Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem7 Structured version   Visualization version   GIF version

Theorem cvmliftlem7 35313
Description: Lemma for cvmlift 35321. Prove by induction that every 𝑄 function is well-defined (we can immediately follow this theorem with cvmliftlem6 35312 to show functionality and lifting of 𝑄). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem7 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem7
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssp1 13584 . . . 4 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
2 cvmliftlem.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
32nncnd 12256 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
43adantr 480 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
5 ax-1cn 11187 . . . . . 6 1 ∈ ℂ
6 npcan 11491 . . . . . 6 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
74, 5, 6sylancl 586 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑁 − 1) + 1) = 𝑁)
87oveq2d 7421 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
91, 8sseqtrid 4001 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
10 simpr 484 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ (1...𝑁))
11 elfzelz 13541 . . . . 5 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℤ)
122nnzd 12615 . . . . 5 (𝜑𝑁 ∈ ℤ)
13 elfzm1b 13619 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1))))
1411, 12, 13syl2anr 597 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1))))
1510, 14mpbid 232 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ (0...(𝑁 − 1)))
169, 15sseldd 3959 . 2 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ (0...𝑁))
17 elfznn0 13637 . . . 4 ((𝑀 − 1) ∈ (0...𝑁) → (𝑀 − 1) ∈ ℕ0)
1817adantl 481 . . 3 ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → (𝑀 − 1) ∈ ℕ0)
19 eleq1 2822 . . . . . . 7 (𝑦 = 0 → (𝑦 ∈ (0...𝑁) ↔ 0 ∈ (0...𝑁)))
20 fveq2 6876 . . . . . . . . 9 (𝑦 = 0 → (𝑄𝑦) = (𝑄‘0))
21 oveq1 7412 . . . . . . . . 9 (𝑦 = 0 → (𝑦 / 𝑁) = (0 / 𝑁))
2220, 21fveq12d 6883 . . . . . . . 8 (𝑦 = 0 → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘0)‘(0 / 𝑁)))
23 fvoveq1 7428 . . . . . . . . . 10 (𝑦 = 0 → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘(0 / 𝑁)))
2423sneqd 4613 . . . . . . . . 9 (𝑦 = 0 → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘(0 / 𝑁))})
2524imaeq2d 6047 . . . . . . . 8 (𝑦 = 0 → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘(0 / 𝑁))}))
2622, 25eleq12d 2828 . . . . . . 7 (𝑦 = 0 → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))
2719, 26imbi12d 344 . . . . . 6 (𝑦 = 0 → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))))
2827imbi2d 340 . . . . 5 (𝑦 = 0 → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))))
29 eleq1 2822 . . . . . . 7 (𝑦 = 𝑛 → (𝑦 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...𝑁)))
30 fveq2 6876 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑄𝑦) = (𝑄𝑛))
31 oveq1 7412 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑦 / 𝑁) = (𝑛 / 𝑁))
3230, 31fveq12d 6883 . . . . . . . 8 (𝑦 = 𝑛 → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
33 fvoveq1 7428 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘(𝑛 / 𝑁)))
3433sneqd 4613 . . . . . . . . 9 (𝑦 = 𝑛 → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘(𝑛 / 𝑁))})
3534imaeq2d 6047 . . . . . . . 8 (𝑦 = 𝑛 → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
3632, 35eleq12d 2828 . . . . . . 7 (𝑦 = 𝑛 → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})))
3729, 36imbi12d 344 . . . . . 6 (𝑦 = 𝑛 → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))))
3837imbi2d 340 . . . . 5 (𝑦 = 𝑛 → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})))))
39 eleq1 2822 . . . . . . 7 (𝑦 = (𝑛 + 1) → (𝑦 ∈ (0...𝑁) ↔ (𝑛 + 1) ∈ (0...𝑁)))
40 fveq2 6876 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝑄𝑦) = (𝑄‘(𝑛 + 1)))
41 oveq1 7412 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝑦 / 𝑁) = ((𝑛 + 1) / 𝑁))
4240, 41fveq12d 6883 . . . . . . . 8 (𝑦 = (𝑛 + 1) → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)))
43 fvoveq1 7428 . . . . . . . . . 10 (𝑦 = (𝑛 + 1) → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
4443sneqd 4613 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘((𝑛 + 1) / 𝑁))})
4544imaeq2d 6047 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))
4642, 45eleq12d 2828 . . . . . . 7 (𝑦 = (𝑛 + 1) → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))
4739, 46imbi12d 344 . . . . . 6 (𝑦 = (𝑛 + 1) → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))))
4847imbi2d 340 . . . . 5 (𝑦 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))))
49 eleq1 2822 . . . . . . 7 (𝑦 = (𝑀 − 1) → (𝑦 ∈ (0...𝑁) ↔ (𝑀 − 1) ∈ (0...𝑁)))
50 fveq2 6876 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → (𝑄𝑦) = (𝑄‘(𝑀 − 1)))
51 oveq1 7412 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → (𝑦 / 𝑁) = ((𝑀 − 1) / 𝑁))
5250, 51fveq12d 6883 . . . . . . . 8 (𝑦 = (𝑀 − 1) → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
53 fvoveq1 7428 . . . . . . . . . 10 (𝑦 = (𝑀 − 1) → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘((𝑀 − 1) / 𝑁)))
5453sneqd 4613 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘((𝑀 − 1) / 𝑁))})
5554imaeq2d 6047 . . . . . . . 8 (𝑦 = (𝑀 − 1) → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
5652, 55eleq12d 2828 . . . . . . 7 (𝑦 = (𝑀 − 1) → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))
5749, 56imbi12d 344 . . . . . 6 (𝑦 = (𝑀 − 1) → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))))
5857imbi2d 340 . . . . 5 (𝑦 = (𝑀 − 1) → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))))
59 cvmliftlem.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
60 cvmliftlem.b . . . . . . . . . . 11 𝐵 = 𝐶
61 cvmliftlem.x . . . . . . . . . . 11 𝑋 = 𝐽
62 cvmliftlem.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
63 cvmliftlem.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (II Cn 𝐽))
64 cvmliftlem.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
65 cvmliftlem.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺‘0))
66 cvmliftlem.t . . . . . . . . . . 11 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
67 cvmliftlem.a . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
68 cvmliftlem.l . . . . . . . . . . 11 𝐿 = (topGen‘ran (,))
69 cvmliftlem.q . . . . . . . . . . 11 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
7059, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69cvmliftlem4 35310 . . . . . . . . . 10 (𝑄‘0) = {⟨0, 𝑃⟩}
7170a1i 11 . . . . . . . . 9 (𝜑 → (𝑄‘0) = {⟨0, 𝑃⟩})
722nnne0d 12290 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
733, 72div0d 12016 . . . . . . . . 9 (𝜑 → (0 / 𝑁) = 0)
7471, 73fveq12d 6883 . . . . . . . 8 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) = ({⟨0, 𝑃⟩}‘0))
75 0nn0 12516 . . . . . . . . 9 0 ∈ ℕ0
76 fvsng 7172 . . . . . . . . 9 ((0 ∈ ℕ0𝑃𝐵) → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7775, 64, 76sylancr 587 . . . . . . . 8 (𝜑 → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7874, 77eqtrd 2770 . . . . . . 7 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) = 𝑃)
7973fveq2d 6880 . . . . . . . . 9 (𝜑 → (𝐺‘(0 / 𝑁)) = (𝐺‘0))
8065, 79eqtr4d 2773 . . . . . . . 8 (𝜑 → (𝐹𝑃) = (𝐺‘(0 / 𝑁)))
81 cvmcn 35284 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
8262, 81syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
8360, 61cnf 23184 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
84 ffn 6706 . . . . . . . . . 10 (𝐹:𝐵𝑋𝐹 Fn 𝐵)
8582, 83, 843syl 18 . . . . . . . . 9 (𝜑𝐹 Fn 𝐵)
86 fniniseg 7050 . . . . . . . . 9 (𝐹 Fn 𝐵 → (𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}) ↔ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘(0 / 𝑁)))))
8785, 86syl 17 . . . . . . . 8 (𝜑 → (𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}) ↔ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘(0 / 𝑁)))))
8864, 80, 87mpbir2and 713 . . . . . . 7 (𝜑𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))
8978, 88eqeltrd 2834 . . . . . 6 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))
9089a1d 25 . . . . 5 (𝜑 → (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))
91 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
92 nn0uz 12894 . . . . . . . . . 10 0 = (ℤ‘0)
9391, 92eleqtrdi 2844 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ (ℤ‘0))
9493adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
95 peano2fzr 13554 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘0) ∧ (𝑛 + 1) ∈ (0...𝑁)) → 𝑛 ∈ (0...𝑁))
9695ex 412 . . . . . . . 8 (𝑛 ∈ (ℤ‘0) → ((𝑛 + 1) ∈ (0...𝑁) → 𝑛 ∈ (0...𝑁)))
9794, 96syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) ∈ (0...𝑁) → 𝑛 ∈ (0...𝑁)))
9897imim1d 82 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})) → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))))
99 eqid 2735 . . . . . . . . . . 11 ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))
100 simprlr 779 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (0...𝑁))
101 elfzle2 13545 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ (0...𝑁) → (𝑛 + 1) ≤ 𝑁)
102100, 101syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ≤ 𝑁)
103 simprll 778 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℕ0)
104 nn0p1nn 12540 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
105103, 104syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ ℕ)
106 nnuz 12895 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
107105, 106eleqtrdi 2844 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (ℤ‘1))
10812adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℤ)
109 elfz5 13533 . . . . . . . . . . . . 13 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → ((𝑛 + 1) ∈ (1...𝑁) ↔ (𝑛 + 1) ≤ 𝑁))
110107, 108, 109syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) ∈ (1...𝑁) ↔ (𝑛 + 1) ≤ 𝑁))
111102, 110mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (1...𝑁))
112 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
113103nn0cnd 12564 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℂ)
114 pncan 11488 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
115113, 5, 114sylancl 586 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) − 1) = 𝑛)
116115fveq2d 6880 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘((𝑛 + 1) − 1)) = (𝑄𝑛))
117115oveq1d 7420 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (((𝑛 + 1) − 1) / 𝑁) = (𝑛 / 𝑁))
118116, 117fveq12d 6883 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
119117fveq2d 6880 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐺‘(((𝑛 + 1) − 1) / 𝑁)) = (𝐺‘(𝑛 / 𝑁)))
120119sneqd 4613 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))} = {(𝐺‘(𝑛 / 𝑁))})
121120imaeq2d 6047 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}) = (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
122112, 118, 1213eltr4d 2849 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}))
12359, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69, 99, 111, 122cvmliftlem6 35312 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
124123simpld 494 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
125103nn0red 12563 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℝ)
1262adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℕ)
127125, 126nndivred 12294 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ∈ ℝ)
128127rexrd 11285 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ∈ ℝ*)
129 peano2re 11408 . . . . . . . . . . . . . 14 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
130125, 129syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ ℝ)
131130, 126nndivred 12294 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ℝ)
132131rexrd 11285 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ℝ*)
133125ltp1d 12172 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 < (𝑛 + 1))
134126nnred 12255 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℝ)
135126nngt0d 12289 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 0 < 𝑁)
136 ltdiv1 12106 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
137125, 130, 134, 135, 136syl112anc 1376 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
138133, 137mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁))
139127, 131, 138ltled 11383 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))
140 ubicc2 13482 . . . . . . . . . . 11 (((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁)) → ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
141128, 132, 139, 140syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
142117oveq1d 7420 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
143141, 142eleqtrrd 2837 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))
144124, 143ffvelcdmd 7075 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵)
145123simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))))
146142reseq2d 5966 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
147145, 146eqtrd 2770 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
148147fveq1d 6878 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)))
149142feq2d 6692 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ↔ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵))
150124, 149mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
151 fvco3 6978 . . . . . . . . . 10 (((𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))))
152150, 141, 151syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))))
153 fvres 6895 . . . . . . . . . 10 (((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) → ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
154141, 153syl 17 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
155148, 152, 1543eqtr3d 2778 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))
15685adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝐹 Fn 𝐵)
157 fniniseg 7050 . . . . . . . . 9 (𝐹 Fn 𝐵 → (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}) ↔ (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))))
158156, 157syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}) ↔ (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))))
159144, 155, 158mpbir2and 713 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))
160159expr 456 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁))) → (((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))
16198, 160animpimp2impd 846 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑 → (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝜑 → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))))
16228, 38, 48, 58, 90, 161nn0ind 12688 . . . 4 ((𝑀 − 1) ∈ ℕ0 → (𝜑 → ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))))
163162impd 410 . . 3 ((𝑀 − 1) ∈ ℕ0 → ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))
16418, 163mpcom 38 . 2 ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
16516, 164syldan 591 1 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  cop 4607   cuni 4883   ciun 4967   class class class wbr 5119  cmpt 5201   I cid 5547   × cxp 5652  ccnv 5653  ran crn 5655  cres 5656  cima 5657  ccom 5658   Fn wfn 6526  wf 6527  cfv 6531  crio 7361  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132  *cxr 11268   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  0cn0 12501  cz 12588  cuz 12852  (,)cioo 13362  [,]cicc 13365  ...cfz 13524  seqcseq 14019  t crest 17434  topGenctg 17451   Cn ccn 23162  Homeochmeo 23691  IIcii 24819   CovMap ccvm 35277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-rest 17436  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cn 23165  df-hmeo 23693  df-ii 24821  df-cvm 35278
This theorem is referenced by:  cvmliftlem8  35314  cvmliftlem9  35315  cvmliftlem10  35316  cvmliftlem13  35318
  Copyright terms: Public domain W3C validator