Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem7 Structured version   Visualization version   GIF version

Theorem cvmliftlem7 35263
Description: Lemma for cvmlift 35271. Prove by induction that every 𝑄 function is well-defined (we can immediately follow this theorem with cvmliftlem6 35262 to show functionality and lifting of 𝑄). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem7 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem7
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssp1 13488 . . . 4 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
2 cvmliftlem.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
32nncnd 12162 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
43adantr 480 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
5 ax-1cn 11086 . . . . . 6 1 ∈ ℂ
6 npcan 11390 . . . . . 6 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
74, 5, 6sylancl 586 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑁 − 1) + 1) = 𝑁)
87oveq2d 7369 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
91, 8sseqtrid 3980 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
10 simpr 484 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ (1...𝑁))
11 elfzelz 13445 . . . . 5 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℤ)
122nnzd 12516 . . . . 5 (𝜑𝑁 ∈ ℤ)
13 elfzm1b 13523 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1))))
1411, 12, 13syl2anr 597 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1))))
1510, 14mpbid 232 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ (0...(𝑁 − 1)))
169, 15sseldd 3938 . 2 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ (0...𝑁))
17 elfznn0 13541 . . . 4 ((𝑀 − 1) ∈ (0...𝑁) → (𝑀 − 1) ∈ ℕ0)
1817adantl 481 . . 3 ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → (𝑀 − 1) ∈ ℕ0)
19 eleq1 2816 . . . . . . 7 (𝑦 = 0 → (𝑦 ∈ (0...𝑁) ↔ 0 ∈ (0...𝑁)))
20 fveq2 6826 . . . . . . . . 9 (𝑦 = 0 → (𝑄𝑦) = (𝑄‘0))
21 oveq1 7360 . . . . . . . . 9 (𝑦 = 0 → (𝑦 / 𝑁) = (0 / 𝑁))
2220, 21fveq12d 6833 . . . . . . . 8 (𝑦 = 0 → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘0)‘(0 / 𝑁)))
23 fvoveq1 7376 . . . . . . . . . 10 (𝑦 = 0 → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘(0 / 𝑁)))
2423sneqd 4591 . . . . . . . . 9 (𝑦 = 0 → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘(0 / 𝑁))})
2524imaeq2d 6015 . . . . . . . 8 (𝑦 = 0 → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘(0 / 𝑁))}))
2622, 25eleq12d 2822 . . . . . . 7 (𝑦 = 0 → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))
2719, 26imbi12d 344 . . . . . 6 (𝑦 = 0 → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))))
2827imbi2d 340 . . . . 5 (𝑦 = 0 → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))))
29 eleq1 2816 . . . . . . 7 (𝑦 = 𝑛 → (𝑦 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...𝑁)))
30 fveq2 6826 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑄𝑦) = (𝑄𝑛))
31 oveq1 7360 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑦 / 𝑁) = (𝑛 / 𝑁))
3230, 31fveq12d 6833 . . . . . . . 8 (𝑦 = 𝑛 → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
33 fvoveq1 7376 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘(𝑛 / 𝑁)))
3433sneqd 4591 . . . . . . . . 9 (𝑦 = 𝑛 → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘(𝑛 / 𝑁))})
3534imaeq2d 6015 . . . . . . . 8 (𝑦 = 𝑛 → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
3632, 35eleq12d 2822 . . . . . . 7 (𝑦 = 𝑛 → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})))
3729, 36imbi12d 344 . . . . . 6 (𝑦 = 𝑛 → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))))
3837imbi2d 340 . . . . 5 (𝑦 = 𝑛 → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})))))
39 eleq1 2816 . . . . . . 7 (𝑦 = (𝑛 + 1) → (𝑦 ∈ (0...𝑁) ↔ (𝑛 + 1) ∈ (0...𝑁)))
40 fveq2 6826 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝑄𝑦) = (𝑄‘(𝑛 + 1)))
41 oveq1 7360 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝑦 / 𝑁) = ((𝑛 + 1) / 𝑁))
4240, 41fveq12d 6833 . . . . . . . 8 (𝑦 = (𝑛 + 1) → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)))
43 fvoveq1 7376 . . . . . . . . . 10 (𝑦 = (𝑛 + 1) → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
4443sneqd 4591 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘((𝑛 + 1) / 𝑁))})
4544imaeq2d 6015 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))
4642, 45eleq12d 2822 . . . . . . 7 (𝑦 = (𝑛 + 1) → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))
4739, 46imbi12d 344 . . . . . 6 (𝑦 = (𝑛 + 1) → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))))
4847imbi2d 340 . . . . 5 (𝑦 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))))
49 eleq1 2816 . . . . . . 7 (𝑦 = (𝑀 − 1) → (𝑦 ∈ (0...𝑁) ↔ (𝑀 − 1) ∈ (0...𝑁)))
50 fveq2 6826 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → (𝑄𝑦) = (𝑄‘(𝑀 − 1)))
51 oveq1 7360 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → (𝑦 / 𝑁) = ((𝑀 − 1) / 𝑁))
5250, 51fveq12d 6833 . . . . . . . 8 (𝑦 = (𝑀 − 1) → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
53 fvoveq1 7376 . . . . . . . . . 10 (𝑦 = (𝑀 − 1) → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘((𝑀 − 1) / 𝑁)))
5453sneqd 4591 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘((𝑀 − 1) / 𝑁))})
5554imaeq2d 6015 . . . . . . . 8 (𝑦 = (𝑀 − 1) → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
5652, 55eleq12d 2822 . . . . . . 7 (𝑦 = (𝑀 − 1) → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))
5749, 56imbi12d 344 . . . . . 6 (𝑦 = (𝑀 − 1) → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))))
5857imbi2d 340 . . . . 5 (𝑦 = (𝑀 − 1) → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))))
59 cvmliftlem.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
60 cvmliftlem.b . . . . . . . . . . 11 𝐵 = 𝐶
61 cvmliftlem.x . . . . . . . . . . 11 𝑋 = 𝐽
62 cvmliftlem.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
63 cvmliftlem.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (II Cn 𝐽))
64 cvmliftlem.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
65 cvmliftlem.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺‘0))
66 cvmliftlem.t . . . . . . . . . . 11 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
67 cvmliftlem.a . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
68 cvmliftlem.l . . . . . . . . . . 11 𝐿 = (topGen‘ran (,))
69 cvmliftlem.q . . . . . . . . . . 11 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
7059, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69cvmliftlem4 35260 . . . . . . . . . 10 (𝑄‘0) = {⟨0, 𝑃⟩}
7170a1i 11 . . . . . . . . 9 (𝜑 → (𝑄‘0) = {⟨0, 𝑃⟩})
722nnne0d 12196 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
733, 72div0d 11917 . . . . . . . . 9 (𝜑 → (0 / 𝑁) = 0)
7471, 73fveq12d 6833 . . . . . . . 8 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) = ({⟨0, 𝑃⟩}‘0))
75 0nn0 12417 . . . . . . . . 9 0 ∈ ℕ0
76 fvsng 7120 . . . . . . . . 9 ((0 ∈ ℕ0𝑃𝐵) → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7775, 64, 76sylancr 587 . . . . . . . 8 (𝜑 → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7874, 77eqtrd 2764 . . . . . . 7 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) = 𝑃)
7973fveq2d 6830 . . . . . . . . 9 (𝜑 → (𝐺‘(0 / 𝑁)) = (𝐺‘0))
8065, 79eqtr4d 2767 . . . . . . . 8 (𝜑 → (𝐹𝑃) = (𝐺‘(0 / 𝑁)))
81 cvmcn 35234 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
8262, 81syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
8360, 61cnf 23149 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
84 ffn 6656 . . . . . . . . . 10 (𝐹:𝐵𝑋𝐹 Fn 𝐵)
8582, 83, 843syl 18 . . . . . . . . 9 (𝜑𝐹 Fn 𝐵)
86 fniniseg 6998 . . . . . . . . 9 (𝐹 Fn 𝐵 → (𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}) ↔ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘(0 / 𝑁)))))
8785, 86syl 17 . . . . . . . 8 (𝜑 → (𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}) ↔ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘(0 / 𝑁)))))
8864, 80, 87mpbir2and 713 . . . . . . 7 (𝜑𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))
8978, 88eqeltrd 2828 . . . . . 6 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))
9089a1d 25 . . . . 5 (𝜑 → (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))
91 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
92 nn0uz 12795 . . . . . . . . . 10 0 = (ℤ‘0)
9391, 92eleqtrdi 2838 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ (ℤ‘0))
9493adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
95 peano2fzr 13458 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘0) ∧ (𝑛 + 1) ∈ (0...𝑁)) → 𝑛 ∈ (0...𝑁))
9695ex 412 . . . . . . . 8 (𝑛 ∈ (ℤ‘0) → ((𝑛 + 1) ∈ (0...𝑁) → 𝑛 ∈ (0...𝑁)))
9794, 96syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) ∈ (0...𝑁) → 𝑛 ∈ (0...𝑁)))
9897imim1d 82 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})) → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))))
99 eqid 2729 . . . . . . . . . . 11 ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))
100 simprlr 779 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (0...𝑁))
101 elfzle2 13449 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ (0...𝑁) → (𝑛 + 1) ≤ 𝑁)
102100, 101syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ≤ 𝑁)
103 simprll 778 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℕ0)
104 nn0p1nn 12441 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
105103, 104syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ ℕ)
106 nnuz 12796 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
107105, 106eleqtrdi 2838 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (ℤ‘1))
10812adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℤ)
109 elfz5 13437 . . . . . . . . . . . . 13 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → ((𝑛 + 1) ∈ (1...𝑁) ↔ (𝑛 + 1) ≤ 𝑁))
110107, 108, 109syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) ∈ (1...𝑁) ↔ (𝑛 + 1) ≤ 𝑁))
111102, 110mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (1...𝑁))
112 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
113103nn0cnd 12465 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℂ)
114 pncan 11387 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
115113, 5, 114sylancl 586 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) − 1) = 𝑛)
116115fveq2d 6830 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘((𝑛 + 1) − 1)) = (𝑄𝑛))
117115oveq1d 7368 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (((𝑛 + 1) − 1) / 𝑁) = (𝑛 / 𝑁))
118116, 117fveq12d 6833 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
119117fveq2d 6830 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐺‘(((𝑛 + 1) − 1) / 𝑁)) = (𝐺‘(𝑛 / 𝑁)))
120119sneqd 4591 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))} = {(𝐺‘(𝑛 / 𝑁))})
121120imaeq2d 6015 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}) = (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
122112, 118, 1213eltr4d 2843 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}))
12359, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69, 99, 111, 122cvmliftlem6 35262 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
124123simpld 494 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
125103nn0red 12464 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℝ)
1262adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℕ)
127125, 126nndivred 12200 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ∈ ℝ)
128127rexrd 11184 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ∈ ℝ*)
129 peano2re 11307 . . . . . . . . . . . . . 14 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
130125, 129syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ ℝ)
131130, 126nndivred 12200 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ℝ)
132131rexrd 11184 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ℝ*)
133125ltp1d 12073 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 < (𝑛 + 1))
134126nnred 12161 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℝ)
135126nngt0d 12195 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 0 < 𝑁)
136 ltdiv1 12007 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
137125, 130, 134, 135, 136syl112anc 1376 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
138133, 137mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁))
139127, 131, 138ltled 11282 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))
140 ubicc2 13386 . . . . . . . . . . 11 (((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁)) → ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
141128, 132, 139, 140syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
142117oveq1d 7368 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
143141, 142eleqtrrd 2831 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))
144124, 143ffvelcdmd 7023 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵)
145123simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))))
146142reseq2d 5934 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
147145, 146eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
148147fveq1d 6828 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)))
149142feq2d 6640 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ↔ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵))
150124, 149mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
151 fvco3 6926 . . . . . . . . . 10 (((𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))))
152150, 141, 151syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))))
153 fvres 6845 . . . . . . . . . 10 (((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) → ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
154141, 153syl 17 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
155148, 152, 1543eqtr3d 2772 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))
15685adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝐹 Fn 𝐵)
157 fniniseg 6998 . . . . . . . . 9 (𝐹 Fn 𝐵 → (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}) ↔ (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))))
158156, 157syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}) ↔ (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))))
159144, 155, 158mpbir2and 713 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))
160159expr 456 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁))) → (((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))
16198, 160animpimp2impd 846 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑 → (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝜑 → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))))
16228, 38, 48, 58, 90, 161nn0ind 12589 . . . 4 ((𝑀 − 1) ∈ ℕ0 → (𝜑 → ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))))
163162impd 410 . . 3 ((𝑀 − 1) ∈ ℕ0 → ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))
16418, 163mpcom 38 . 2 ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
16516, 164syldan 591 1 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579  cop 4585   cuni 4861   ciun 4944   class class class wbr 5095  cmpt 5176   I cid 5517   × cxp 5621  ccnv 5622  ran crn 5624  cres 5625  cima 5626  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  crio 7309  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  *cxr 11167   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  cuz 12753  (,)cioo 13266  [,]cicc 13269  ...cfz 13428  seqcseq 13926  t crest 17342  topGenctg 17359   Cn ccn 23127  Homeochmeo 23656  IIcii 24784   CovMap ccvm 35227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-icc 13273  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cn 23130  df-hmeo 23658  df-ii 24786  df-cvm 35228
This theorem is referenced by:  cvmliftlem8  35264  cvmliftlem9  35265  cvmliftlem10  35266  cvmliftlem13  35268
  Copyright terms: Public domain W3C validator