MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqhomo Structured version   Visualization version   GIF version

Theorem seqhomo 13990
Description: Apply a homomorphism to a sequence. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqhomo.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqhomo.2 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqhomo.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqhomo.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
seqhomo.5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))
Assertion
Ref Expression
seqhomo (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐻,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺   𝑥, + ,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦
Allowed substitution hint:   𝐺(𝑦)

Proof of Theorem seqhomo
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seqhomo.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13469 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2816 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 2fveq3 6845 . . . . . . 7 (𝑥 = 𝑀 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)))
6 fveq2 6840 . . . . . . 7 (𝑥 = 𝑀 → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘𝑀))
75, 6eqeq12d 2745 . . . . . 6 (𝑥 = 𝑀 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)))
84, 7imbi12d 344 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))))
98imbi2d 340 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)))))
10 eleq1 2816 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
11 2fveq3 6845 . . . . . . 7 (𝑥 = 𝑛 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)))
12 fveq2 6840 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘𝑛))
1311, 12eqeq12d 2745 . . . . . 6 (𝑥 = 𝑛 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)))
1410, 13imbi12d 344 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ (𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))))
1514imbi2d 340 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)))))
16 eleq1 2816 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
17 2fveq3 6845 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))
18 fveq2 6840 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))
1917, 18eqeq12d 2745 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))
2016, 19imbi12d 344 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))))
2120imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))))
22 eleq1 2816 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
23 2fveq3 6845 . . . . . . 7 (𝑥 = 𝑁 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)))
24 fveq2 6840 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀(𝑄, 𝐺)‘𝑥) = (seq𝑀(𝑄, 𝐺)‘𝑁))
2523, 24eqeq12d 2745 . . . . . 6 (𝑥 = 𝑁 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)))
2622, 25imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥)) ↔ (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))))
2726imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑥)) = (seq𝑀(𝑄, 𝐺)‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)))))
28 2fveq3 6845 . . . . . . . 8 (𝑥 = 𝑀 → (𝐻‘(𝐹𝑥)) = (𝐻‘(𝐹𝑀)))
29 fveq2 6840 . . . . . . . 8 (𝑥 = 𝑀 → (𝐺𝑥) = (𝐺𝑀))
3028, 29eqeq12d 2745 . . . . . . 7 (𝑥 = 𝑀 → ((𝐻‘(𝐹𝑥)) = (𝐺𝑥) ↔ (𝐻‘(𝐹𝑀)) = (𝐺𝑀)))
31 seqhomo.5 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))
3231ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐻‘(𝐹𝑥)) = (𝐺𝑥))
33 eluzfz1 13468 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
341, 33syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
3530, 32, 34rspcdva 3586 . . . . . 6 (𝜑 → (𝐻‘(𝐹𝑀)) = (𝐺𝑀))
36 eluzel2 12774 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
37 seq1 13955 . . . . . . . 8 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
381, 36, 373syl 18 . . . . . . 7 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
3938fveq2d 6844 . . . . . 6 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (𝐻‘(𝐹𝑀)))
40 seq1 13955 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀(𝑄, 𝐺)‘𝑀) = (𝐺𝑀))
411, 36, 403syl 18 . . . . . 6 (𝜑 → (seq𝑀(𝑄, 𝐺)‘𝑀) = (𝐺𝑀))
4235, 39, 413eqtr4d 2774 . . . . 5 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))
4342a1d 25 . . . 4 (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)))
44 peano2fzr 13474 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
4544adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
4645expr 456 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
4746imim1d 82 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))))
48 oveq1 7376 . . . . . 6 ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))
49 seqp1 13957 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5049ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5150fveq2d 6844 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
52 seqhomo.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
5352ralrimivva 3178 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
5453adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
55 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
56 elfzuz3 13458 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑛))
57 fzss2 13501 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
5845, 56, 573syl 18 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
5958sselda 3943 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝑥 ∈ (𝑀...𝑁))
60 seqhomo.2 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
6160adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
6259, 61syldan 591 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐹𝑥) ∈ 𝑆)
63 seqhomo.1 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6463adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6555, 62, 64seqcl 13963 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆)
66 fveq2 6840 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
6766eleq1d 2813 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
6860ralrimiva 3125 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
6968adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
70 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
7167, 69, 70rspcdva 3586 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
72 fvoveq1 7392 . . . . . . . . . . . 12 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝐻‘(𝑥 + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)))
73 fveq2 6840 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝐻𝑥) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)))
7473oveq1d 7384 . . . . . . . . . . . 12 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝐻𝑥)𝑄(𝐻𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻𝑦)))
7572, 74eqeq12d 2745 . . . . . . . . . . 11 (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻𝑦))))
76 oveq2 7377 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
7776fveq2d 6844 . . . . . . . . . . . 12 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
78 fveq2 6840 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻𝑦) = (𝐻‘(𝐹‘(𝑛 + 1))))
7978oveq2d 7385 . . . . . . . . . . . 12 (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))
8077, 79eqeq12d 2745 . . . . . . . . . . 11 (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
8175, 80rspc2v 3596 . . . . . . . . . 10 (((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
8265, 71, 81syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
8354, 82mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))
84 2fveq3 6845 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝐻‘(𝐹𝑥)) = (𝐻‘(𝐹‘(𝑛 + 1))))
85 fveq2 6840 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝐺𝑥) = (𝐺‘(𝑛 + 1)))
8684, 85eqeq12d 2745 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝐻‘(𝐹𝑥)) = (𝐺𝑥) ↔ (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1))))
8732adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ (𝑀...𝑁)(𝐻‘(𝐹𝑥)) = (𝐺𝑥))
8886, 87, 70rspcdva 3586 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1)))
8988oveq2d 7385 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))))
9051, 83, 893eqtrd 2768 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))))
91 seqp1 13957 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))
9291ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))
9390, 92eqeq12d 2745 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) ↔ ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))))
9448, 93imbitrrid 246 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))
9547, 94animpimp2impd 846 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))))
969, 15, 21, 27, 43, 95uzind4i 12845 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))))
971, 96mpcom 38 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)))
983, 97mpd 15 1 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911  cfv 6499  (class class class)co 7369  1c1 11045   + caddc 11047  cz 12505  cuz 12769  ...cfz 13444  seqcseq 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943
This theorem is referenced by:  seqfeq4  13992  seqdistr  13994  seqof  14000  fsumrelem  15749  efcj  16034  gsumwmhm  18748  gsumzmhm  19843  elqaalem2  26204  logfac  26486  gamcvg2lem  26945  prmorcht  27064  pclogsum  27102
  Copyright terms: Public domain W3C validator