MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqhomo Structured version   Visualization version   GIF version

Theorem seqhomo 14014
Description: Apply a homomorphism to a sequence. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqhomo.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqhomo.2 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqhomo.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqhomo.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
seqhomo.5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))
Assertion
Ref Expression
seqhomo (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐻,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺   𝑥, + ,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦
Allowed substitution hint:   𝐺(𝑦)

Proof of Theorem seqhomo
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seqhomo.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13508 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2821 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 2fveq3 6896 . . . . . . 7 (𝑥 = 𝑀 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)))
6 fveq2 6891 . . . . . . 7 (𝑥 = 𝑀 → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘𝑀))
75, 6eqeq12d 2748 . . . . . 6 (𝑥 = 𝑀 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)))
84, 7imbi12d 344 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))))
98imbi2d 340 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)))))
10 eleq1 2821 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
11 2fveq3 6896 . . . . . . 7 (𝑥 = 𝑛 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)))
12 fveq2 6891 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘𝑛))
1311, 12eqeq12d 2748 . . . . . 6 (𝑥 = 𝑛 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)))
1410, 13imbi12d 344 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ (𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))))
1514imbi2d 340 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)))))
16 eleq1 2821 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
17 2fveq3 6896 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))
18 fveq2 6891 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))
1917, 18eqeq12d 2748 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))
2016, 19imbi12d 344 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))))
2120imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))))
22 eleq1 2821 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
23 2fveq3 6896 . . . . . . 7 (𝑥 = 𝑁 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)))
24 fveq2 6891 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘𝑁))
2523, 24eqeq12d 2748 . . . . . 6 (𝑥 = 𝑁 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)))
2622, 25imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))))
2726imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)))))
28 2fveq3 6896 . . . . . . . 8 (𝑥 = 𝑀 → (𝐻‘(𝐹𝑥)) = (𝐻‘(𝐹𝑀)))
29 fveq2 6891 . . . . . . . 8 (𝑥 = 𝑀 → (𝐺𝑥) = (𝐺𝑀))
3028, 29eqeq12d 2748 . . . . . . 7 (𝑥 = 𝑀 → ((𝐻‘(𝐹𝑥)) = (𝐺𝑥) ↔ (𝐻‘(𝐹𝑀)) = (𝐺𝑀)))
31 seqhomo.5 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))
3231ralrimiva 3146 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐻‘(𝐹𝑥)) = (𝐺𝑥))
33 eluzfz1 13507 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
341, 33syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
3530, 32, 34rspcdva 3613 . . . . . 6 (𝜑 → (𝐻‘(𝐹𝑀)) = (𝐺𝑀))
36 eluzel2 12826 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
37 seq1 13978 . . . . . . . 8 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
381, 36, 373syl 18 . . . . . . 7 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
3938fveq2d 6895 . . . . . 6 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (𝐻‘(𝐹𝑀)))
40 seq1 13978 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀(𝑄, 𝐺)‘𝑀) = (𝐺𝑀))
411, 36, 403syl 18 . . . . . 6 (𝜑 → (seq𝑀(𝑄, 𝐺)‘𝑀) = (𝐺𝑀))
4235, 39, 413eqtr4d 2782 . . . . 5 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))
4342a1d 25 . . . 4 (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)))
44 peano2fzr 13513 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
4544adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
4645expr 457 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
4746imim1d 82 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))))
48 oveq1 7415 . . . . . 6 ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))
49 seqp1 13980 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5049ad2antrl 726 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5150fveq2d 6895 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
52 seqhomo.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
5352ralrimivva 3200 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
5453adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
55 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
56 elfzuz3 13497 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑛))
57 fzss2 13540 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
5845, 56, 573syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
5958sselda 3982 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝑥 ∈ (𝑀...𝑁))
60 seqhomo.2 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
6160adantlr 713 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
6259, 61syldan 591 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐹𝑥) ∈ 𝑆)
63 seqhomo.1 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6463adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6555, 62, 64seqcl 13987 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆)
66 fveq2 6891 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
6766eleq1d 2818 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
6860ralrimiva 3146 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
6968adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
70 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
7167, 69, 70rspcdva 3613 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
72 fvoveq1 7431 . . . . . . . . . . . 12 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝐻‘(𝑥 + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)))
73 fveq2 6891 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝐻𝑥) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)))
7473oveq1d 7423 . . . . . . . . . . . 12 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝐻𝑥)𝑄(𝐻𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻𝑦)))
7572, 74eqeq12d 2748 . . . . . . . . . . 11 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻𝑦))))
76 oveq2 7416 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
7776fveq2d 6895 . . . . . . . . . . . 12 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
78 fveq2 6891 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻𝑦) = (𝐻‘(𝐹‘(𝑛 + 1))))
7978oveq2d 7424 . . . . . . . . . . . 12 (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))
8077, 79eqeq12d 2748 . . . . . . . . . . 11 (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
8175, 80rspc2v 3622 . . . . . . . . . 10 (((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
8265, 71, 81syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
8354, 82mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))
84 2fveq3 6896 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝐻‘(𝐹𝑥)) = (𝐻‘(𝐹‘(𝑛 + 1))))
85 fveq2 6891 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝐺𝑥) = (𝐺‘(𝑛 + 1)))
8684, 85eqeq12d 2748 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝐻‘(𝐹𝑥)) = (𝐺𝑥) ↔ (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1))))
8732adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐻‘(𝐹𝑥)) = (𝐺𝑥))
8886, 87, 70rspcdva 3613 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1)))
8988oveq2d 7424 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))))
9051, 83, 893eqtrd 2776 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))))
91 seqp1 13980 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))
9291ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))
9390, 92eqeq12d 2748 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) ↔ ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))))
9448, 93imbitrrid 245 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))
9547, 94animpimp2impd 844 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))))
969, 15, 21, 27, 43, 95uzind4i 12893 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))))
971, 96mpcom 38 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)))
983, 97mpd 15 1 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  wss 3948  cfv 6543  (class class class)co 7408  1c1 11110   + caddc 11112  cz 12557  cuz 12821  ...cfz 13483  seqcseq 13965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-seq 13966
This theorem is referenced by:  seqfeq4  14016  seqdistr  14018  seqof  14024  fsumrelem  15752  efcj  16034  gsumwmhm  18725  gsumzmhm  19804  elqaalem2  25832  logfac  26108  gamcvg2lem  26560  prmorcht  26679  pclogsum  26715
  Copyright terms: Public domain W3C validator