| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | seqhomo.3 | . . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 2 |  | eluzfz2 13573 | . . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | 
| 3 | 1, 2 | syl 17 | . 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) | 
| 4 |  | eleq1 2828 | . . . . . 6
⊢ (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁))) | 
| 5 |  | 2fveq3 6910 | . . . . . . 7
⊢ (𝑥 = 𝑀 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑀))) | 
| 6 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑥 = 𝑀 → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘𝑀)) | 
| 7 | 5, 6 | eqeq12d 2752 | . . . . . 6
⊢ (𝑥 = 𝑀 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))) | 
| 8 | 4, 7 | imbi12d 344 | . . . . 5
⊢ (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)))) | 
| 9 | 8 | imbi2d 340 | . . . 4
⊢ (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))))) | 
| 10 |  | eleq1 2828 | . . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁))) | 
| 11 |  | 2fveq3 6910 | . . . . . . 7
⊢ (𝑥 = 𝑛 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑛))) | 
| 12 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑥 = 𝑛 → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘𝑛)) | 
| 13 | 11, 12 | eqeq12d 2752 | . . . . . 6
⊢ (𝑥 = 𝑛 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))) | 
| 14 | 10, 13 | imbi12d 344 | . . . . 5
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ (𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)))) | 
| 15 | 14 | imbi2d 340 | . . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))))) | 
| 16 |  | eleq1 2828 | . . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁))) | 
| 17 |  | 2fveq3 6910 | . . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))) | 
| 18 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))) | 
| 19 | 17, 18 | eqeq12d 2752 | . . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))) | 
| 20 | 16, 19 | imbi12d 344 | . . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))) | 
| 21 | 20 | imbi2d 340 | . . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))))) | 
| 22 |  | eleq1 2828 | . . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁))) | 
| 23 |  | 2fveq3 6910 | . . . . . . 7
⊢ (𝑥 = 𝑁 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑁))) | 
| 24 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑥 = 𝑁 → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘𝑁)) | 
| 25 | 23, 24 | eqeq12d 2752 | . . . . . 6
⊢ (𝑥 = 𝑁 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))) | 
| 26 | 22, 25 | imbi12d 344 | . . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)))) | 
| 27 | 26 | imbi2d 340 | . . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))))) | 
| 28 |  | 2fveq3 6910 | . . . . . . . 8
⊢ (𝑥 = 𝑀 → (𝐻‘(𝐹‘𝑥)) = (𝐻‘(𝐹‘𝑀))) | 
| 29 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑥 = 𝑀 → (𝐺‘𝑥) = (𝐺‘𝑀)) | 
| 30 | 28, 29 | eqeq12d 2752 | . . . . . . 7
⊢ (𝑥 = 𝑀 → ((𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥) ↔ (𝐻‘(𝐹‘𝑀)) = (𝐺‘𝑀))) | 
| 31 |  | seqhomo.5 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) | 
| 32 | 31 | ralrimiva 3145 | . . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) | 
| 33 |  | eluzfz1 13572 | . . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | 
| 34 | 1, 33 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) | 
| 35 | 30, 32, 34 | rspcdva 3622 | . . . . . 6
⊢ (𝜑 → (𝐻‘(𝐹‘𝑀)) = (𝐺‘𝑀)) | 
| 36 |  | eluzel2 12884 | . . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | 
| 37 |  | seq1 14056 | . . . . . . . 8
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | 
| 38 | 1, 36, 37 | 3syl 18 | . . . . . . 7
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | 
| 39 | 38 | fveq2d 6909 | . . . . . 6
⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (𝐻‘(𝐹‘𝑀))) | 
| 40 |  | seq1 14056 | . . . . . . 7
⊢ (𝑀 ∈ ℤ → (seq𝑀(𝑄, 𝐺)‘𝑀) = (𝐺‘𝑀)) | 
| 41 | 1, 36, 40 | 3syl 18 | . . . . . 6
⊢ (𝜑 → (seq𝑀(𝑄, 𝐺)‘𝑀) = (𝐺‘𝑀)) | 
| 42 | 35, 39, 41 | 3eqtr4d 2786 | . . . . 5
⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)) | 
| 43 | 42 | a1d 25 | . . . 4
⊢ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))) | 
| 44 |  | peano2fzr 13578 | . . . . . . . 8
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁)) | 
| 45 | 44 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁)) | 
| 46 | 45 | expr 456 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁))) | 
| 47 | 46 | imim1d 82 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)))) | 
| 48 |  | oveq1 7439 | . . . . . 6
⊢ ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))) | 
| 49 |  | seqp1 14058 | . . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) | 
| 50 | 49 | ad2antrl 728 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) | 
| 51 | 50 | fveq2d 6909 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) | 
| 52 |  | seqhomo.4 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) | 
| 53 | 52 | ralrimivva 3201 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) | 
| 54 | 53 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) | 
| 55 |  | simprl 770 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ≥‘𝑀)) | 
| 56 |  | elfzuz3 13562 | . . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑛)) | 
| 57 |  | fzss2 13605 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) | 
| 58 | 45, 56, 57 | 3syl 18 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) | 
| 59 | 58 | sselda 3982 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝑥 ∈ (𝑀...𝑁)) | 
| 60 |  | seqhomo.2 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) | 
| 61 | 60 | adantlr 715 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) | 
| 62 | 59, 61 | syldan 591 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐹‘𝑥) ∈ 𝑆) | 
| 63 |  | seqhomo.1 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 64 | 63 | adantlr 715 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 65 | 55, 62, 64 | seqcl 14064 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆) | 
| 66 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑥 = (𝑛 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) | 
| 67 | 66 | eleq1d 2825 | . . . . . . . . . . 11
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) | 
| 68 | 60 | ralrimiva 3145 | . . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) ∈ 𝑆) | 
| 69 | 68 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹‘𝑥) ∈ 𝑆) | 
| 70 |  | simprr 772 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁)) | 
| 71 | 67, 69, 70 | rspcdva 3622 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) | 
| 72 |  | fvoveq1 7455 | . . . . . . . . . . . 12
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝐻‘(𝑥 + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦))) | 
| 73 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝐻‘𝑥) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑛))) | 
| 74 | 73 | oveq1d 7447 | . . . . . . . . . . . 12
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦))) | 
| 75 | 72, 74 | eqeq12d 2752 | . . . . . . . . . . 11
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦)))) | 
| 76 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) | 
| 77 | 76 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) | 
| 78 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘𝑦) = (𝐻‘(𝐹‘(𝑛 + 1)))) | 
| 79 | 78 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))) | 
| 80 | 77, 79 | eqeq12d 2752 | . . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))) | 
| 81 | 75, 80 | rspc2v 3632 | . . . . . . . . . 10
⊢
(((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))) | 
| 82 | 65, 71, 81 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))) | 
| 83 | 54, 82 | mpd 15 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))) | 
| 84 |  | 2fveq3 6910 | . . . . . . . . . . 11
⊢ (𝑥 = (𝑛 + 1) → (𝐻‘(𝐹‘𝑥)) = (𝐻‘(𝐹‘(𝑛 + 1)))) | 
| 85 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑥 = (𝑛 + 1) → (𝐺‘𝑥) = (𝐺‘(𝑛 + 1))) | 
| 86 | 84, 85 | eqeq12d 2752 | . . . . . . . . . 10
⊢ (𝑥 = (𝑛 + 1) → ((𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥) ↔ (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1)))) | 
| 87 | 32 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) | 
| 88 | 86, 87, 70 | rspcdva 3622 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1))) | 
| 89 | 88 | oveq2d 7448 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1)))) | 
| 90 | 51, 83, 89 | 3eqtrd 2780 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1)))) | 
| 91 |  | seqp1 14058 | . . . . . . . 8
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))) | 
| 92 | 91 | ad2antrl 728 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))) | 
| 93 | 90, 92 | eqeq12d 2752 | . . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) ↔ ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))) | 
| 94 | 48, 93 | imbitrrid 246 | . . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))) | 
| 95 | 47, 94 | animpimp2impd 846 | . . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))))) | 
| 96 | 9, 15, 21, 27, 43, 95 | uzind4i 12953 | . . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)))) | 
| 97 | 1, 96 | mpcom 38 | . 2
⊢ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))) | 
| 98 | 3, 97 | mpd 15 | 1
⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)) |