Step | Hyp | Ref
| Expression |
1 | | fzssp1 13228 |
. . . 4
⊢
(0...(𝑁 − 1))
⊆ (0...((𝑁 − 1)
+ 1)) |
2 | | cvmliftlem.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) |
3 | 2 | nncnd 11919 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) |
4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℂ) |
5 | | ax-1cn 10860 |
. . . . . 6
⊢ 1 ∈
ℂ |
6 | | npcan 11160 |
. . . . . 6
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
7 | 4, 5, 6 | sylancl 585 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑁 − 1) + 1) = 𝑁) |
8 | 7 | oveq2d 7271 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (0...((𝑁 − 1) + 1)) = (0...𝑁)) |
9 | 1, 8 | sseqtrid 3969 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (0...(𝑁 − 1)) ⊆ (0...𝑁)) |
10 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → 𝑀 ∈ (1...𝑁)) |
11 | | elfzelz 13185 |
. . . . 5
⊢ (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℤ) |
12 | 2 | nnzd 12354 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
13 | | elfzm1b 13263 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1)))) |
14 | 11, 12, 13 | syl2anr 596 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1)))) |
15 | 10, 14 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ (0...(𝑁 − 1))) |
16 | 9, 15 | sseldd 3918 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ (0...𝑁)) |
17 | | elfznn0 13278 |
. . . 4
⊢ ((𝑀 − 1) ∈ (0...𝑁) → (𝑀 − 1) ∈
ℕ0) |
18 | 17 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → (𝑀 − 1) ∈
ℕ0) |
19 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑦 = 0 → (𝑦 ∈ (0...𝑁) ↔ 0 ∈ (0...𝑁))) |
20 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑦 = 0 → (𝑄‘𝑦) = (𝑄‘0)) |
21 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑦 = 0 → (𝑦 / 𝑁) = (0 / 𝑁)) |
22 | 20, 21 | fveq12d 6763 |
. . . . . . . 8
⊢ (𝑦 = 0 → ((𝑄‘𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘0)‘(0 / 𝑁))) |
23 | | fvoveq1 7278 |
. . . . . . . . . 10
⊢ (𝑦 = 0 → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘(0 / 𝑁))) |
24 | 23 | sneqd 4570 |
. . . . . . . . 9
⊢ (𝑦 = 0 → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘(0 / 𝑁))}) |
25 | 24 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑦 = 0 → (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (◡𝐹 “ {(𝐺‘(0 / 𝑁))})) |
26 | 22, 25 | eleq12d 2833 |
. . . . . . 7
⊢ (𝑦 = 0 → (((𝑄‘𝑦)‘(𝑦 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘0)‘(0 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(0 / 𝑁))}))) |
27 | 19, 26 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = 0 → ((𝑦 ∈ (0...𝑁) → ((𝑄‘𝑦)‘(𝑦 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(0 / 𝑁))})))) |
28 | 27 | imbi2d 340 |
. . . . 5
⊢ (𝑦 = 0 → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄‘𝑦)‘(𝑦 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(0 / 𝑁))}))))) |
29 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑦 = 𝑛 → (𝑦 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...𝑁))) |
30 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑦 = 𝑛 → (𝑄‘𝑦) = (𝑄‘𝑛)) |
31 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑦 = 𝑛 → (𝑦 / 𝑁) = (𝑛 / 𝑁)) |
32 | 30, 31 | fveq12d 6763 |
. . . . . . . 8
⊢ (𝑦 = 𝑛 → ((𝑄‘𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘𝑛)‘(𝑛 / 𝑁))) |
33 | | fvoveq1 7278 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑛 → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘(𝑛 / 𝑁))) |
34 | 33 | sneqd 4570 |
. . . . . . . . 9
⊢ (𝑦 = 𝑛 → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘(𝑛 / 𝑁))}) |
35 | 34 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑦 = 𝑛 → (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))})) |
36 | 32, 35 | eleq12d 2833 |
. . . . . . 7
⊢ (𝑦 = 𝑛 → (((𝑄‘𝑦)‘(𝑦 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) |
37 | 29, 36 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = 𝑛 → ((𝑦 ∈ (0...𝑁) → ((𝑄‘𝑦)‘(𝑦 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ (𝑛 ∈ (0...𝑁) → ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))})))) |
38 | 37 | imbi2d 340 |
. . . . 5
⊢ (𝑦 = 𝑛 → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄‘𝑦)‘(𝑦 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → (𝑛 ∈ (0...𝑁) → ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))))) |
39 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑦 = (𝑛 + 1) → (𝑦 ∈ (0...𝑁) ↔ (𝑛 + 1) ∈ (0...𝑁))) |
40 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑦 = (𝑛 + 1) → (𝑄‘𝑦) = (𝑄‘(𝑛 + 1))) |
41 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑦 = (𝑛 + 1) → (𝑦 / 𝑁) = ((𝑛 + 1) / 𝑁)) |
42 | 40, 41 | fveq12d 6763 |
. . . . . . . 8
⊢ (𝑦 = (𝑛 + 1) → ((𝑄‘𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) |
43 | | fvoveq1 7278 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑛 + 1) → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁))) |
44 | 43 | sneqd 4570 |
. . . . . . . . 9
⊢ (𝑦 = (𝑛 + 1) → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘((𝑛 + 1) / 𝑁))}) |
45 | 44 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑦 = (𝑛 + 1) → (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (◡𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})) |
46 | 42, 45 | eleq12d 2833 |
. . . . . . 7
⊢ (𝑦 = (𝑛 + 1) → (((𝑄‘𝑦)‘(𝑦 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))) |
47 | 39, 46 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = (𝑛 + 1) → ((𝑦 ∈ (0...𝑁) → ((𝑄‘𝑦)‘(𝑦 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))) |
48 | 47 | imbi2d 340 |
. . . . 5
⊢ (𝑦 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄‘𝑦)‘(𝑦 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))))) |
49 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑦 = (𝑀 − 1) → (𝑦 ∈ (0...𝑁) ↔ (𝑀 − 1) ∈ (0...𝑁))) |
50 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑦 = (𝑀 − 1) → (𝑄‘𝑦) = (𝑄‘(𝑀 − 1))) |
51 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑦 = (𝑀 − 1) → (𝑦 / 𝑁) = ((𝑀 − 1) / 𝑁)) |
52 | 50, 51 | fveq12d 6763 |
. . . . . . . 8
⊢ (𝑦 = (𝑀 − 1) → ((𝑄‘𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) |
53 | | fvoveq1 7278 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑀 − 1) → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘((𝑀 − 1) / 𝑁))) |
54 | 53 | sneqd 4570 |
. . . . . . . . 9
⊢ (𝑦 = (𝑀 − 1) → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘((𝑀 − 1) / 𝑁))}) |
55 | 54 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝑦 = (𝑀 − 1) → (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) |
56 | 52, 55 | eleq12d 2833 |
. . . . . . 7
⊢ (𝑦 = (𝑀 − 1) → (((𝑄‘𝑦)‘(𝑦 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))) |
57 | 49, 56 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = (𝑀 − 1) → ((𝑦 ∈ (0...𝑁) → ((𝑄‘𝑦)‘(𝑦 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))) |
58 | 57 | imbi2d 340 |
. . . . 5
⊢ (𝑦 = (𝑀 − 1) → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄‘𝑦)‘(𝑦 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))))) |
59 | | cvmliftlem.1 |
. . . . . . . . . . 11
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
60 | | cvmliftlem.b |
. . . . . . . . . . 11
⊢ 𝐵 = ∪
𝐶 |
61 | | cvmliftlem.x |
. . . . . . . . . . 11
⊢ 𝑋 = ∪
𝐽 |
62 | | cvmliftlem.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
63 | | cvmliftlem.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
64 | | cvmliftlem.p |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
65 | | cvmliftlem.e |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
66 | | cvmliftlem.t |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪
𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
67 | | cvmliftlem.a |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
68 | | cvmliftlem.l |
. . . . . . . . . . 11
⊢ 𝐿 = (topGen‘ran
(,)) |
69 | | cvmliftlem.q |
. . . . . . . . . . 11
⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0,
{〈0, 𝑃〉}〉})) |
70 | 59, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69 | cvmliftlem4 33150 |
. . . . . . . . . 10
⊢ (𝑄‘0) = {〈0, 𝑃〉} |
71 | 70 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘0) = {〈0, 𝑃〉}) |
72 | 2 | nnne0d 11953 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ≠ 0) |
73 | 3, 72 | div0d 11680 |
. . . . . . . . 9
⊢ (𝜑 → (0 / 𝑁) = 0) |
74 | 71, 73 | fveq12d 6763 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) = ({〈0, 𝑃〉}‘0)) |
75 | | 0nn0 12178 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
76 | | fvsng 7034 |
. . . . . . . . 9
⊢ ((0
∈ ℕ0 ∧ 𝑃 ∈ 𝐵) → ({〈0, 𝑃〉}‘0) = 𝑃) |
77 | 75, 64, 76 | sylancr 586 |
. . . . . . . 8
⊢ (𝜑 → ({〈0, 𝑃〉}‘0) = 𝑃) |
78 | 74, 77 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) = 𝑃) |
79 | 73 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘(0 / 𝑁)) = (𝐺‘0)) |
80 | 65, 79 | eqtr4d 2781 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘(0 / 𝑁))) |
81 | | cvmcn 33124 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
82 | 62, 81 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (𝐶 Cn 𝐽)) |
83 | 60, 61 | cnf 22305 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶𝑋) |
84 | | ffn 6584 |
. . . . . . . . . 10
⊢ (𝐹:𝐵⟶𝑋 → 𝐹 Fn 𝐵) |
85 | 82, 83, 84 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn 𝐵) |
86 | | fniniseg 6919 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝐵 → (𝑃 ∈ (◡𝐹 “ {(𝐺‘(0 / 𝑁))}) ↔ (𝑃 ∈ 𝐵 ∧ (𝐹‘𝑃) = (𝐺‘(0 / 𝑁))))) |
87 | 85, 86 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 ∈ (◡𝐹 “ {(𝐺‘(0 / 𝑁))}) ↔ (𝑃 ∈ 𝐵 ∧ (𝐹‘𝑃) = (𝐺‘(0 / 𝑁))))) |
88 | 64, 80, 87 | mpbir2and 709 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ (◡𝐹 “ {(𝐺‘(0 / 𝑁))})) |
89 | 78, 88 | eqeltrd 2839 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(0 / 𝑁))})) |
90 | 89 | a1d 25 |
. . . . 5
⊢ (𝜑 → (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(0 / 𝑁))}))) |
91 | | id 22 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℕ0) |
92 | | nn0uz 12549 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
93 | 91, 92 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
(ℤ≥‘0)) |
94 | 93 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
(ℤ≥‘0)) |
95 | | peano2fzr 13198 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘0) ∧ (𝑛 + 1) ∈ (0...𝑁)) → 𝑛 ∈ (0...𝑁)) |
96 | 95 | ex 412 |
. . . . . . . 8
⊢ (𝑛 ∈
(ℤ≥‘0) → ((𝑛 + 1) ∈ (0...𝑁) → 𝑛 ∈ (0...𝑁))) |
97 | 94, 96 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) ∈ (0...𝑁) → 𝑛 ∈ (0...𝑁))) |
98 | 97 | imim1d 82 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 ∈ (0...𝑁) → ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))})) → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))})))) |
99 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) |
100 | | simprlr 776 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (0...𝑁)) |
101 | | elfzle2 13189 |
. . . . . . . . . . . . 13
⊢ ((𝑛 + 1) ∈ (0...𝑁) → (𝑛 + 1) ≤ 𝑁) |
102 | 100, 101 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ≤ 𝑁) |
103 | | simprll 775 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℕ0) |
104 | | nn0p1nn 12202 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ ℕ) |
106 | | nnuz 12550 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
107 | 105, 106 | eleqtrdi 2849 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈
(ℤ≥‘1)) |
108 | 12 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℤ) |
109 | | elfz5 13177 |
. . . . . . . . . . . . 13
⊢ (((𝑛 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ ℤ) → ((𝑛 + 1) ∈ (1...𝑁) ↔ (𝑛 + 1) ≤ 𝑁)) |
110 | 107, 108,
109 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) ∈ (1...𝑁) ↔ (𝑛 + 1) ≤ 𝑁)) |
111 | 102, 110 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (1...𝑁)) |
112 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))})) |
113 | 103 | nn0cnd 12225 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℂ) |
114 | | pncan 11157 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 + 1)
− 1) = 𝑛) |
115 | 113, 5, 114 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) − 1) = 𝑛) |
116 | 115 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘((𝑛 + 1) − 1)) = (𝑄‘𝑛)) |
117 | 115 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (((𝑛 + 1) − 1) / 𝑁) = (𝑛 / 𝑁)) |
118 | 116, 117 | fveq12d 6763 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘𝑛)‘(𝑛 / 𝑁))) |
119 | 117 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐺‘(((𝑛 + 1) − 1) / 𝑁)) = (𝐺‘(𝑛 / 𝑁))) |
120 | 119 | sneqd 4570 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))} = {(𝐺‘(𝑛 / 𝑁))}) |
121 | 120 | imaeq2d 5958 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (◡𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}) = (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))})) |
122 | 112, 118,
121 | 3eltr4d 2854 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))})) |
123 | 59, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69, 99, 111, 122 | cvmliftlem6 33152 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))))) |
124 | 123 | simpld 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵) |
125 | 103 | nn0red 12224 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℝ) |
126 | 2 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℕ) |
127 | 125, 126 | nndivred 11957 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ∈ ℝ) |
128 | 127 | rexrd 10956 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ∈
ℝ*) |
129 | | peano2re 11078 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℝ → (𝑛 + 1) ∈
ℝ) |
130 | 125, 129 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ ℝ) |
131 | 130, 126 | nndivred 11957 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ℝ) |
132 | 131 | rexrd 10956 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈
ℝ*) |
133 | 125 | ltp1d 11835 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 < (𝑛 + 1)) |
134 | 126 | nnred 11918 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℝ) |
135 | 126 | nngt0d 11952 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 0 < 𝑁) |
136 | | ltdiv1 11769 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧
(𝑁 ∈ ℝ ∧ 0
< 𝑁)) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁))) |
137 | 125, 130,
134, 135, 136 | syl112anc 1372 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁))) |
138 | 133, 137 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)) |
139 | 127, 131,
138 | ltled 11053 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁)) |
140 | | ubicc2 13126 |
. . . . . . . . . . 11
⊢ (((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁)) → ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) |
141 | 128, 132,
139, 140 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) |
142 | 117 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) |
143 | 141, 142 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) |
144 | 124, 143 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵) |
145 | 123 | simprd 495 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))) |
146 | 142 | reseq2d 5880 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) |
147 | 145, 146 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) |
148 | 147 | fveq1d 6758 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁))) |
149 | 142 | feq2d 6570 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ↔ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)) |
150 | 124, 149 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵) |
151 | | fvco3 6849 |
. . . . . . . . . 10
⊢ (((𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)))) |
152 | 150, 141,
151 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)))) |
153 | | fvres 6775 |
. . . . . . . . . 10
⊢ (((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) → ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁))) |
154 | 141, 153 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁))) |
155 | 148, 152,
154 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁))) |
156 | 85 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝐹 Fn 𝐵) |
157 | | fniniseg 6919 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝐵 → (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}) ↔ (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁))))) |
158 | 156, 157 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}) ↔ (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁))))) |
159 | 144, 155,
158 | mpbir2and 709 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})) |
160 | 159 | expr 456 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁))) → (((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))) |
161 | 98, 160 | animpimp2impd 842 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((𝜑 → (𝑛 ∈ (0...𝑁) → ((𝑄‘𝑛)‘(𝑛 / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝜑 → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))))) |
162 | 28, 38, 48, 58, 90, 161 | nn0ind 12345 |
. . . 4
⊢ ((𝑀 − 1) ∈
ℕ0 → (𝜑
→ ((𝑀 − 1)
∈ (0...𝑁) →
((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))) |
163 | 162 | impd 410 |
. . 3
⊢ ((𝑀 − 1) ∈
ℕ0 → ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))) |
164 | 18, 163 | mpcom 38 |
. 2
⊢ ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) |
165 | 16, 164 | syldan 590 |
1
⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) |