Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem7 Structured version   Visualization version   GIF version

Theorem cvmliftlem7 33253
Description: Lemma for cvmlift 33261. Prove by induction that every 𝑄 function is well-defined (we can immediately follow this theorem with cvmliftlem6 33252 to show functionality and lifting of 𝑄). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem7 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem7
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssp1 13299 . . . 4 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
2 cvmliftlem.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
32nncnd 11989 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
43adantr 481 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
5 ax-1cn 10929 . . . . . 6 1 ∈ ℂ
6 npcan 11230 . . . . . 6 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
74, 5, 6sylancl 586 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑁 − 1) + 1) = 𝑁)
87oveq2d 7291 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
91, 8sseqtrid 3973 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
10 simpr 485 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ (1...𝑁))
11 elfzelz 13256 . . . . 5 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℤ)
122nnzd 12425 . . . . 5 (𝜑𝑁 ∈ ℤ)
13 elfzm1b 13334 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1))))
1411, 12, 13syl2anr 597 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1))))
1510, 14mpbid 231 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ (0...(𝑁 − 1)))
169, 15sseldd 3922 . 2 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ (0...𝑁))
17 elfznn0 13349 . . . 4 ((𝑀 − 1) ∈ (0...𝑁) → (𝑀 − 1) ∈ ℕ0)
1817adantl 482 . . 3 ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → (𝑀 − 1) ∈ ℕ0)
19 eleq1 2826 . . . . . . 7 (𝑦 = 0 → (𝑦 ∈ (0...𝑁) ↔ 0 ∈ (0...𝑁)))
20 fveq2 6774 . . . . . . . . 9 (𝑦 = 0 → (𝑄𝑦) = (𝑄‘0))
21 oveq1 7282 . . . . . . . . 9 (𝑦 = 0 → (𝑦 / 𝑁) = (0 / 𝑁))
2220, 21fveq12d 6781 . . . . . . . 8 (𝑦 = 0 → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘0)‘(0 / 𝑁)))
23 fvoveq1 7298 . . . . . . . . . 10 (𝑦 = 0 → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘(0 / 𝑁)))
2423sneqd 4573 . . . . . . . . 9 (𝑦 = 0 → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘(0 / 𝑁))})
2524imaeq2d 5969 . . . . . . . 8 (𝑦 = 0 → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘(0 / 𝑁))}))
2622, 25eleq12d 2833 . . . . . . 7 (𝑦 = 0 → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))
2719, 26imbi12d 345 . . . . . 6 (𝑦 = 0 → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))))
2827imbi2d 341 . . . . 5 (𝑦 = 0 → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))))
29 eleq1 2826 . . . . . . 7 (𝑦 = 𝑛 → (𝑦 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...𝑁)))
30 fveq2 6774 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑄𝑦) = (𝑄𝑛))
31 oveq1 7282 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑦 / 𝑁) = (𝑛 / 𝑁))
3230, 31fveq12d 6781 . . . . . . . 8 (𝑦 = 𝑛 → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
33 fvoveq1 7298 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘(𝑛 / 𝑁)))
3433sneqd 4573 . . . . . . . . 9 (𝑦 = 𝑛 → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘(𝑛 / 𝑁))})
3534imaeq2d 5969 . . . . . . . 8 (𝑦 = 𝑛 → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
3632, 35eleq12d 2833 . . . . . . 7 (𝑦 = 𝑛 → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})))
3729, 36imbi12d 345 . . . . . 6 (𝑦 = 𝑛 → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))))
3837imbi2d 341 . . . . 5 (𝑦 = 𝑛 → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})))))
39 eleq1 2826 . . . . . . 7 (𝑦 = (𝑛 + 1) → (𝑦 ∈ (0...𝑁) ↔ (𝑛 + 1) ∈ (0...𝑁)))
40 fveq2 6774 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝑄𝑦) = (𝑄‘(𝑛 + 1)))
41 oveq1 7282 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝑦 / 𝑁) = ((𝑛 + 1) / 𝑁))
4240, 41fveq12d 6781 . . . . . . . 8 (𝑦 = (𝑛 + 1) → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)))
43 fvoveq1 7298 . . . . . . . . . 10 (𝑦 = (𝑛 + 1) → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
4443sneqd 4573 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘((𝑛 + 1) / 𝑁))})
4544imaeq2d 5969 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))
4642, 45eleq12d 2833 . . . . . . 7 (𝑦 = (𝑛 + 1) → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))
4739, 46imbi12d 345 . . . . . 6 (𝑦 = (𝑛 + 1) → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))))
4847imbi2d 341 . . . . 5 (𝑦 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))))
49 eleq1 2826 . . . . . . 7 (𝑦 = (𝑀 − 1) → (𝑦 ∈ (0...𝑁) ↔ (𝑀 − 1) ∈ (0...𝑁)))
50 fveq2 6774 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → (𝑄𝑦) = (𝑄‘(𝑀 − 1)))
51 oveq1 7282 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → (𝑦 / 𝑁) = ((𝑀 − 1) / 𝑁))
5250, 51fveq12d 6781 . . . . . . . 8 (𝑦 = (𝑀 − 1) → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
53 fvoveq1 7298 . . . . . . . . . 10 (𝑦 = (𝑀 − 1) → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘((𝑀 − 1) / 𝑁)))
5453sneqd 4573 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘((𝑀 − 1) / 𝑁))})
5554imaeq2d 5969 . . . . . . . 8 (𝑦 = (𝑀 − 1) → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
5652, 55eleq12d 2833 . . . . . . 7 (𝑦 = (𝑀 − 1) → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))
5749, 56imbi12d 345 . . . . . 6 (𝑦 = (𝑀 − 1) → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))))
5857imbi2d 341 . . . . 5 (𝑦 = (𝑀 − 1) → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))))
59 cvmliftlem.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
60 cvmliftlem.b . . . . . . . . . . 11 𝐵 = 𝐶
61 cvmliftlem.x . . . . . . . . . . 11 𝑋 = 𝐽
62 cvmliftlem.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
63 cvmliftlem.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (II Cn 𝐽))
64 cvmliftlem.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
65 cvmliftlem.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺‘0))
66 cvmliftlem.t . . . . . . . . . . 11 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
67 cvmliftlem.a . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
68 cvmliftlem.l . . . . . . . . . . 11 𝐿 = (topGen‘ran (,))
69 cvmliftlem.q . . . . . . . . . . 11 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
7059, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69cvmliftlem4 33250 . . . . . . . . . 10 (𝑄‘0) = {⟨0, 𝑃⟩}
7170a1i 11 . . . . . . . . 9 (𝜑 → (𝑄‘0) = {⟨0, 𝑃⟩})
722nnne0d 12023 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
733, 72div0d 11750 . . . . . . . . 9 (𝜑 → (0 / 𝑁) = 0)
7471, 73fveq12d 6781 . . . . . . . 8 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) = ({⟨0, 𝑃⟩}‘0))
75 0nn0 12248 . . . . . . . . 9 0 ∈ ℕ0
76 fvsng 7052 . . . . . . . . 9 ((0 ∈ ℕ0𝑃𝐵) → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7775, 64, 76sylancr 587 . . . . . . . 8 (𝜑 → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7874, 77eqtrd 2778 . . . . . . 7 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) = 𝑃)
7973fveq2d 6778 . . . . . . . . 9 (𝜑 → (𝐺‘(0 / 𝑁)) = (𝐺‘0))
8065, 79eqtr4d 2781 . . . . . . . 8 (𝜑 → (𝐹𝑃) = (𝐺‘(0 / 𝑁)))
81 cvmcn 33224 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
8262, 81syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
8360, 61cnf 22397 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
84 ffn 6600 . . . . . . . . . 10 (𝐹:𝐵𝑋𝐹 Fn 𝐵)
8582, 83, 843syl 18 . . . . . . . . 9 (𝜑𝐹 Fn 𝐵)
86 fniniseg 6937 . . . . . . . . 9 (𝐹 Fn 𝐵 → (𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}) ↔ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘(0 / 𝑁)))))
8785, 86syl 17 . . . . . . . 8 (𝜑 → (𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}) ↔ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘(0 / 𝑁)))))
8864, 80, 87mpbir2and 710 . . . . . . 7 (𝜑𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))
8978, 88eqeltrd 2839 . . . . . 6 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))
9089a1d 25 . . . . 5 (𝜑 → (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))
91 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
92 nn0uz 12620 . . . . . . . . . 10 0 = (ℤ‘0)
9391, 92eleqtrdi 2849 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ (ℤ‘0))
9493adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
95 peano2fzr 13269 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘0) ∧ (𝑛 + 1) ∈ (0...𝑁)) → 𝑛 ∈ (0...𝑁))
9695ex 413 . . . . . . . 8 (𝑛 ∈ (ℤ‘0) → ((𝑛 + 1) ∈ (0...𝑁) → 𝑛 ∈ (0...𝑁)))
9794, 96syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) ∈ (0...𝑁) → 𝑛 ∈ (0...𝑁)))
9897imim1d 82 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})) → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))))
99 eqid 2738 . . . . . . . . . . 11 ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))
100 simprlr 777 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (0...𝑁))
101 elfzle2 13260 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ (0...𝑁) → (𝑛 + 1) ≤ 𝑁)
102100, 101syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ≤ 𝑁)
103 simprll 776 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℕ0)
104 nn0p1nn 12272 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
105103, 104syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ ℕ)
106 nnuz 12621 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
107105, 106eleqtrdi 2849 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (ℤ‘1))
10812adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℤ)
109 elfz5 13248 . . . . . . . . . . . . 13 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → ((𝑛 + 1) ∈ (1...𝑁) ↔ (𝑛 + 1) ≤ 𝑁))
110107, 108, 109syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) ∈ (1...𝑁) ↔ (𝑛 + 1) ≤ 𝑁))
111102, 110mpbird 256 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (1...𝑁))
112 simprr 770 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
113103nn0cnd 12295 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℂ)
114 pncan 11227 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
115113, 5, 114sylancl 586 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) − 1) = 𝑛)
116115fveq2d 6778 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘((𝑛 + 1) − 1)) = (𝑄𝑛))
117115oveq1d 7290 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (((𝑛 + 1) − 1) / 𝑁) = (𝑛 / 𝑁))
118116, 117fveq12d 6781 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
119117fveq2d 6778 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐺‘(((𝑛 + 1) − 1) / 𝑁)) = (𝐺‘(𝑛 / 𝑁)))
120119sneqd 4573 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))} = {(𝐺‘(𝑛 / 𝑁))})
121120imaeq2d 5969 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}) = (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
122112, 118, 1213eltr4d 2854 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}))
12359, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69, 99, 111, 122cvmliftlem6 33252 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
124123simpld 495 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
125103nn0red 12294 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℝ)
1262adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℕ)
127125, 126nndivred 12027 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ∈ ℝ)
128127rexrd 11025 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ∈ ℝ*)
129 peano2re 11148 . . . . . . . . . . . . . 14 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
130125, 129syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ ℝ)
131130, 126nndivred 12027 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ℝ)
132131rexrd 11025 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ℝ*)
133125ltp1d 11905 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 < (𝑛 + 1))
134126nnred 11988 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℝ)
135126nngt0d 12022 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 0 < 𝑁)
136 ltdiv1 11839 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
137125, 130, 134, 135, 136syl112anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
138133, 137mpbid 231 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁))
139127, 131, 138ltled 11123 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))
140 ubicc2 13197 . . . . . . . . . . 11 (((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁)) → ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
141128, 132, 139, 140syl3anc 1370 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
142117oveq1d 7290 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
143141, 142eleqtrrd 2842 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))
144124, 143ffvelrnd 6962 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵)
145123simprd 496 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))))
146142reseq2d 5891 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
147145, 146eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
148147fveq1d 6776 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)))
149142feq2d 6586 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ↔ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵))
150124, 149mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
151 fvco3 6867 . . . . . . . . . 10 (((𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))))
152150, 141, 151syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))))
153 fvres 6793 . . . . . . . . . 10 (((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) → ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
154141, 153syl 17 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
155148, 152, 1543eqtr3d 2786 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))
15685adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝐹 Fn 𝐵)
157 fniniseg 6937 . . . . . . . . 9 (𝐹 Fn 𝐵 → (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}) ↔ (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))))
158156, 157syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}) ↔ (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))))
159144, 155, 158mpbir2and 710 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))
160159expr 457 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁))) → (((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))
16198, 160animpimp2impd 843 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑 → (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝜑 → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))))
16228, 38, 48, 58, 90, 161nn0ind 12415 . . . 4 ((𝑀 − 1) ∈ ℕ0 → (𝜑 → ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))))
163162impd 411 . . 3 ((𝑀 − 1) ∈ ℕ0 → ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))
16418, 163mpcom 38 . 2 ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
16516, 164syldan 591 1 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  cop 4567   cuni 4839   ciun 4924   class class class wbr 5074  cmpt 5157   I cid 5488   × cxp 5587  ccnv 5588  ran crn 5590  cres 5591  cima 5592  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  crio 7231  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  cuz 12582  (,)cioo 13079  [,]cicc 13082  ...cfz 13239  seqcseq 13721  t crest 17131  topGenctg 17148   Cn ccn 22375  Homeochmeo 22904  IIcii 24038   CovMap ccvm 33217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378  df-hmeo 22906  df-ii 24040  df-cvm 33218
This theorem is referenced by:  cvmliftlem8  33254  cvmliftlem9  33255  cvmliftlem10  33256  cvmliftlem13  33258
  Copyright terms: Public domain W3C validator