MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasdsf1olem Structured version   Visualization version   GIF version

Theorem imasdsf1olem 24201
Description: Lemma for imasdsf1o 24202. (Contributed by Mario Carneiro, 21-Aug-2015.) (Proof shortened by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
imasdsf1o.u (πœ‘ β†’ π‘ˆ = (𝐹 β€œs 𝑅))
imasdsf1o.v (πœ‘ β†’ 𝑉 = (Baseβ€˜π‘…))
imasdsf1o.f (πœ‘ β†’ 𝐹:𝑉–1-1-onto→𝐡)
imasdsf1o.r (πœ‘ β†’ 𝑅 ∈ 𝑍)
imasdsf1o.e 𝐸 = ((distβ€˜π‘…) β†Ύ (𝑉 Γ— 𝑉))
imasdsf1o.d 𝐷 = (distβ€˜π‘ˆ)
imasdsf1o.m (πœ‘ β†’ 𝐸 ∈ (∞Metβ€˜π‘‰))
imasdsf1o.x (πœ‘ β†’ 𝑋 ∈ 𝑉)
imasdsf1o.y (πœ‘ β†’ π‘Œ ∈ 𝑉)
imasdsf1o.w π‘Š = (ℝ*𝑠 β†Ύs (ℝ* βˆ– {-∞}))
imasdsf1o.s 𝑆 = {β„Ž ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∣ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))}
imasdsf1o.t 𝑇 = βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)))
Assertion
Ref Expression
imasdsf1olem (πœ‘ β†’ ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘Œ)) = (π‘‹πΈπ‘Œ))
Distinct variable groups:   𝑔,β„Ž,𝑖,𝑛,𝐹   πœ‘,𝑔,β„Ž,𝑖,𝑛   𝑔,𝑉,β„Ž,𝑖,𝑛   𝑔,𝐸,𝑖,𝑛   𝑅,𝑔,β„Ž,𝑖,𝑛   𝑆,𝑔   𝑔,𝑋,β„Ž,𝑖,𝑛   𝑔,π‘Œ,β„Ž,𝑖,𝑛
Allowed substitution hints:   𝐡(𝑔,β„Ž,𝑖,𝑛)   𝐷(𝑔,β„Ž,𝑖,𝑛)   𝑆(β„Ž,𝑖,𝑛)   𝑇(𝑔,β„Ž,𝑖,𝑛)   π‘ˆ(𝑔,β„Ž,𝑖,𝑛)   𝐸(β„Ž)   π‘Š(𝑔,β„Ž,𝑖,𝑛)   𝑍(𝑔,β„Ž,𝑖,𝑛)

Proof of Theorem imasdsf1olem
Dummy variables 𝑓 𝑗 π‘š 𝑝 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasdsf1o.u . . . 4 (πœ‘ β†’ π‘ˆ = (𝐹 β€œs 𝑅))
2 imasdsf1o.v . . . 4 (πœ‘ β†’ 𝑉 = (Baseβ€˜π‘…))
3 imasdsf1o.f . . . . 5 (πœ‘ β†’ 𝐹:𝑉–1-1-onto→𝐡)
4 f1ofo 6830 . . . . 5 (𝐹:𝑉–1-1-onto→𝐡 β†’ 𝐹:𝑉–onto→𝐡)
53, 4syl 17 . . . 4 (πœ‘ β†’ 𝐹:𝑉–onto→𝐡)
6 imasdsf1o.r . . . 4 (πœ‘ β†’ 𝑅 ∈ 𝑍)
7 eqid 2724 . . . 4 (distβ€˜π‘…) = (distβ€˜π‘…)
8 imasdsf1o.d . . . 4 𝐷 = (distβ€˜π‘ˆ)
9 f1of 6823 . . . . . 6 (𝐹:𝑉–1-1-onto→𝐡 β†’ 𝐹:π‘‰βŸΆπ΅)
103, 9syl 17 . . . . 5 (πœ‘ β†’ 𝐹:π‘‰βŸΆπ΅)
11 imasdsf1o.x . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝑉)
1210, 11ffvelcdmd 7077 . . . 4 (πœ‘ β†’ (πΉβ€˜π‘‹) ∈ 𝐡)
13 imasdsf1o.y . . . . 5 (πœ‘ β†’ π‘Œ ∈ 𝑉)
1410, 13ffvelcdmd 7077 . . . 4 (πœ‘ β†’ (πΉβ€˜π‘Œ) ∈ 𝐡)
15 imasdsf1o.s . . . 4 𝑆 = {β„Ž ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∣ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))}
16 imasdsf1o.e . . . 4 𝐸 = ((distβ€˜π‘…) β†Ύ (𝑉 Γ— 𝑉))
171, 2, 5, 6, 7, 8, 12, 14, 15, 16imasdsval2 17461 . . 3 (πœ‘ β†’ ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘Œ)) = inf(βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))), ℝ*, < ))
18 imasdsf1o.t . . . 4 𝑇 = βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)))
1918infeq1i 9469 . . 3 inf(𝑇, ℝ*, < ) = inf(βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))), ℝ*, < )
2017, 19eqtr4di 2782 . 2 (πœ‘ β†’ ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘Œ)) = inf(𝑇, ℝ*, < ))
21 xrsbas 21245 . . . . . . . . . . . 12 ℝ* = (Baseβ€˜β„*𝑠)
22 xrsadd 21246 . . . . . . . . . . . 12 +𝑒 = (+gβ€˜β„*𝑠)
23 imasdsf1o.w . . . . . . . . . . . 12 π‘Š = (ℝ*𝑠 β†Ύs (ℝ* βˆ– {-∞}))
24 xrsex 21244 . . . . . . . . . . . . 13 ℝ*𝑠 ∈ V
2524a1i 11 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ ℝ*𝑠 ∈ V)
26 fzfid 13935 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (1...𝑛) ∈ Fin)
27 difss 4123 . . . . . . . . . . . . 13 (ℝ* βˆ– {-∞}) βŠ† ℝ*
2827a1i 11 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (ℝ* βˆ– {-∞}) βŠ† ℝ*)
29 imasdsf1o.m . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝐸 ∈ (∞Metβ€˜π‘‰))
30 xmetf 24157 . . . . . . . . . . . . . . . 16 (𝐸 ∈ (∞Metβ€˜π‘‰) β†’ 𝐸:(𝑉 Γ— 𝑉)βŸΆβ„*)
31 ffn 6707 . . . . . . . . . . . . . . . 16 (𝐸:(𝑉 Γ— 𝑉)βŸΆβ„* β†’ 𝐸 Fn (𝑉 Γ— 𝑉))
3229, 30, 313syl 18 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐸 Fn (𝑉 Γ— 𝑉))
33 xmetcl 24159 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ (∞Metβ€˜π‘‰) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉) β†’ (𝑓𝐸𝑔) ∈ ℝ*)
34 xmetge0 24172 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 ∈ (∞Metβ€˜π‘‰) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉) β†’ 0 ≀ (𝑓𝐸𝑔))
35 ge0nemnf 13149 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝐸𝑔) ∈ ℝ* ∧ 0 ≀ (𝑓𝐸𝑔)) β†’ (𝑓𝐸𝑔) β‰  -∞)
3633, 34, 35syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ (∞Metβ€˜π‘‰) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉) β†’ (𝑓𝐸𝑔) β‰  -∞)
37 eldifsn 4782 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝐸𝑔) ∈ (ℝ* βˆ– {-∞}) ↔ ((𝑓𝐸𝑔) ∈ ℝ* ∧ (𝑓𝐸𝑔) β‰  -∞))
3833, 36, 37sylanbrc 582 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ (∞Metβ€˜π‘‰) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉) β†’ (𝑓𝐸𝑔) ∈ (ℝ* βˆ– {-∞}))
39383expb 1117 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ (∞Metβ€˜π‘‰) ∧ (𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉)) β†’ (𝑓𝐸𝑔) ∈ (ℝ* βˆ– {-∞}))
4029, 39sylan 579 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉)) β†’ (𝑓𝐸𝑔) ∈ (ℝ* βˆ– {-∞}))
4140ralrimivva 3192 . . . . . . . . . . . . . . 15 (πœ‘ β†’ βˆ€π‘“ ∈ 𝑉 βˆ€π‘” ∈ 𝑉 (𝑓𝐸𝑔) ∈ (ℝ* βˆ– {-∞}))
42 ffnov 7527 . . . . . . . . . . . . . . 15 (𝐸:(𝑉 Γ— 𝑉)⟢(ℝ* βˆ– {-∞}) ↔ (𝐸 Fn (𝑉 Γ— 𝑉) ∧ βˆ€π‘“ ∈ 𝑉 βˆ€π‘” ∈ 𝑉 (𝑓𝐸𝑔) ∈ (ℝ* βˆ– {-∞})))
4332, 41, 42sylanbrc 582 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐸:(𝑉 Γ— 𝑉)⟢(ℝ* βˆ– {-∞}))
4443ad2antrr 723 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 𝐸:(𝑉 Γ— 𝑉)⟢(ℝ* βˆ– {-∞}))
4515ssrab3 4072 . . . . . . . . . . . . . . . 16 𝑆 βŠ† ((𝑉 Γ— 𝑉) ↑m (1...𝑛))
4645a1i 11 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝑆 βŠ† ((𝑉 Γ— 𝑉) ↑m (1...𝑛)))
4746sselda 3974 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 𝑔 ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)))
48 elmapi 8839 . . . . . . . . . . . . . 14 (𝑔 ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) β†’ 𝑔:(1...𝑛)⟢(𝑉 Γ— 𝑉))
4947, 48syl 17 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 𝑔:(1...𝑛)⟢(𝑉 Γ— 𝑉))
50 fco 6731 . . . . . . . . . . . . 13 ((𝐸:(𝑉 Γ— 𝑉)⟢(ℝ* βˆ– {-∞}) ∧ 𝑔:(1...𝑛)⟢(𝑉 Γ— 𝑉)) β†’ (𝐸 ∘ 𝑔):(1...𝑛)⟢(ℝ* βˆ– {-∞}))
5144, 49, 50syl2anc 583 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝐸 ∘ 𝑔):(1...𝑛)⟢(ℝ* βˆ– {-∞}))
52 0re 11213 . . . . . . . . . . . . 13 0 ∈ ℝ
53 rexr 11257 . . . . . . . . . . . . . 14 (0 ∈ ℝ β†’ 0 ∈ ℝ*)
54 renemnf 11260 . . . . . . . . . . . . . 14 (0 ∈ ℝ β†’ 0 β‰  -∞)
55 eldifsn 4782 . . . . . . . . . . . . . 14 (0 ∈ (ℝ* βˆ– {-∞}) ↔ (0 ∈ ℝ* ∧ 0 β‰  -∞))
5653, 54, 55sylanbrc 582 . . . . . . . . . . . . 13 (0 ∈ ℝ β†’ 0 ∈ (ℝ* βˆ– {-∞}))
5752, 56mp1i 13 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 0 ∈ (ℝ* βˆ– {-∞}))
58 xaddlid 13218 . . . . . . . . . . . . . 14 (π‘₯ ∈ ℝ* β†’ (0 +𝑒 π‘₯) = π‘₯)
59 xaddrid 13217 . . . . . . . . . . . . . 14 (π‘₯ ∈ ℝ* β†’ (π‘₯ +𝑒 0) = π‘₯)
6058, 59jca 511 . . . . . . . . . . . . 13 (π‘₯ ∈ ℝ* β†’ ((0 +𝑒 π‘₯) = π‘₯ ∧ (π‘₯ +𝑒 0) = π‘₯))
6160adantl 481 . . . . . . . . . . . 12 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ π‘₯ ∈ ℝ*) β†’ ((0 +𝑒 π‘₯) = π‘₯ ∧ (π‘₯ +𝑒 0) = π‘₯))
6221, 22, 23, 25, 26, 28, 51, 57, 61gsumress 18605 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) = (π‘Š Ξ£g (𝐸 ∘ 𝑔)))
6323, 21ressbas2 17181 . . . . . . . . . . . . 13 ((ℝ* βˆ– {-∞}) βŠ† ℝ* β†’ (ℝ* βˆ– {-∞}) = (Baseβ€˜π‘Š))
6427, 63ax-mp 5 . . . . . . . . . . . 12 (ℝ* βˆ– {-∞}) = (Baseβ€˜π‘Š)
6523xrs10 21268 . . . . . . . . . . . 12 0 = (0gβ€˜π‘Š)
6623xrs1cmn 21269 . . . . . . . . . . . . 13 π‘Š ∈ CMnd
6766a1i 11 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ π‘Š ∈ CMnd)
68 c0ex 11205 . . . . . . . . . . . . . 14 0 ∈ V
6968a1i 11 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 0 ∈ V)
7051, 26, 69fdmfifsupp 9369 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝐸 ∘ 𝑔) finSupp 0)
7164, 65, 67, 26, 51, 70gsumcl 19825 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘Š Ξ£g (𝐸 ∘ 𝑔)) ∈ (ℝ* βˆ– {-∞}))
7262, 71eqeltrd 2825 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) ∈ (ℝ* βˆ– {-∞}))
7372eldifad 3952 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) ∈ ℝ*)
7473fmpttd 7106 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))):π‘†βŸΆβ„*)
7574frnd 6715 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) βŠ† ℝ*)
7675ralrimiva 3138 . . . . . 6 (πœ‘ β†’ βˆ€π‘› ∈ β„• ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) βŠ† ℝ*)
77 iunss 5038 . . . . . 6 (βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) βŠ† ℝ* ↔ βˆ€π‘› ∈ β„• ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) βŠ† ℝ*)
7876, 77sylibr 233 . . . . 5 (πœ‘ β†’ βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) βŠ† ℝ*)
7918, 78eqsstrid 4022 . . . 4 (πœ‘ β†’ 𝑇 βŠ† ℝ*)
80 infxrcl 13309 . . . 4 (𝑇 βŠ† ℝ* β†’ inf(𝑇, ℝ*, < ) ∈ ℝ*)
8179, 80syl 17 . . 3 (πœ‘ β†’ inf(𝑇, ℝ*, < ) ∈ ℝ*)
82 xmetcl 24159 . . . 4 ((𝐸 ∈ (∞Metβ€˜π‘‰) ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (π‘‹πΈπ‘Œ) ∈ ℝ*)
8329, 11, 13, 82syl3anc 1368 . . 3 (πœ‘ β†’ (π‘‹πΈπ‘Œ) ∈ ℝ*)
84 1nn 12220 . . . . . . 7 1 ∈ β„•
85 1ex 11207 . . . . . . . . . . . 12 1 ∈ V
86 opex 5454 . . . . . . . . . . . 12 βŸ¨π‘‹, π‘ŒβŸ© ∈ V
8785, 86f1osn 6863 . . . . . . . . . . 11 {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}:{1}–1-1-ontoβ†’{βŸ¨π‘‹, π‘ŒβŸ©}
88 f1of 6823 . . . . . . . . . . 11 ({⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}:{1}–1-1-ontoβ†’{βŸ¨π‘‹, π‘ŒβŸ©} β†’ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}:{1}⟢{βŸ¨π‘‹, π‘ŒβŸ©})
8987, 88ax-mp 5 . . . . . . . . . 10 {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}:{1}⟢{βŸ¨π‘‹, π‘ŒβŸ©}
9011, 13opelxpd 5705 . . . . . . . . . . 11 (πœ‘ β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ (𝑉 Γ— 𝑉))
9190snssd 4804 . . . . . . . . . 10 (πœ‘ β†’ {βŸ¨π‘‹, π‘ŒβŸ©} βŠ† (𝑉 Γ— 𝑉))
92 fss 6724 . . . . . . . . . 10 (({⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}:{1}⟢{βŸ¨π‘‹, π‘ŒβŸ©} ∧ {βŸ¨π‘‹, π‘ŒβŸ©} βŠ† (𝑉 Γ— 𝑉)) β†’ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}:{1}⟢(𝑉 Γ— 𝑉))
9389, 91, 92sylancr 586 . . . . . . . . 9 (πœ‘ β†’ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}:{1}⟢(𝑉 Γ— 𝑉))
9429elfvexd 6920 . . . . . . . . . . 11 (πœ‘ β†’ 𝑉 ∈ V)
9594, 94xpexd 7731 . . . . . . . . . 10 (πœ‘ β†’ (𝑉 Γ— 𝑉) ∈ V)
96 snex 5421 . . . . . . . . . 10 {1} ∈ V
97 elmapg 8829 . . . . . . . . . 10 (((𝑉 Γ— 𝑉) ∈ V ∧ {1} ∈ V) β†’ ({⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} ∈ ((𝑉 Γ— 𝑉) ↑m {1}) ↔ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}:{1}⟢(𝑉 Γ— 𝑉)))
9895, 96, 97sylancl 585 . . . . . . . . 9 (πœ‘ β†’ ({⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} ∈ ((𝑉 Γ— 𝑉) ↑m {1}) ↔ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}:{1}⟢(𝑉 Γ— 𝑉)))
9993, 98mpbird 257 . . . . . . . 8 (πœ‘ β†’ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} ∈ ((𝑉 Γ— 𝑉) ↑m {1}))
100 op1stg 7980 . . . . . . . . . . 11 ((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
10111, 13, 100syl2anc 583 . . . . . . . . . 10 (πœ‘ β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
102101fveq2d 6885 . . . . . . . . 9 (πœ‘ β†’ (πΉβ€˜(1st β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (πΉβ€˜π‘‹))
103 op2ndg 7981 . . . . . . . . . . 11 ((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
10411, 13, 103syl2anc 583 . . . . . . . . . 10 (πœ‘ β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
105104fveq2d 6885 . . . . . . . . 9 (πœ‘ β†’ (πΉβ€˜(2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (πΉβ€˜π‘Œ))
106102, 105jca 511 . . . . . . . 8 (πœ‘ β†’ ((πΉβ€˜(1st β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (πΉβ€˜π‘Œ)))
10724a1i 11 . . . . . . . . . 10 (πœ‘ β†’ ℝ*𝑠 ∈ V)
108 snfi 9040 . . . . . . . . . . 11 {1} ∈ Fin
109108a1i 11 . . . . . . . . . 10 (πœ‘ β†’ {1} ∈ Fin)
11027a1i 11 . . . . . . . . . 10 (πœ‘ β†’ (ℝ* βˆ– {-∞}) βŠ† ℝ*)
111 xmetge0 24172 . . . . . . . . . . . . . . 15 ((𝐸 ∈ (∞Metβ€˜π‘‰) ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ 0 ≀ (π‘‹πΈπ‘Œ))
11229, 11, 13, 111syl3anc 1368 . . . . . . . . . . . . . 14 (πœ‘ β†’ 0 ≀ (π‘‹πΈπ‘Œ))
113 ge0nemnf 13149 . . . . . . . . . . . . . 14 (((π‘‹πΈπ‘Œ) ∈ ℝ* ∧ 0 ≀ (π‘‹πΈπ‘Œ)) β†’ (π‘‹πΈπ‘Œ) β‰  -∞)
11483, 112, 113syl2anc 583 . . . . . . . . . . . . 13 (πœ‘ β†’ (π‘‹πΈπ‘Œ) β‰  -∞)
115 eldifsn 4782 . . . . . . . . . . . . 13 ((π‘‹πΈπ‘Œ) ∈ (ℝ* βˆ– {-∞}) ↔ ((π‘‹πΈπ‘Œ) ∈ ℝ* ∧ (π‘‹πΈπ‘Œ) β‰  -∞))
11683, 114, 115sylanbrc 582 . . . . . . . . . . . 12 (πœ‘ β†’ (π‘‹πΈπ‘Œ) ∈ (ℝ* βˆ– {-∞}))
117 fconst6g 6770 . . . . . . . . . . . 12 ((π‘‹πΈπ‘Œ) ∈ (ℝ* βˆ– {-∞}) β†’ ({1} Γ— {(π‘‹πΈπ‘Œ)}):{1}⟢(ℝ* βˆ– {-∞}))
118116, 117syl 17 . . . . . . . . . . 11 (πœ‘ β†’ ({1} Γ— {(π‘‹πΈπ‘Œ)}):{1}⟢(ℝ* βˆ– {-∞}))
119 fcoconst 7124 . . . . . . . . . . . . . 14 ((𝐸 Fn (𝑉 Γ— 𝑉) ∧ βŸ¨π‘‹, π‘ŒβŸ© ∈ (𝑉 Γ— 𝑉)) β†’ (𝐸 ∘ ({1} Γ— {βŸ¨π‘‹, π‘ŒβŸ©})) = ({1} Γ— {(πΈβ€˜βŸ¨π‘‹, π‘ŒβŸ©)}))
12032, 90, 119syl2anc 583 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐸 ∘ ({1} Γ— {βŸ¨π‘‹, π‘ŒβŸ©})) = ({1} Γ— {(πΈβ€˜βŸ¨π‘‹, π‘ŒβŸ©)}))
12185, 86xpsn 7131 . . . . . . . . . . . . . 14 ({1} Γ— {βŸ¨π‘‹, π‘ŒβŸ©}) = {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}
122121coeq2i 5850 . . . . . . . . . . . . 13 (𝐸 ∘ ({1} Γ— {βŸ¨π‘‹, π‘ŒβŸ©})) = (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©})
123 df-ov 7404 . . . . . . . . . . . . . . . 16 (π‘‹πΈπ‘Œ) = (πΈβ€˜βŸ¨π‘‹, π‘ŒβŸ©)
124123eqcomi 2733 . . . . . . . . . . . . . . 15 (πΈβ€˜βŸ¨π‘‹, π‘ŒβŸ©) = (π‘‹πΈπ‘Œ)
125124sneqi 4631 . . . . . . . . . . . . . 14 {(πΈβ€˜βŸ¨π‘‹, π‘ŒβŸ©)} = {(π‘‹πΈπ‘Œ)}
126125xpeq2i 5693 . . . . . . . . . . . . 13 ({1} Γ— {(πΈβ€˜βŸ¨π‘‹, π‘ŒβŸ©)}) = ({1} Γ— {(π‘‹πΈπ‘Œ)})
127120, 122, 1263eqtr3g 2787 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}) = ({1} Γ— {(π‘‹πΈπ‘Œ)}))
128127feq1d 6692 . . . . . . . . . . 11 (πœ‘ β†’ ((𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}):{1}⟢(ℝ* βˆ– {-∞}) ↔ ({1} Γ— {(π‘‹πΈπ‘Œ)}):{1}⟢(ℝ* βˆ– {-∞})))
129118, 128mpbird 257 . . . . . . . . . 10 (πœ‘ β†’ (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}):{1}⟢(ℝ* βˆ– {-∞}))
13052, 56mp1i 13 . . . . . . . . . 10 (πœ‘ β†’ 0 ∈ (ℝ* βˆ– {-∞}))
13160adantl 481 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ ℝ*) β†’ ((0 +𝑒 π‘₯) = π‘₯ ∧ (π‘₯ +𝑒 0) = π‘₯))
13221, 22, 23, 107, 109, 110, 129, 130, 131gsumress 18605 . . . . . . . . 9 (πœ‘ β†’ (ℝ*𝑠 Ξ£g (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©})) = (π‘Š Ξ£g (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©})))
133 fconstmpt 5728 . . . . . . . . . . 11 ({1} Γ— {(π‘‹πΈπ‘Œ)}) = (𝑗 ∈ {1} ↦ (π‘‹πΈπ‘Œ))
134127, 133eqtrdi 2780 . . . . . . . . . 10 (πœ‘ β†’ (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}) = (𝑗 ∈ {1} ↦ (π‘‹πΈπ‘Œ)))
135134oveq2d 7417 . . . . . . . . 9 (πœ‘ β†’ (π‘Š Ξ£g (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©})) = (π‘Š Ξ£g (𝑗 ∈ {1} ↦ (π‘‹πΈπ‘Œ))))
136 cmnmnd 19707 . . . . . . . . . . 11 (π‘Š ∈ CMnd β†’ π‘Š ∈ Mnd)
13766, 136mp1i 13 . . . . . . . . . 10 (πœ‘ β†’ π‘Š ∈ Mnd)
13884a1i 11 . . . . . . . . . 10 (πœ‘ β†’ 1 ∈ β„•)
139 eqidd 2725 . . . . . . . . . . 11 (𝑗 = 1 β†’ (π‘‹πΈπ‘Œ) = (π‘‹πΈπ‘Œ))
14064, 139gsumsn 19864 . . . . . . . . . 10 ((π‘Š ∈ Mnd ∧ 1 ∈ β„• ∧ (π‘‹πΈπ‘Œ) ∈ (ℝ* βˆ– {-∞})) β†’ (π‘Š Ξ£g (𝑗 ∈ {1} ↦ (π‘‹πΈπ‘Œ))) = (π‘‹πΈπ‘Œ))
141137, 138, 116, 140syl3anc 1368 . . . . . . . . 9 (πœ‘ β†’ (π‘Š Ξ£g (𝑗 ∈ {1} ↦ (π‘‹πΈπ‘Œ))) = (π‘‹πΈπ‘Œ))
142132, 135, 1413eqtrrd 2769 . . . . . . . 8 (πœ‘ β†’ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©})))
143 fveq1 6880 . . . . . . . . . . . . . 14 (𝑔 = {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} β†’ (π‘”β€˜1) = ({⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}β€˜1))
14485, 86fvsn 7171 . . . . . . . . . . . . . 14 ({⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}β€˜1) = βŸ¨π‘‹, π‘ŒβŸ©
145143, 144eqtrdi 2780 . . . . . . . . . . . . 13 (𝑔 = {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} β†’ (π‘”β€˜1) = βŸ¨π‘‹, π‘ŒβŸ©)
146145fveq2d 6885 . . . . . . . . . . . 12 (𝑔 = {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} β†’ (1st β€˜(π‘”β€˜1)) = (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©))
147146fveqeq2d 6889 . . . . . . . . . . 11 (𝑔 = {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} β†’ ((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ↔ (πΉβ€˜(1st β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (πΉβ€˜π‘‹)))
148145fveq2d 6885 . . . . . . . . . . . 12 (𝑔 = {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} β†’ (2nd β€˜(π‘”β€˜1)) = (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©))
149148fveqeq2d 6889 . . . . . . . . . . 11 (𝑔 = {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} β†’ ((πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ) ↔ (πΉβ€˜(2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (πΉβ€˜π‘Œ)))
150147, 149anbi12d 630 . . . . . . . . . 10 (𝑔 = {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} β†’ (((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ)) ↔ ((πΉβ€˜(1st β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (πΉβ€˜π‘Œ))))
151 coeq2 5848 . . . . . . . . . . . 12 (𝑔 = {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} β†’ (𝐸 ∘ 𝑔) = (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}))
152151oveq2d 7417 . . . . . . . . . . 11 (𝑔 = {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} β†’ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) = (ℝ*𝑠 Ξ£g (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©})))
153152eqeq2d 2735 . . . . . . . . . 10 (𝑔 = {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} β†’ ((π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) ↔ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©}))))
154150, 153anbi12d 630 . . . . . . . . 9 (𝑔 = {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} β†’ ((((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ)) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) ↔ (((πΉβ€˜(1st β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (πΉβ€˜π‘Œ)) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©})))))
155154rspcev 3604 . . . . . . . 8 (({⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©} ∈ ((𝑉 Γ— 𝑉) ↑m {1}) ∧ (((πΉβ€˜(1st β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©)) = (πΉβ€˜π‘Œ)) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ {⟨1, βŸ¨π‘‹, π‘ŒβŸ©βŸ©})))) β†’ βˆƒπ‘” ∈ ((𝑉 Γ— 𝑉) ↑m {1})(((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ)) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
15699, 106, 142, 155syl12anc 834 . . . . . . 7 (πœ‘ β†’ βˆƒπ‘” ∈ ((𝑉 Γ— 𝑉) ↑m {1})(((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ)) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
157 ovex 7434 . . . . . . . . . 10 (π‘‹πΈπ‘Œ) ∈ V
158 eqid 2724 . . . . . . . . . . 11 (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) = (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)))
159158elrnmpt 5945 . . . . . . . . . 10 ((π‘‹πΈπ‘Œ) ∈ V β†’ ((π‘‹πΈπ‘Œ) ∈ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) ↔ βˆƒπ‘” ∈ 𝑆 (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
160157, 159ax-mp 5 . . . . . . . . 9 ((π‘‹πΈπ‘Œ) ∈ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) ↔ βˆƒπ‘” ∈ 𝑆 (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)))
16115rexeqi 3316 . . . . . . . . . . 11 (βˆƒπ‘” ∈ 𝑆 (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) ↔ βˆƒπ‘” ∈ {β„Ž ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∣ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))} (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)))
162 fveq1 6880 . . . . . . . . . . . . . . 15 (β„Ž = 𝑔 β†’ (β„Žβ€˜1) = (π‘”β€˜1))
163162fveq2d 6885 . . . . . . . . . . . . . 14 (β„Ž = 𝑔 β†’ (1st β€˜(β„Žβ€˜1)) = (1st β€˜(π‘”β€˜1)))
164163fveqeq2d 6889 . . . . . . . . . . . . 13 (β„Ž = 𝑔 β†’ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = (πΉβ€˜π‘‹) ↔ (πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹)))
165 fveq1 6880 . . . . . . . . . . . . . . 15 (β„Ž = 𝑔 β†’ (β„Žβ€˜π‘›) = (π‘”β€˜π‘›))
166165fveq2d 6885 . . . . . . . . . . . . . 14 (β„Ž = 𝑔 β†’ (2nd β€˜(β„Žβ€˜π‘›)) = (2nd β€˜(π‘”β€˜π‘›)))
167166fveqeq2d 6889 . . . . . . . . . . . . 13 (β„Ž = 𝑔 β†’ ((πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = (πΉβ€˜π‘Œ) ↔ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ)))
168 fveq1 6880 . . . . . . . . . . . . . . . . 17 (β„Ž = 𝑔 β†’ (β„Žβ€˜π‘–) = (π‘”β€˜π‘–))
169168fveq2d 6885 . . . . . . . . . . . . . . . 16 (β„Ž = 𝑔 β†’ (2nd β€˜(β„Žβ€˜π‘–)) = (2nd β€˜(π‘”β€˜π‘–)))
170169fveq2d 6885 . . . . . . . . . . . . . . 15 (β„Ž = 𝑔 β†’ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))))
171 fveq1 6880 . . . . . . . . . . . . . . . . 17 (β„Ž = 𝑔 β†’ (β„Žβ€˜(𝑖 + 1)) = (π‘”β€˜(𝑖 + 1)))
172171fveq2d 6885 . . . . . . . . . . . . . . . 16 (β„Ž = 𝑔 β†’ (1st β€˜(β„Žβ€˜(𝑖 + 1))) = (1st β€˜(π‘”β€˜(𝑖 + 1))))
173172fveq2d 6885 . . . . . . . . . . . . . . 15 (β„Ž = 𝑔 β†’ (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1)))))
174170, 173eqeq12d 2740 . . . . . . . . . . . . . 14 (β„Ž = 𝑔 β†’ ((πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))) ↔ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))))
175174ralbidv 3169 . . . . . . . . . . . . 13 (β„Ž = 𝑔 β†’ (βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))) ↔ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))))
176164, 167, 1753anbi123d 1432 . . . . . . . . . . . 12 (β„Ž = 𝑔 β†’ (((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1))))) ↔ ((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1)))))))
177176rexrab 3684 . . . . . . . . . . 11 (βˆƒπ‘” ∈ {β„Ž ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∣ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))} (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) ↔ βˆƒπ‘” ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛))(((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
178161, 177bitri 275 . . . . . . . . . 10 (βˆƒπ‘” ∈ 𝑆 (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) ↔ βˆƒπ‘” ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛))(((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
179 oveq2 7409 . . . . . . . . . . . . 13 (𝑛 = 1 β†’ (1...𝑛) = (1...1))
180 1z 12589 . . . . . . . . . . . . . 14 1 ∈ β„€
181 fzsn 13540 . . . . . . . . . . . . . 14 (1 ∈ β„€ β†’ (1...1) = {1})
182180, 181ax-mp 5 . . . . . . . . . . . . 13 (1...1) = {1}
183179, 182eqtrdi 2780 . . . . . . . . . . . 12 (𝑛 = 1 β†’ (1...𝑛) = {1})
184183oveq2d 7417 . . . . . . . . . . 11 (𝑛 = 1 β†’ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) = ((𝑉 Γ— 𝑉) ↑m {1}))
185 df-3an 1086 . . . . . . . . . . . . 13 (((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))) ↔ (((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ)) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))))
186 ral0 4504 . . . . . . . . . . . . . . . 16 βˆ€π‘– ∈ βˆ… (πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))
187 oveq1 7408 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1 β†’ (𝑛 βˆ’ 1) = (1 βˆ’ 1))
188 1m1e0 12281 . . . . . . . . . . . . . . . . . . . 20 (1 βˆ’ 1) = 0
189187, 188eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1 β†’ (𝑛 βˆ’ 1) = 0)
190189oveq2d 7417 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1 β†’ (1...(𝑛 βˆ’ 1)) = (1...0))
191 fz10 13519 . . . . . . . . . . . . . . . . . 18 (1...0) = βˆ…
192190, 191eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑛 = 1 β†’ (1...(𝑛 βˆ’ 1)) = βˆ…)
193192raleqdv 3317 . . . . . . . . . . . . . . . 16 (𝑛 = 1 β†’ (βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1)))) ↔ βˆ€π‘– ∈ βˆ… (πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))))
194186, 193mpbiri 258 . . . . . . . . . . . . . . 15 (𝑛 = 1 β†’ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1)))))
195194biantrud 531 . . . . . . . . . . . . . 14 (𝑛 = 1 β†’ (((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ)) ↔ (((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ)) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1)))))))
196 2fveq3 6886 . . . . . . . . . . . . . . . 16 (𝑛 = 1 β†’ (2nd β€˜(π‘”β€˜π‘›)) = (2nd β€˜(π‘”β€˜1)))
197196fveqeq2d 6889 . . . . . . . . . . . . . . 15 (𝑛 = 1 β†’ ((πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ↔ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ)))
198197anbi2d 628 . . . . . . . . . . . . . 14 (𝑛 = 1 β†’ (((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ)) ↔ ((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ))))
199195, 198bitr3d 281 . . . . . . . . . . . . 13 (𝑛 = 1 β†’ ((((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ)) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))) ↔ ((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ))))
200185, 199bitrid 283 . . . . . . . . . . . 12 (𝑛 = 1 β†’ (((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))) ↔ ((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ))))
201200anbi1d 629 . . . . . . . . . . 11 (𝑛 = 1 β†’ ((((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) ↔ (((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ)) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)))))
202184, 201rexeqbidv 3335 . . . . . . . . . 10 (𝑛 = 1 β†’ (βˆƒπ‘” ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛))(((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) ↔ βˆƒπ‘” ∈ ((𝑉 Γ— 𝑉) ↑m {1})(((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ)) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)))))
203178, 202bitrid 283 . . . . . . . . 9 (𝑛 = 1 β†’ (βˆƒπ‘” ∈ 𝑆 (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) ↔ βˆƒπ‘” ∈ ((𝑉 Γ— 𝑉) ↑m {1})(((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ)) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)))))
204160, 203bitrid 283 . . . . . . . 8 (𝑛 = 1 β†’ ((π‘‹πΈπ‘Œ) ∈ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) ↔ βˆƒπ‘” ∈ ((𝑉 Γ— 𝑉) ↑m {1})(((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ)) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)))))
205204rspcev 3604 . . . . . . 7 ((1 ∈ β„• ∧ βˆƒπ‘” ∈ ((𝑉 Γ— 𝑉) ↑m {1})(((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜1))) = (πΉβ€˜π‘Œ)) ∧ (π‘‹πΈπ‘Œ) = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)))) β†’ βˆƒπ‘› ∈ β„• (π‘‹πΈπ‘Œ) ∈ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
20684, 156, 205sylancr 586 . . . . . 6 (πœ‘ β†’ βˆƒπ‘› ∈ β„• (π‘‹πΈπ‘Œ) ∈ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
207 eliun 4991 . . . . . 6 ((π‘‹πΈπ‘Œ) ∈ βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) ↔ βˆƒπ‘› ∈ β„• (π‘‹πΈπ‘Œ) ∈ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
208206, 207sylibr 233 . . . . 5 (πœ‘ β†’ (π‘‹πΈπ‘Œ) ∈ βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
209208, 18eleqtrrdi 2836 . . . 4 (πœ‘ β†’ (π‘‹πΈπ‘Œ) ∈ 𝑇)
210 infxrlb 13310 . . . 4 ((𝑇 βŠ† ℝ* ∧ (π‘‹πΈπ‘Œ) ∈ 𝑇) β†’ inf(𝑇, ℝ*, < ) ≀ (π‘‹πΈπ‘Œ))
21179, 209, 210syl2anc 583 . . 3 (πœ‘ β†’ inf(𝑇, ℝ*, < ) ≀ (π‘‹πΈπ‘Œ))
21218eleq2i 2817 . . . . . . 7 (𝑝 ∈ 𝑇 ↔ 𝑝 ∈ βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
213 eliun 4991 . . . . . . 7 (𝑝 ∈ βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) ↔ βˆƒπ‘› ∈ β„• 𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
214212, 213bitri 275 . . . . . 6 (𝑝 ∈ 𝑇 ↔ βˆƒπ‘› ∈ β„• 𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
215158elrnmpt 5945 . . . . . . . . 9 (𝑝 ∈ V β†’ (𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) ↔ βˆƒπ‘” ∈ 𝑆 𝑝 = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
216215elv 3472 . . . . . . . 8 (𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) ↔ βˆƒπ‘” ∈ 𝑆 𝑝 = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)))
217176, 15elrab2 3678 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ 𝑆 ↔ (𝑔 ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∧ ((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1)))))))
218217simprbi 496 . . . . . . . . . . . . . . . 16 (𝑔 ∈ 𝑆 β†’ ((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))))
219218adantl 481 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ ((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ∧ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1))))))
220219simp2d 1140 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ))
2213ad2antrr 723 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 𝐹:𝑉–1-1-onto→𝐡)
222 f1of1 6822 . . . . . . . . . . . . . . . 16 (𝐹:𝑉–1-1-onto→𝐡 β†’ 𝐹:𝑉–1-1→𝐡)
223221, 222syl 17 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 𝐹:𝑉–1-1→𝐡)
224 simplr 766 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 𝑛 ∈ β„•)
225 elfz1end 13528 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ β„• ↔ 𝑛 ∈ (1...𝑛))
226224, 225sylib 217 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 𝑛 ∈ (1...𝑛))
22749, 226ffvelcdmd 7077 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘”β€˜π‘›) ∈ (𝑉 Γ— 𝑉))
228 xp2nd 8001 . . . . . . . . . . . . . . . 16 ((π‘”β€˜π‘›) ∈ (𝑉 Γ— 𝑉) β†’ (2nd β€˜(π‘”β€˜π‘›)) ∈ 𝑉)
229227, 228syl 17 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (2nd β€˜(π‘”β€˜π‘›)) ∈ 𝑉)
23013ad2antrr 723 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ π‘Œ ∈ 𝑉)
231 f1fveq 7253 . . . . . . . . . . . . . . 15 ((𝐹:𝑉–1-1→𝐡 ∧ ((2nd β€˜(π‘”β€˜π‘›)) ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ ((πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ↔ (2nd β€˜(π‘”β€˜π‘›)) = π‘Œ))
232223, 229, 230, 231syl12anc 834 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ ((πΉβ€˜(2nd β€˜(π‘”β€˜π‘›))) = (πΉβ€˜π‘Œ) ↔ (2nd β€˜(π‘”β€˜π‘›)) = π‘Œ))
233220, 232mpbid 231 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (2nd β€˜(π‘”β€˜π‘›)) = π‘Œ)
234233oveq2d 7417 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘›))) = (π‘‹πΈπ‘Œ))
235 eleq1 2813 . . . . . . . . . . . . . . . . 17 (π‘š = 1 β†’ (π‘š ∈ (1...𝑛) ↔ 1 ∈ (1...𝑛)))
236 2fveq3 6886 . . . . . . . . . . . . . . . . . . 19 (π‘š = 1 β†’ (2nd β€˜(π‘”β€˜π‘š)) = (2nd β€˜(π‘”β€˜1)))
237236oveq2d 7417 . . . . . . . . . . . . . . . . . 18 (π‘š = 1 β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) = (𝑋𝐸(2nd β€˜(π‘”β€˜1))))
238 oveq2 7409 . . . . . . . . . . . . . . . . . . . . 21 (π‘š = 1 β†’ (1...π‘š) = (1...1))
239238, 182eqtrdi 2780 . . . . . . . . . . . . . . . . . . . 20 (π‘š = 1 β†’ (1...π‘š) = {1})
240239reseq2d 5971 . . . . . . . . . . . . . . . . . . 19 (π‘š = 1 β†’ ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š)) = ((𝐸 ∘ 𝑔) β†Ύ {1}))
241240oveq2d 7417 . . . . . . . . . . . . . . . . . 18 (π‘š = 1 β†’ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š))) = (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ {1})))
242237, 241breq12d 5151 . . . . . . . . . . . . . . . . 17 (π‘š = 1 β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š))) ↔ (𝑋𝐸(2nd β€˜(π‘”β€˜1))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ {1}))))
243235, 242imbi12d 344 . . . . . . . . . . . . . . . 16 (π‘š = 1 β†’ ((π‘š ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š)))) ↔ (1 ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜1))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ {1})))))
244243imbi2d 340 . . . . . . . . . . . . . . 15 (π‘š = 1 β†’ ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘š ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š))))) ↔ (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (1 ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜1))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ {1}))))))
245 eleq1 2813 . . . . . . . . . . . . . . . . 17 (π‘š = π‘₯ β†’ (π‘š ∈ (1...𝑛) ↔ π‘₯ ∈ (1...𝑛)))
246 2fveq3 6886 . . . . . . . . . . . . . . . . . . 19 (π‘š = π‘₯ β†’ (2nd β€˜(π‘”β€˜π‘š)) = (2nd β€˜(π‘”β€˜π‘₯)))
247246oveq2d 7417 . . . . . . . . . . . . . . . . . 18 (π‘š = π‘₯ β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) = (𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))))
248 oveq2 7409 . . . . . . . . . . . . . . . . . . . 20 (π‘š = π‘₯ β†’ (1...π‘š) = (1...π‘₯))
249248reseq2d 5971 . . . . . . . . . . . . . . . . . . 19 (π‘š = π‘₯ β†’ ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š)) = ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯)))
250249oveq2d 7417 . . . . . . . . . . . . . . . . . 18 (π‘š = π‘₯ β†’ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š))) = (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))))
251247, 250breq12d 5151 . . . . . . . . . . . . . . . . 17 (π‘š = π‘₯ β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š))) ↔ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯)))))
252245, 251imbi12d 344 . . . . . . . . . . . . . . . 16 (π‘š = π‘₯ β†’ ((π‘š ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š)))) ↔ (π‘₯ ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))))))
253252imbi2d 340 . . . . . . . . . . . . . . 15 (π‘š = π‘₯ β†’ ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘š ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š))))) ↔ (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘₯ ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯)))))))
254 eleq1 2813 . . . . . . . . . . . . . . . . 17 (π‘š = (π‘₯ + 1) β†’ (π‘š ∈ (1...𝑛) ↔ (π‘₯ + 1) ∈ (1...𝑛)))
255 2fveq3 6886 . . . . . . . . . . . . . . . . . . 19 (π‘š = (π‘₯ + 1) β†’ (2nd β€˜(π‘”β€˜π‘š)) = (2nd β€˜(π‘”β€˜(π‘₯ + 1))))
256255oveq2d 7417 . . . . . . . . . . . . . . . . . 18 (π‘š = (π‘₯ + 1) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) = (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))))
257 oveq2 7409 . . . . . . . . . . . . . . . . . . . 20 (π‘š = (π‘₯ + 1) β†’ (1...π‘š) = (1...(π‘₯ + 1)))
258257reseq2d 5971 . . . . . . . . . . . . . . . . . . 19 (π‘š = (π‘₯ + 1) β†’ ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š)) = ((𝐸 ∘ 𝑔) β†Ύ (1...(π‘₯ + 1))))
259258oveq2d 7417 . . . . . . . . . . . . . . . . . 18 (π‘š = (π‘₯ + 1) β†’ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š))) = (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...(π‘₯ + 1)))))
260256, 259breq12d 5151 . . . . . . . . . . . . . . . . 17 (π‘š = (π‘₯ + 1) β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š))) ↔ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...(π‘₯ + 1))))))
261254, 260imbi12d 344 . . . . . . . . . . . . . . . 16 (π‘š = (π‘₯ + 1) β†’ ((π‘š ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š)))) ↔ ((π‘₯ + 1) ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...(π‘₯ + 1)))))))
262261imbi2d 340 . . . . . . . . . . . . . . 15 (π‘š = (π‘₯ + 1) β†’ ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘š ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š))))) ↔ (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ ((π‘₯ + 1) ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...(π‘₯ + 1))))))))
263 eleq1 2813 . . . . . . . . . . . . . . . . 17 (π‘š = 𝑛 β†’ (π‘š ∈ (1...𝑛) ↔ 𝑛 ∈ (1...𝑛)))
264 2fveq3 6886 . . . . . . . . . . . . . . . . . . 19 (π‘š = 𝑛 β†’ (2nd β€˜(π‘”β€˜π‘š)) = (2nd β€˜(π‘”β€˜π‘›)))
265264oveq2d 7417 . . . . . . . . . . . . . . . . . 18 (π‘š = 𝑛 β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) = (𝑋𝐸(2nd β€˜(π‘”β€˜π‘›))))
266 oveq2 7409 . . . . . . . . . . . . . . . . . . . 20 (π‘š = 𝑛 β†’ (1...π‘š) = (1...𝑛))
267266reseq2d 5971 . . . . . . . . . . . . . . . . . . 19 (π‘š = 𝑛 β†’ ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š)) = ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛)))
268267oveq2d 7417 . . . . . . . . . . . . . . . . . 18 (π‘š = 𝑛 β†’ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š))) = (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛))))
269265, 268breq12d 5151 . . . . . . . . . . . . . . . . 17 (π‘š = 𝑛 β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š))) ↔ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘›))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛)))))
270263, 269imbi12d 344 . . . . . . . . . . . . . . . 16 (π‘š = 𝑛 β†’ ((π‘š ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š)))) ↔ (𝑛 ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘›))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛))))))
271270imbi2d 340 . . . . . . . . . . . . . . 15 (π‘š = 𝑛 β†’ ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘š ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘š))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘š))))) ↔ (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝑛 ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘›))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛)))))))
27229ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 𝐸 ∈ (∞Metβ€˜π‘‰))
27311ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 𝑋 ∈ 𝑉)
274 nnuz 12862 . . . . . . . . . . . . . . . . . . . . . . 23 β„• = (β„€β‰₯β€˜1)
275224, 274eleqtrdi 2835 . . . . . . . . . . . . . . . . . . . . . 22 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 𝑛 ∈ (β„€β‰₯β€˜1))
276 eluzfz1 13505 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (β„€β‰₯β€˜1) β†’ 1 ∈ (1...𝑛))
277275, 276syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 1 ∈ (1...𝑛))
27849, 277ffvelcdmd 7077 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘”β€˜1) ∈ (𝑉 Γ— 𝑉))
279 xp2nd 8001 . . . . . . . . . . . . . . . . . . . 20 ((π‘”β€˜1) ∈ (𝑉 Γ— 𝑉) β†’ (2nd β€˜(π‘”β€˜1)) ∈ 𝑉)
280278, 279syl 17 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (2nd β€˜(π‘”β€˜1)) ∈ 𝑉)
281 xmetcl 24159 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ (∞Metβ€˜π‘‰) ∧ 𝑋 ∈ 𝑉 ∧ (2nd β€˜(π‘”β€˜1)) ∈ 𝑉) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜1))) ∈ ℝ*)
282272, 273, 280, 281syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜1))) ∈ ℝ*)
283282xrleidd 13128 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜1))) ≀ (𝑋𝐸(2nd β€˜(π‘”β€˜1))))
284137ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ π‘Š ∈ Mnd)
28584a1i 11 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 1 ∈ β„•)
28644, 278ffvelcdmd 7077 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (πΈβ€˜(π‘”β€˜1)) ∈ (ℝ* βˆ– {-∞}))
287 2fveq3 6886 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 1 β†’ (πΈβ€˜(π‘”β€˜π‘—)) = (πΈβ€˜(π‘”β€˜1)))
28864, 287gsumsn 19864 . . . . . . . . . . . . . . . . . . 19 ((π‘Š ∈ Mnd ∧ 1 ∈ β„• ∧ (πΈβ€˜(π‘”β€˜1)) ∈ (ℝ* βˆ– {-∞})) β†’ (π‘Š Ξ£g (𝑗 ∈ {1} ↦ (πΈβ€˜(π‘”β€˜π‘—)))) = (πΈβ€˜(π‘”β€˜1)))
289284, 285, 286, 288syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘Š Ξ£g (𝑗 ∈ {1} ↦ (πΈβ€˜(π‘”β€˜π‘—)))) = (πΈβ€˜(π‘”β€˜1)))
290272, 30syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ 𝐸:(𝑉 Γ— 𝑉)βŸΆβ„*)
291 fcompt 7123 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸:(𝑉 Γ— 𝑉)βŸΆβ„* ∧ 𝑔:(1...𝑛)⟢(𝑉 Γ— 𝑉)) β†’ (𝐸 ∘ 𝑔) = (𝑗 ∈ (1...𝑛) ↦ (πΈβ€˜(π‘”β€˜π‘—))))
292290, 49, 291syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝐸 ∘ 𝑔) = (𝑗 ∈ (1...𝑛) ↦ (πΈβ€˜(π‘”β€˜π‘—))))
293292reseq1d 5970 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ ((𝐸 ∘ 𝑔) β†Ύ {1}) = ((𝑗 ∈ (1...𝑛) ↦ (πΈβ€˜(π‘”β€˜π‘—))) β†Ύ {1}))
294277snssd 4804 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ {1} βŠ† (1...𝑛))
295294resmptd 6030 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ ((𝑗 ∈ (1...𝑛) ↦ (πΈβ€˜(π‘”β€˜π‘—))) β†Ύ {1}) = (𝑗 ∈ {1} ↦ (πΈβ€˜(π‘”β€˜π‘—))))
296293, 295eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ ((𝐸 ∘ 𝑔) β†Ύ {1}) = (𝑗 ∈ {1} ↦ (πΈβ€˜(π‘”β€˜π‘—))))
297296oveq2d 7417 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ {1})) = (π‘Š Ξ£g (𝑗 ∈ {1} ↦ (πΈβ€˜(π‘”β€˜π‘—)))))
298 df-ov 7404 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐸(2nd β€˜(π‘”β€˜1))) = (πΈβ€˜βŸ¨π‘‹, (2nd β€˜(π‘”β€˜1))⟩)
299 1st2nd2 8007 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘”β€˜1) ∈ (𝑉 Γ— 𝑉) β†’ (π‘”β€˜1) = ⟨(1st β€˜(π‘”β€˜1)), (2nd β€˜(π‘”β€˜1))⟩)
300278, 299syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘”β€˜1) = ⟨(1st β€˜(π‘”β€˜1)), (2nd β€˜(π‘”β€˜1))⟩)
301219simp1d 1139 . . . . . . . . . . . . . . . . . . . . . . 23 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹))
302 xp1st 8000 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((π‘”β€˜1) ∈ (𝑉 Γ— 𝑉) β†’ (1st β€˜(π‘”β€˜1)) ∈ 𝑉)
303278, 302syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (1st β€˜(π‘”β€˜1)) ∈ 𝑉)
304 f1fveq 7253 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹:𝑉–1-1→𝐡 ∧ ((1st β€˜(π‘”β€˜1)) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) β†’ ((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ↔ (1st β€˜(π‘”β€˜1)) = 𝑋))
305223, 303, 273, 304syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . 23 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ ((πΉβ€˜(1st β€˜(π‘”β€˜1))) = (πΉβ€˜π‘‹) ↔ (1st β€˜(π‘”β€˜1)) = 𝑋))
306301, 305mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (1st β€˜(π‘”β€˜1)) = 𝑋)
307306opeq1d 4871 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ ⟨(1st β€˜(π‘”β€˜1)), (2nd β€˜(π‘”β€˜1))⟩ = βŸ¨π‘‹, (2nd β€˜(π‘”β€˜1))⟩)
308300, 307eqtr2d 2765 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ βŸ¨π‘‹, (2nd β€˜(π‘”β€˜1))⟩ = (π‘”β€˜1))
309308fveq2d 6885 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (πΈβ€˜βŸ¨π‘‹, (2nd β€˜(π‘”β€˜1))⟩) = (πΈβ€˜(π‘”β€˜1)))
310298, 309eqtrid 2776 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜1))) = (πΈβ€˜(π‘”β€˜1)))
311289, 297, 3103eqtr4d 2774 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ {1})) = (𝑋𝐸(2nd β€˜(π‘”β€˜1))))
312283, 311breqtrrd 5166 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜1))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ {1})))
313312a1d 25 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (1 ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜1))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ {1}))))
314 simprl 768 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ π‘₯ ∈ β„•)
315314, 274eleqtrdi 2835 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ π‘₯ ∈ (β„€β‰₯β€˜1))
316 simprr 770 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (π‘₯ + 1) ∈ (1...𝑛))
317 peano2fzr 13511 . . . . . . . . . . . . . . . . . . 19 ((π‘₯ ∈ (β„€β‰₯β€˜1) ∧ (π‘₯ + 1) ∈ (1...𝑛)) β†’ π‘₯ ∈ (1...𝑛))
318315, 316, 317syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ π‘₯ ∈ (1...𝑛))
319318expr 456 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ π‘₯ ∈ β„•) β†’ ((π‘₯ + 1) ∈ (1...𝑛) β†’ π‘₯ ∈ (1...𝑛)))
320319imim1d 82 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ π‘₯ ∈ β„•) β†’ ((π‘₯ ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯)))) β†’ ((π‘₯ + 1) ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))))))
321272adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ 𝐸 ∈ (∞Metβ€˜π‘‰))
322273adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ 𝑋 ∈ 𝑉)
32349adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ 𝑔:(1...𝑛)⟢(𝑉 Γ— 𝑉))
324323, 318ffvelcdmd 7077 . . . . . . . . . . . . . . . . . . . . 21 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (π‘”β€˜π‘₯) ∈ (𝑉 Γ— 𝑉))
325 xp2nd 8001 . . . . . . . . . . . . . . . . . . . . 21 ((π‘”β€˜π‘₯) ∈ (𝑉 Γ— 𝑉) β†’ (2nd β€˜(π‘”β€˜π‘₯)) ∈ 𝑉)
326324, 325syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (2nd β€˜(π‘”β€˜π‘₯)) ∈ 𝑉)
327 xmetcl 24159 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 ∈ (∞Metβ€˜π‘‰) ∧ 𝑋 ∈ 𝑉 ∧ (2nd β€˜(π‘”β€˜π‘₯)) ∈ 𝑉) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ∈ ℝ*)
328321, 322, 326, 327syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ∈ ℝ*)
32966a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ π‘Š ∈ CMnd)
330 fzfid 13935 . . . . . . . . . . . . . . . . . . . . 21 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (1...π‘₯) ∈ Fin)
33151adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (𝐸 ∘ 𝑔):(1...𝑛)⟢(ℝ* βˆ– {-∞}))
332 fzsuc 13545 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π‘₯ ∈ (β„€β‰₯β€˜1) β†’ (1...(π‘₯ + 1)) = ((1...π‘₯) βˆͺ {(π‘₯ + 1)}))
333315, 332syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (1...(π‘₯ + 1)) = ((1...π‘₯) βˆͺ {(π‘₯ + 1)}))
334 elfzuz3 13495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π‘₯ + 1) ∈ (1...𝑛) β†’ 𝑛 ∈ (β„€β‰₯β€˜(π‘₯ + 1)))
335334ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ 𝑛 ∈ (β„€β‰₯β€˜(π‘₯ + 1)))
336 fzss2 13538 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (β„€β‰₯β€˜(π‘₯ + 1)) β†’ (1...(π‘₯ + 1)) βŠ† (1...𝑛))
337335, 336syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (1...(π‘₯ + 1)) βŠ† (1...𝑛))
338333, 337eqsstrrd 4013 . . . . . . . . . . . . . . . . . . . . . . 23 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((1...π‘₯) βˆͺ {(π‘₯ + 1)}) βŠ† (1...𝑛))
339338unssad 4179 . . . . . . . . . . . . . . . . . . . . . 22 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (1...π‘₯) βŠ† (1...𝑛))
340331, 339fssresd 6748 . . . . . . . . . . . . . . . . . . . . 21 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯)):(1...π‘₯)⟢(ℝ* βˆ– {-∞}))
34168a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ 0 ∈ V)
342340, 330, 341fdmfifsupp 9369 . . . . . . . . . . . . . . . . . . . . 21 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯)) finSupp 0)
34364, 65, 329, 330, 340, 342gsumcl 19825 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) ∈ (ℝ* βˆ– {-∞}))
344343eldifad 3952 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) ∈ ℝ*)
345321, 30syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ 𝐸:(𝑉 Γ— 𝑉)βŸΆβ„*)
346323, 316ffvelcdmd 7077 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (π‘”β€˜(π‘₯ + 1)) ∈ (𝑉 Γ— 𝑉))
347345, 346ffvelcdmd 7077 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (πΈβ€˜(π‘”β€˜(π‘₯ + 1))) ∈ ℝ*)
348 xleadd1a 13229 . . . . . . . . . . . . . . . . . . . 20 ((((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ∈ ℝ* ∧ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) ∈ ℝ* ∧ (πΈβ€˜(π‘”β€˜(π‘₯ + 1))) ∈ ℝ*) ∧ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯)))) β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))))
349348ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ∈ ℝ* ∧ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) ∈ ℝ* ∧ (πΈβ€˜(π‘”β€˜(π‘₯ + 1))) ∈ ℝ*) β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1))))))
350328, 344, 347, 349syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1))))))
351 xp2nd 8001 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘”β€˜(π‘₯ + 1)) ∈ (𝑉 Γ— 𝑉) β†’ (2nd β€˜(π‘”β€˜(π‘₯ + 1))) ∈ 𝑉)
352346, 351syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (2nd β€˜(π‘”β€˜(π‘₯ + 1))) ∈ 𝑉)
353 xmettri 24179 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 ∈ (∞Metβ€˜π‘‰) ∧ (𝑋 ∈ 𝑉 ∧ (2nd β€˜(π‘”β€˜(π‘₯ + 1))) ∈ 𝑉 ∧ (2nd β€˜(π‘”β€˜π‘₯)) ∈ 𝑉)) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 ((2nd β€˜(π‘”β€˜π‘₯))𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1))))))
354321, 322, 352, 326, 353syl13anc 1369 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 ((2nd β€˜(π‘”β€˜π‘₯))𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1))))))
355 1st2nd2 8007 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((π‘”β€˜(π‘₯ + 1)) ∈ (𝑉 Γ— 𝑉) β†’ (π‘”β€˜(π‘₯ + 1)) = ⟨(1st β€˜(π‘”β€˜(π‘₯ + 1))), (2nd β€˜(π‘”β€˜(π‘₯ + 1)))⟩)
356346, 355syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (π‘”β€˜(π‘₯ + 1)) = ⟨(1st β€˜(π‘”β€˜(π‘₯ + 1))), (2nd β€˜(π‘”β€˜(π‘₯ + 1)))⟩)
357 2fveq3 6886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 = π‘₯ β†’ (2nd β€˜(π‘”β€˜π‘–)) = (2nd β€˜(π‘”β€˜π‘₯)))
358357fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = π‘₯ β†’ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(2nd β€˜(π‘”β€˜π‘₯))))
359 fvoveq1 7424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖 = π‘₯ β†’ (π‘”β€˜(𝑖 + 1)) = (π‘”β€˜(π‘₯ + 1)))
360359fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 = π‘₯ β†’ (1st β€˜(π‘”β€˜(𝑖 + 1))) = (1st β€˜(π‘”β€˜(π‘₯ + 1))))
361360fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 = π‘₯ β†’ (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1)))) = (πΉβ€˜(1st β€˜(π‘”β€˜(π‘₯ + 1)))))
362358, 361eqeq12d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = π‘₯ β†’ ((πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1)))) ↔ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘₯))) = (πΉβ€˜(1st β€˜(π‘”β€˜(π‘₯ + 1))))))
363219simp3d 1141 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1)))))
364363adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘”β€˜π‘–))) = (πΉβ€˜(1st β€˜(π‘”β€˜(𝑖 + 1)))))
365 nnz 12576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (π‘₯ ∈ β„• β†’ π‘₯ ∈ β„€)
366365ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ π‘₯ ∈ β„€)
367 eluzp1m1 12845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((π‘₯ ∈ β„€ ∧ 𝑛 ∈ (β„€β‰₯β€˜(π‘₯ + 1))) β†’ (𝑛 βˆ’ 1) ∈ (β„€β‰₯β€˜π‘₯))
368366, 335, 367syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (𝑛 βˆ’ 1) ∈ (β„€β‰₯β€˜π‘₯))
369 elfzuzb 13492 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (π‘₯ ∈ (1...(𝑛 βˆ’ 1)) ↔ (π‘₯ ∈ (β„€β‰₯β€˜1) ∧ (𝑛 βˆ’ 1) ∈ (β„€β‰₯β€˜π‘₯)))
370315, 368, 369sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ π‘₯ ∈ (1...(𝑛 βˆ’ 1)))
371362, 364, 370rspcdva 3605 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (πΉβ€˜(2nd β€˜(π‘”β€˜π‘₯))) = (πΉβ€˜(1st β€˜(π‘”β€˜(π‘₯ + 1)))))
372223adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ 𝐹:𝑉–1-1→𝐡)
373 xp1st 8000 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π‘”β€˜(π‘₯ + 1)) ∈ (𝑉 Γ— 𝑉) β†’ (1st β€˜(π‘”β€˜(π‘₯ + 1))) ∈ 𝑉)
374346, 373syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (1st β€˜(π‘”β€˜(π‘₯ + 1))) ∈ 𝑉)
375 f1fveq 7253 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:𝑉–1-1→𝐡 ∧ ((2nd β€˜(π‘”β€˜π‘₯)) ∈ 𝑉 ∧ (1st β€˜(π‘”β€˜(π‘₯ + 1))) ∈ 𝑉)) β†’ ((πΉβ€˜(2nd β€˜(π‘”β€˜π‘₯))) = (πΉβ€˜(1st β€˜(π‘”β€˜(π‘₯ + 1)))) ↔ (2nd β€˜(π‘”β€˜π‘₯)) = (1st β€˜(π‘”β€˜(π‘₯ + 1)))))
376372, 326, 374, 375syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((πΉβ€˜(2nd β€˜(π‘”β€˜π‘₯))) = (πΉβ€˜(1st β€˜(π‘”β€˜(π‘₯ + 1)))) ↔ (2nd β€˜(π‘”β€˜π‘₯)) = (1st β€˜(π‘”β€˜(π‘₯ + 1)))))
377371, 376mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (2nd β€˜(π‘”β€˜π‘₯)) = (1st β€˜(π‘”β€˜(π‘₯ + 1))))
378377opeq1d 4871 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ⟨(2nd β€˜(π‘”β€˜π‘₯)), (2nd β€˜(π‘”β€˜(π‘₯ + 1)))⟩ = ⟨(1st β€˜(π‘”β€˜(π‘₯ + 1))), (2nd β€˜(π‘”β€˜(π‘₯ + 1)))⟩)
379356, 378eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . . 23 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (π‘”β€˜(π‘₯ + 1)) = ⟨(2nd β€˜(π‘”β€˜π‘₯)), (2nd β€˜(π‘”β€˜(π‘₯ + 1)))⟩)
380379fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . 22 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (πΈβ€˜(π‘”β€˜(π‘₯ + 1))) = (πΈβ€˜βŸ¨(2nd β€˜(π‘”β€˜π‘₯)), (2nd β€˜(π‘”β€˜(π‘₯ + 1)))⟩))
381 df-ov 7404 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd β€˜(π‘”β€˜π‘₯))𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) = (πΈβ€˜βŸ¨(2nd β€˜(π‘”β€˜π‘₯)), (2nd β€˜(π‘”β€˜(π‘₯ + 1)))⟩)
382380, 381eqtr4di 2782 . . . . . . . . . . . . . . . . . . . . 21 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (πΈβ€˜(π‘”β€˜(π‘₯ + 1))) = ((2nd β€˜(π‘”β€˜π‘₯))𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))))
383382oveq2d 7417 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) = ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 ((2nd β€˜(π‘”β€˜π‘₯))𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1))))))
384354, 383breqtrrd 5166 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))))
385 xmetcl 24159 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 ∈ (∞Metβ€˜π‘‰) ∧ 𝑋 ∈ 𝑉 ∧ (2nd β€˜(π‘”β€˜(π‘₯ + 1))) ∈ 𝑉) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ∈ ℝ*)
386321, 322, 352, 385syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ∈ ℝ*)
387328, 347xaddcld 13277 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) ∈ ℝ*)
388344, 347xaddcld 13277 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) ∈ ℝ*)
389 xrletr 13134 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ∈ ℝ* ∧ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) ∈ ℝ* ∧ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) ∈ ℝ*) β†’ (((𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) ∧ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1))))) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1))))))
390386, 387, 388, 389syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (((𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) ∧ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1))))) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1))))))
391384, 390mpand 692 . . . . . . . . . . . . . . . . . 18 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1))))))
392350, 391syld 47 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1))))))
393 xrex 12968 . . . . . . . . . . . . . . . . . . . . . 22 ℝ* ∈ V
394393difexi 5318 . . . . . . . . . . . . . . . . . . . . 21 (ℝ* βˆ– {-∞}) ∈ V
39523, 22ressplusg 17234 . . . . . . . . . . . . . . . . . . . . 21 ((ℝ* βˆ– {-∞}) ∈ V β†’ +𝑒 = (+gβ€˜π‘Š))
396394, 395ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 +𝑒 = (+gβ€˜π‘Š)
39744ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...π‘₯)) β†’ 𝐸:(𝑉 Γ— 𝑉)⟢(ℝ* βˆ– {-∞}))
398 fzelp1 13550 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (1...π‘₯) β†’ 𝑗 ∈ (1...(π‘₯ + 1)))
39949ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 (((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...(π‘₯ + 1))) β†’ 𝑔:(1...𝑛)⟢(𝑉 Γ— 𝑉))
400337sselda 3974 . . . . . . . . . . . . . . . . . . . . . . 23 (((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...(π‘₯ + 1))) β†’ 𝑗 ∈ (1...𝑛))
401399, 400ffvelcdmd 7077 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...(π‘₯ + 1))) β†’ (π‘”β€˜π‘—) ∈ (𝑉 Γ— 𝑉))
402398, 401sylan2 592 . . . . . . . . . . . . . . . . . . . . 21 (((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...π‘₯)) β†’ (π‘”β€˜π‘—) ∈ (𝑉 Γ— 𝑉))
403397, 402ffvelcdmd 7077 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...π‘₯)) β†’ (πΈβ€˜(π‘”β€˜π‘—)) ∈ (ℝ* βˆ– {-∞}))
404 fzp1disj 13557 . . . . . . . . . . . . . . . . . . . . . 22 ((1...π‘₯) ∩ {(π‘₯ + 1)}) = βˆ…
405404a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((1...π‘₯) ∩ {(π‘₯ + 1)}) = βˆ…)
406 disjsn 4707 . . . . . . . . . . . . . . . . . . . . 21 (((1...π‘₯) ∩ {(π‘₯ + 1)}) = βˆ… ↔ Β¬ (π‘₯ + 1) ∈ (1...π‘₯))
407405, 406sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ Β¬ (π‘₯ + 1) ∈ (1...π‘₯))
40844adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ 𝐸:(𝑉 Γ— 𝑉)⟢(ℝ* βˆ– {-∞}))
409408, 346ffvelcdmd 7077 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (πΈβ€˜(π‘”β€˜(π‘₯ + 1))) ∈ (ℝ* βˆ– {-∞}))
410 2fveq3 6886 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (π‘₯ + 1) β†’ (πΈβ€˜(π‘”β€˜π‘—)) = (πΈβ€˜(π‘”β€˜(π‘₯ + 1))))
41164, 396, 329, 330, 403, 316, 407, 409, 410gsumunsn 19870 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (π‘Š Ξ£g (𝑗 ∈ ((1...π‘₯) βˆͺ {(π‘₯ + 1)}) ↦ (πΈβ€˜(π‘”β€˜π‘—)))) = ((π‘Š Ξ£g (𝑗 ∈ (1...π‘₯) ↦ (πΈβ€˜(π‘”β€˜π‘—)))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))))
412292adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (𝐸 ∘ 𝑔) = (𝑗 ∈ (1...𝑛) ↦ (πΈβ€˜(π‘”β€˜π‘—))))
413412, 333reseq12d 5972 . . . . . . . . . . . . . . . . . . . . 21 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝐸 ∘ 𝑔) β†Ύ (1...(π‘₯ + 1))) = ((𝑗 ∈ (1...𝑛) ↦ (πΈβ€˜(π‘”β€˜π‘—))) β†Ύ ((1...π‘₯) βˆͺ {(π‘₯ + 1)})))
414338resmptd 6030 . . . . . . . . . . . . . . . . . . . . 21 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝑗 ∈ (1...𝑛) ↦ (πΈβ€˜(π‘”β€˜π‘—))) β†Ύ ((1...π‘₯) βˆͺ {(π‘₯ + 1)})) = (𝑗 ∈ ((1...π‘₯) βˆͺ {(π‘₯ + 1)}) ↦ (πΈβ€˜(π‘”β€˜π‘—))))
415413, 414eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝐸 ∘ 𝑔) β†Ύ (1...(π‘₯ + 1))) = (𝑗 ∈ ((1...π‘₯) βˆͺ {(π‘₯ + 1)}) ↦ (πΈβ€˜(π‘”β€˜π‘—))))
416415oveq2d 7417 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...(π‘₯ + 1)))) = (π‘Š Ξ£g (𝑗 ∈ ((1...π‘₯) βˆͺ {(π‘₯ + 1)}) ↦ (πΈβ€˜(π‘”β€˜π‘—)))))
417412reseq1d 5970 . . . . . . . . . . . . . . . . . . . . . 22 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯)) = ((𝑗 ∈ (1...𝑛) ↦ (πΈβ€˜(π‘”β€˜π‘—))) β†Ύ (1...π‘₯)))
418339resmptd 6030 . . . . . . . . . . . . . . . . . . . . . 22 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝑗 ∈ (1...𝑛) ↦ (πΈβ€˜(π‘”β€˜π‘—))) β†Ύ (1...π‘₯)) = (𝑗 ∈ (1...π‘₯) ↦ (πΈβ€˜(π‘”β€˜π‘—))))
419417, 418eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯)) = (𝑗 ∈ (1...π‘₯) ↦ (πΈβ€˜(π‘”β€˜π‘—))))
420419oveq2d 7417 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) = (π‘Š Ξ£g (𝑗 ∈ (1...π‘₯) ↦ (πΈβ€˜(π‘”β€˜π‘—)))))
421420oveq1d 7416 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))) = ((π‘Š Ξ£g (𝑗 ∈ (1...π‘₯) ↦ (πΈβ€˜(π‘”β€˜π‘—)))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))))
422411, 416, 4213eqtr4d 2774 . . . . . . . . . . . . . . . . . 18 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...(π‘₯ + 1)))) = ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1)))))
423422breq2d 5150 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...(π‘₯ + 1)))) ↔ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ ((π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) +𝑒 (πΈβ€˜(π‘”β€˜(π‘₯ + 1))))))
424392, 423sylibrd 259 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) ∧ (π‘₯ ∈ β„• ∧ (π‘₯ + 1) ∈ (1...𝑛))) β†’ ((𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...(π‘₯ + 1))))))
425320, 424animpimp2impd 843 . . . . . . . . . . . . . . 15 (π‘₯ ∈ β„• β†’ ((((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘₯ ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘₯))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...π‘₯))))) β†’ (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ ((π‘₯ + 1) ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜(π‘₯ + 1)))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...(π‘₯ + 1))))))))
426244, 253, 262, 271, 313, 425nnind 12227 . . . . . . . . . . . . . 14 (𝑛 ∈ β„• β†’ (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝑛 ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘›))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛))))))
427224, 426mpcom 38 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝑛 ∈ (1...𝑛) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘›))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛)))))
428226, 427mpd 15 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝑋𝐸(2nd β€˜(π‘”β€˜π‘›))) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛))))
429234, 428eqbrtrrd 5162 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘‹πΈπ‘Œ) ≀ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛))))
430 ffn 6707 . . . . . . . . . . . . . 14 ((𝐸 ∘ 𝑔):(1...𝑛)⟢(ℝ* βˆ– {-∞}) β†’ (𝐸 ∘ 𝑔) Fn (1...𝑛))
431 fnresdm 6659 . . . . . . . . . . . . . 14 ((𝐸 ∘ 𝑔) Fn (1...𝑛) β†’ ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛)) = (𝐸 ∘ 𝑔))
43251, 430, 4313syl 18 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛)) = (𝐸 ∘ 𝑔))
433432oveq2d 7417 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛))) = (π‘Š Ξ£g (𝐸 ∘ 𝑔)))
43462, 433eqtr4d 2767 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) = (π‘Š Ξ£g ((𝐸 ∘ 𝑔) β†Ύ (1...𝑛))))
435429, 434breqtrrd 5166 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (π‘‹πΈπ‘Œ) ≀ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)))
436 breq2 5142 . . . . . . . . . 10 (𝑝 = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) β†’ ((π‘‹πΈπ‘Œ) ≀ 𝑝 ↔ (π‘‹πΈπ‘Œ) ≀ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))))
437435, 436syl5ibrcom 246 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑔 ∈ 𝑆) β†’ (𝑝 = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) β†’ (π‘‹πΈπ‘Œ) ≀ 𝑝))
438437rexlimdva 3147 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (βˆƒπ‘” ∈ 𝑆 𝑝 = (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔)) β†’ (π‘‹πΈπ‘Œ) ≀ 𝑝))
439216, 438biimtrid 241 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) β†’ (π‘‹πΈπ‘Œ) ≀ 𝑝))
440439rexlimdva 3147 . . . . . 6 (πœ‘ β†’ (βˆƒπ‘› ∈ β„• 𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Ξ£g (𝐸 ∘ 𝑔))) β†’ (π‘‹πΈπ‘Œ) ≀ 𝑝))
441214, 440biimtrid 241 . . . . 5 (πœ‘ β†’ (𝑝 ∈ 𝑇 β†’ (π‘‹πΈπ‘Œ) ≀ 𝑝))
442441ralrimiv 3137 . . . 4 (πœ‘ β†’ βˆ€π‘ ∈ 𝑇 (π‘‹πΈπ‘Œ) ≀ 𝑝)
443 infxrgelb 13311 . . . . 5 ((𝑇 βŠ† ℝ* ∧ (π‘‹πΈπ‘Œ) ∈ ℝ*) β†’ ((π‘‹πΈπ‘Œ) ≀ inf(𝑇, ℝ*, < ) ↔ βˆ€π‘ ∈ 𝑇 (π‘‹πΈπ‘Œ) ≀ 𝑝))
44479, 83, 443syl2anc 583 . . . 4 (πœ‘ β†’ ((π‘‹πΈπ‘Œ) ≀ inf(𝑇, ℝ*, < ) ↔ βˆ€π‘ ∈ 𝑇 (π‘‹πΈπ‘Œ) ≀ 𝑝))
445442, 444mpbird 257 . . 3 (πœ‘ β†’ (π‘‹πΈπ‘Œ) ≀ inf(𝑇, ℝ*, < ))
44681, 83, 211, 445xrletrid 13131 . 2 (πœ‘ β†’ inf(𝑇, ℝ*, < ) = (π‘‹πΈπ‘Œ))
44720, 446eqtrd 2764 1 (πœ‘ β†’ ((πΉβ€˜π‘‹)𝐷(πΉβ€˜π‘Œ)) = (π‘‹πΈπ‘Œ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053  βˆƒwrex 3062  {crab 3424  Vcvv 3466   βˆ– cdif 3937   βˆͺ cun 3938   ∩ cin 3939   βŠ† wss 3940  βˆ…c0 4314  {csn 4620  βŸ¨cop 4626  βˆͺ ciun 4987   class class class wbr 5138   ↦ cmpt 5221   Γ— cxp 5664  ran crn 5667   β†Ύ cres 5668   ∘ ccom 5670   Fn wfn 6528  βŸΆwf 6529  β€“1-1β†’wf1 6530  β€“ontoβ†’wfo 6531  β€“1-1-ontoβ†’wf1o 6532  β€˜cfv 6533  (class class class)co 7401  1st c1st 7966  2nd c2nd 7967   ↑m cmap 8816  Fincfn 8935  infcinf 9432  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109  -∞cmnf 11243  β„*cxr 11244   < clt 11245   ≀ cle 11246   βˆ’ cmin 11441  β„•cn 12209  β„€cz 12555  β„€β‰₯cuz 12819   +𝑒 cxad 13087  ...cfz 13481  Basecbs 17143   β†Ύs cress 17172  +gcplusg 17196  distcds 17205   Ξ£g cgsu 17385  β„*𝑠cxrs 17445   β€œs cimas 17449  Mndcmnd 18657  CMndccmn 19690  βˆžMetcxmet 21213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-fz 13482  df-fzo 13625  df-seq 13964  df-hash 14288  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17386  df-gsum 17387  df-xrs 17447  df-imas 17453  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-mulg 18986  df-cntz 19223  df-cmn 19692  df-xmet 21221
This theorem is referenced by:  imasdsf1o  24202
  Copyright terms: Public domain W3C validator