Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem7 Structured version   Visualization version   GIF version

Theorem cvmliftlem7 33153
Description: Lemma for cvmlift 33161. Prove by induction that every 𝑄 function is well-defined (we can immediately follow this theorem with cvmliftlem6 33152 to show functionality and lifting of 𝑄). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem7 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem7
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssp1 13228 . . . 4 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
2 cvmliftlem.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
32nncnd 11919 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
43adantr 480 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
5 ax-1cn 10860 . . . . . 6 1 ∈ ℂ
6 npcan 11160 . . . . . 6 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
74, 5, 6sylancl 585 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑁 − 1) + 1) = 𝑁)
87oveq2d 7271 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
91, 8sseqtrid 3969 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
10 simpr 484 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ (1...𝑁))
11 elfzelz 13185 . . . . 5 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℤ)
122nnzd 12354 . . . . 5 (𝜑𝑁 ∈ ℤ)
13 elfzm1b 13263 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1))))
1411, 12, 13syl2anr 596 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1))))
1510, 14mpbid 231 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ (0...(𝑁 − 1)))
169, 15sseldd 3918 . 2 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ (0...𝑁))
17 elfznn0 13278 . . . 4 ((𝑀 − 1) ∈ (0...𝑁) → (𝑀 − 1) ∈ ℕ0)
1817adantl 481 . . 3 ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → (𝑀 − 1) ∈ ℕ0)
19 eleq1 2826 . . . . . . 7 (𝑦 = 0 → (𝑦 ∈ (0...𝑁) ↔ 0 ∈ (0...𝑁)))
20 fveq2 6756 . . . . . . . . 9 (𝑦 = 0 → (𝑄𝑦) = (𝑄‘0))
21 oveq1 7262 . . . . . . . . 9 (𝑦 = 0 → (𝑦 / 𝑁) = (0 / 𝑁))
2220, 21fveq12d 6763 . . . . . . . 8 (𝑦 = 0 → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘0)‘(0 / 𝑁)))
23 fvoveq1 7278 . . . . . . . . . 10 (𝑦 = 0 → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘(0 / 𝑁)))
2423sneqd 4570 . . . . . . . . 9 (𝑦 = 0 → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘(0 / 𝑁))})
2524imaeq2d 5958 . . . . . . . 8 (𝑦 = 0 → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘(0 / 𝑁))}))
2622, 25eleq12d 2833 . . . . . . 7 (𝑦 = 0 → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))
2719, 26imbi12d 344 . . . . . 6 (𝑦 = 0 → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))))
2827imbi2d 340 . . . . 5 (𝑦 = 0 → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))))
29 eleq1 2826 . . . . . . 7 (𝑦 = 𝑛 → (𝑦 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...𝑁)))
30 fveq2 6756 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑄𝑦) = (𝑄𝑛))
31 oveq1 7262 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑦 / 𝑁) = (𝑛 / 𝑁))
3230, 31fveq12d 6763 . . . . . . . 8 (𝑦 = 𝑛 → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
33 fvoveq1 7278 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘(𝑛 / 𝑁)))
3433sneqd 4570 . . . . . . . . 9 (𝑦 = 𝑛 → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘(𝑛 / 𝑁))})
3534imaeq2d 5958 . . . . . . . 8 (𝑦 = 𝑛 → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
3632, 35eleq12d 2833 . . . . . . 7 (𝑦 = 𝑛 → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})))
3729, 36imbi12d 344 . . . . . 6 (𝑦 = 𝑛 → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))))
3837imbi2d 340 . . . . 5 (𝑦 = 𝑛 → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})))))
39 eleq1 2826 . . . . . . 7 (𝑦 = (𝑛 + 1) → (𝑦 ∈ (0...𝑁) ↔ (𝑛 + 1) ∈ (0...𝑁)))
40 fveq2 6756 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝑄𝑦) = (𝑄‘(𝑛 + 1)))
41 oveq1 7262 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝑦 / 𝑁) = ((𝑛 + 1) / 𝑁))
4240, 41fveq12d 6763 . . . . . . . 8 (𝑦 = (𝑛 + 1) → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)))
43 fvoveq1 7278 . . . . . . . . . 10 (𝑦 = (𝑛 + 1) → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
4443sneqd 4570 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘((𝑛 + 1) / 𝑁))})
4544imaeq2d 5958 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))
4642, 45eleq12d 2833 . . . . . . 7 (𝑦 = (𝑛 + 1) → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))
4739, 46imbi12d 344 . . . . . 6 (𝑦 = (𝑛 + 1) → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))))
4847imbi2d 340 . . . . 5 (𝑦 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))))
49 eleq1 2826 . . . . . . 7 (𝑦 = (𝑀 − 1) → (𝑦 ∈ (0...𝑁) ↔ (𝑀 − 1) ∈ (0...𝑁)))
50 fveq2 6756 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → (𝑄𝑦) = (𝑄‘(𝑀 − 1)))
51 oveq1 7262 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → (𝑦 / 𝑁) = ((𝑀 − 1) / 𝑁))
5250, 51fveq12d 6763 . . . . . . . 8 (𝑦 = (𝑀 − 1) → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
53 fvoveq1 7278 . . . . . . . . . 10 (𝑦 = (𝑀 − 1) → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘((𝑀 − 1) / 𝑁)))
5453sneqd 4570 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘((𝑀 − 1) / 𝑁))})
5554imaeq2d 5958 . . . . . . . 8 (𝑦 = (𝑀 − 1) → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
5652, 55eleq12d 2833 . . . . . . 7 (𝑦 = (𝑀 − 1) → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))
5749, 56imbi12d 344 . . . . . 6 (𝑦 = (𝑀 − 1) → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))))
5857imbi2d 340 . . . . 5 (𝑦 = (𝑀 − 1) → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))))
59 cvmliftlem.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
60 cvmliftlem.b . . . . . . . . . . 11 𝐵 = 𝐶
61 cvmliftlem.x . . . . . . . . . . 11 𝑋 = 𝐽
62 cvmliftlem.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
63 cvmliftlem.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (II Cn 𝐽))
64 cvmliftlem.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
65 cvmliftlem.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺‘0))
66 cvmliftlem.t . . . . . . . . . . 11 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
67 cvmliftlem.a . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
68 cvmliftlem.l . . . . . . . . . . 11 𝐿 = (topGen‘ran (,))
69 cvmliftlem.q . . . . . . . . . . 11 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
7059, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69cvmliftlem4 33150 . . . . . . . . . 10 (𝑄‘0) = {⟨0, 𝑃⟩}
7170a1i 11 . . . . . . . . 9 (𝜑 → (𝑄‘0) = {⟨0, 𝑃⟩})
722nnne0d 11953 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
733, 72div0d 11680 . . . . . . . . 9 (𝜑 → (0 / 𝑁) = 0)
7471, 73fveq12d 6763 . . . . . . . 8 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) = ({⟨0, 𝑃⟩}‘0))
75 0nn0 12178 . . . . . . . . 9 0 ∈ ℕ0
76 fvsng 7034 . . . . . . . . 9 ((0 ∈ ℕ0𝑃𝐵) → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7775, 64, 76sylancr 586 . . . . . . . 8 (𝜑 → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7874, 77eqtrd 2778 . . . . . . 7 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) = 𝑃)
7973fveq2d 6760 . . . . . . . . 9 (𝜑 → (𝐺‘(0 / 𝑁)) = (𝐺‘0))
8065, 79eqtr4d 2781 . . . . . . . 8 (𝜑 → (𝐹𝑃) = (𝐺‘(0 / 𝑁)))
81 cvmcn 33124 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
8262, 81syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
8360, 61cnf 22305 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
84 ffn 6584 . . . . . . . . . 10 (𝐹:𝐵𝑋𝐹 Fn 𝐵)
8582, 83, 843syl 18 . . . . . . . . 9 (𝜑𝐹 Fn 𝐵)
86 fniniseg 6919 . . . . . . . . 9 (𝐹 Fn 𝐵 → (𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}) ↔ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘(0 / 𝑁)))))
8785, 86syl 17 . . . . . . . 8 (𝜑 → (𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}) ↔ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘(0 / 𝑁)))))
8864, 80, 87mpbir2and 709 . . . . . . 7 (𝜑𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))
8978, 88eqeltrd 2839 . . . . . 6 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))
9089a1d 25 . . . . 5 (𝜑 → (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))
91 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
92 nn0uz 12549 . . . . . . . . . 10 0 = (ℤ‘0)
9391, 92eleqtrdi 2849 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ (ℤ‘0))
9493adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
95 peano2fzr 13198 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘0) ∧ (𝑛 + 1) ∈ (0...𝑁)) → 𝑛 ∈ (0...𝑁))
9695ex 412 . . . . . . . 8 (𝑛 ∈ (ℤ‘0) → ((𝑛 + 1) ∈ (0...𝑁) → 𝑛 ∈ (0...𝑁)))
9794, 96syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) ∈ (0...𝑁) → 𝑛 ∈ (0...𝑁)))
9897imim1d 82 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})) → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))))
99 eqid 2738 . . . . . . . . . . 11 ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))
100 simprlr 776 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (0...𝑁))
101 elfzle2 13189 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ (0...𝑁) → (𝑛 + 1) ≤ 𝑁)
102100, 101syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ≤ 𝑁)
103 simprll 775 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℕ0)
104 nn0p1nn 12202 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
105103, 104syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ ℕ)
106 nnuz 12550 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
107105, 106eleqtrdi 2849 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (ℤ‘1))
10812adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℤ)
109 elfz5 13177 . . . . . . . . . . . . 13 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → ((𝑛 + 1) ∈ (1...𝑁) ↔ (𝑛 + 1) ≤ 𝑁))
110107, 108, 109syl2anc 583 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) ∈ (1...𝑁) ↔ (𝑛 + 1) ≤ 𝑁))
111102, 110mpbird 256 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (1...𝑁))
112 simprr 769 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
113103nn0cnd 12225 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℂ)
114 pncan 11157 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
115113, 5, 114sylancl 585 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) − 1) = 𝑛)
116115fveq2d 6760 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘((𝑛 + 1) − 1)) = (𝑄𝑛))
117115oveq1d 7270 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (((𝑛 + 1) − 1) / 𝑁) = (𝑛 / 𝑁))
118116, 117fveq12d 6763 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
119117fveq2d 6760 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐺‘(((𝑛 + 1) − 1) / 𝑁)) = (𝐺‘(𝑛 / 𝑁)))
120119sneqd 4570 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))} = {(𝐺‘(𝑛 / 𝑁))})
121120imaeq2d 5958 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}) = (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
122112, 118, 1213eltr4d 2854 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}))
12359, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69, 99, 111, 122cvmliftlem6 33152 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
124123simpld 494 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
125103nn0red 12224 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℝ)
1262adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℕ)
127125, 126nndivred 11957 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ∈ ℝ)
128127rexrd 10956 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ∈ ℝ*)
129 peano2re 11078 . . . . . . . . . . . . . 14 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
130125, 129syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ ℝ)
131130, 126nndivred 11957 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ℝ)
132131rexrd 10956 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ℝ*)
133125ltp1d 11835 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 < (𝑛 + 1))
134126nnred 11918 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℝ)
135126nngt0d 11952 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 0 < 𝑁)
136 ltdiv1 11769 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
137125, 130, 134, 135, 136syl112anc 1372 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
138133, 137mpbid 231 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁))
139127, 131, 138ltled 11053 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))
140 ubicc2 13126 . . . . . . . . . . 11 (((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁)) → ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
141128, 132, 139, 140syl3anc 1369 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
142117oveq1d 7270 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
143141, 142eleqtrrd 2842 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))
144124, 143ffvelrnd 6944 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵)
145123simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))))
146142reseq2d 5880 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
147145, 146eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
148147fveq1d 6758 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)))
149142feq2d 6570 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ↔ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵))
150124, 149mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
151 fvco3 6849 . . . . . . . . . 10 (((𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))))
152150, 141, 151syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))))
153 fvres 6775 . . . . . . . . . 10 (((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) → ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
154141, 153syl 17 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
155148, 152, 1543eqtr3d 2786 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))
15685adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝐹 Fn 𝐵)
157 fniniseg 6919 . . . . . . . . 9 (𝐹 Fn 𝐵 → (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}) ↔ (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))))
158156, 157syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}) ↔ (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))))
159144, 155, 158mpbir2and 709 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))
160159expr 456 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁))) → (((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))
16198, 160animpimp2impd 842 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑 → (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝜑 → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))))
16228, 38, 48, 58, 90, 161nn0ind 12345 . . . 4 ((𝑀 − 1) ∈ ℕ0 → (𝜑 → ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))))
163162impd 410 . . 3 ((𝑀 − 1) ∈ ℕ0 → ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))
16418, 163mpcom 38 . 2 ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
16516, 164syldan 590 1 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558  cop 4564   cuni 4836   ciun 4921   class class class wbr 5070  cmpt 5153   I cid 5479   × cxp 5578  ccnv 5579  ran crn 5581  cres 5582  cima 5583  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  crio 7211  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  cuz 12511  (,)cioo 13008  [,]cicc 13011  ...cfz 13168  seqcseq 13649  t crest 17048  topGenctg 17065   Cn ccn 22283  Homeochmeo 22812  IIcii 23944   CovMap ccvm 33117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-hmeo 22814  df-ii 23946  df-cvm 33118
This theorem is referenced by:  cvmliftlem8  33154  cvmliftlem9  33155  cvmliftlem10  33156  cvmliftlem13  33158
  Copyright terms: Public domain W3C validator