈ 𝐴 (𝑦 ≤ 𝑘 → 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 40 | 20, 39 | biimtrid 242 |
. 2
⊢ (𝐴 ⊆ ℝ →
((∃𝑗 ∈ ℝ
∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)))) |
| 41 | 9, 40 | impbid2 226 |
1
⊢ (𝐴 ⊆ ℝ →
(∃𝑗 ∈ ℝ
∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)))) |