Step | Hyp | Ref
| Expression |
1 | | imasdsf1o.u |
. . . 4
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
2 | | imasdsf1o.v |
. . . 4
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
3 | | imasdsf1o.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
4 | | f1ofo 6723 |
. . . . 5
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
6 | | imasdsf1o.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
7 | | eqid 2738 |
. . . 4
⊢
(dist‘𝑅) =
(dist‘𝑅) |
8 | | imasdsf1o.d |
. . . 4
⊢ 𝐷 = (dist‘𝑈) |
9 | | f1of 6716 |
. . . . . 6
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉⟶𝐵) |
10 | 3, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
11 | | imasdsf1o.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
12 | 10, 11 | ffvelrnd 6962 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐵) |
13 | | imasdsf1o.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
14 | 10, 13 | ffvelrnd 6962 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑌) ∈ 𝐵) |
15 | | imasdsf1o.s |
. . . 4
⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} |
16 | | imasdsf1o.e |
. . . 4
⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
17 | 1, 2, 5, 6, 7, 8, 12, 14, 15, 16 | imasdsval2 17227 |
. . 3
⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, <
)) |
18 | | imasdsf1o.t |
. . . 4
⊢ 𝑇 = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
19 | 18 | infeq1i 9237 |
. . 3
⊢ inf(𝑇, ℝ*, < ) =
inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, <
) |
20 | 17, 19 | eqtr4di 2796 |
. 2
⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = inf(𝑇, ℝ*, <
)) |
21 | | xrsbas 20614 |
. . . . . . . . . . . 12
⊢
ℝ* =
(Base‘ℝ*𝑠) |
22 | | xrsadd 20615 |
. . . . . . . . . . . 12
⊢
+𝑒 =
(+g‘ℝ*𝑠) |
23 | | imasdsf1o.w |
. . . . . . . . . . . 12
⊢ 𝑊 =
(ℝ*𝑠 ↾s
(ℝ* ∖ {-∞})) |
24 | | xrsex 20613 |
. . . . . . . . . . . . 13
⊢
ℝ*𝑠 ∈ V |
25 | 24 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) →
ℝ*𝑠 ∈ V) |
26 | | fzfid 13693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (1...𝑛) ∈ Fin) |
27 | | difss 4066 |
. . . . . . . . . . . . 13
⊢
(ℝ* ∖ {-∞}) ⊆
ℝ* |
28 | 27 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (ℝ* ∖
{-∞}) ⊆ ℝ*) |
29 | | imasdsf1o.m |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
30 | | xmetf 23482 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸 ∈ (∞Met‘𝑉) → 𝐸:(𝑉 × 𝑉)⟶ℝ*) |
31 | | ffn 6600 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸:(𝑉 × 𝑉)⟶ℝ* → 𝐸 Fn (𝑉 × 𝑉)) |
32 | 29, 30, 31 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐸 Fn (𝑉 × 𝑉)) |
33 | | xmetcl 23484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉) → (𝑓𝐸𝑔) ∈
ℝ*) |
34 | | xmetge0 23497 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉) → 0 ≤ (𝑓𝐸𝑔)) |
35 | | ge0nemnf 12907 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓𝐸𝑔) ∈ ℝ* ∧ 0 ≤
(𝑓𝐸𝑔)) → (𝑓𝐸𝑔) ≠ -∞) |
36 | 33, 34, 35 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉) → (𝑓𝐸𝑔) ≠ -∞) |
37 | | eldifsn 4720 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓𝐸𝑔) ∈ (ℝ* ∖
{-∞}) ↔ ((𝑓𝐸𝑔) ∈ ℝ* ∧ (𝑓𝐸𝑔) ≠ -∞)) |
38 | 33, 36, 37 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉) → (𝑓𝐸𝑔) ∈ (ℝ* ∖
{-∞})) |
39 | 38 | 3expb 1119 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉)) → (𝑓𝐸𝑔) ∈ (ℝ* ∖
{-∞})) |
40 | 29, 39 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑉 ∧ 𝑔 ∈ 𝑉)) → (𝑓𝐸𝑔) ∈ (ℝ* ∖
{-∞})) |
41 | 40 | ralrimivva 3123 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑓 ∈ 𝑉 ∀𝑔 ∈ 𝑉 (𝑓𝐸𝑔) ∈ (ℝ* ∖
{-∞})) |
42 | | ffnov 7401 |
. . . . . . . . . . . . . . 15
⊢ (𝐸:(𝑉 × 𝑉)⟶(ℝ* ∖
{-∞}) ↔ (𝐸 Fn
(𝑉 × 𝑉) ∧ ∀𝑓 ∈ 𝑉 ∀𝑔 ∈ 𝑉 (𝑓𝐸𝑔) ∈ (ℝ* ∖
{-∞}))) |
43 | 32, 41, 42 | sylanbrc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸:(𝑉 × 𝑉)⟶(ℝ* ∖
{-∞})) |
44 | 43 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝐸:(𝑉 × 𝑉)⟶(ℝ* ∖
{-∞})) |
45 | 15 | ssrab3 4015 |
. . . . . . . . . . . . . . . 16
⊢ 𝑆 ⊆ ((𝑉 × 𝑉) ↑m (1...𝑛)) |
46 | 45 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ⊆ ((𝑉 × 𝑉) ↑m (1...𝑛))) |
47 | 46 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛))) |
48 | | elmapi 8637 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) |
49 | 47, 48 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) |
50 | | fco 6624 |
. . . . . . . . . . . . 13
⊢ ((𝐸:(𝑉 × 𝑉)⟶(ℝ* ∖
{-∞}) ∧ 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) → (𝐸 ∘ 𝑔):(1...𝑛)⟶(ℝ* ∖
{-∞})) |
51 | 44, 49, 50 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐸 ∘ 𝑔):(1...𝑛)⟶(ℝ* ∖
{-∞})) |
52 | | 0re 10977 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
53 | | rexr 11021 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ → 0 ∈ ℝ*) |
54 | | renemnf 11024 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ → 0 ≠ -∞) |
55 | | eldifsn 4720 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
(ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ*
∧ 0 ≠ -∞)) |
56 | 53, 54, 55 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℝ → 0 ∈ (ℝ* ∖
{-∞})) |
57 | 52, 56 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 0 ∈ (ℝ*
∖ {-∞})) |
58 | | xaddid2 12976 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ*
→ (0 +𝑒 𝑥) = 𝑥) |
59 | | xaddid1 12975 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ*
→ (𝑥
+𝑒 0) = 𝑥) |
60 | 58, 59 | jca 512 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ*
→ ((0 +𝑒 𝑥) = 𝑥 ∧ (𝑥 +𝑒 0) = 𝑥)) |
61 | 60 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ 𝑥 ∈ ℝ*) → ((0
+𝑒 𝑥) =
𝑥 ∧ (𝑥 +𝑒 0) = 𝑥)) |
62 | 21, 22, 23, 25, 26, 28, 51, 57, 61 | gsumress 18366 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) →
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)) = (𝑊 Σg (𝐸 ∘ 𝑔))) |
63 | 23, 21 | ressbas2 16949 |
. . . . . . . . . . . . 13
⊢
((ℝ* ∖ {-∞}) ⊆ ℝ*
→ (ℝ* ∖ {-∞}) = (Base‘𝑊)) |
64 | 27, 63 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(ℝ* ∖ {-∞}) = (Base‘𝑊) |
65 | 23 | xrs10 20637 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑊) |
66 | 23 | xrs1cmn 20638 |
. . . . . . . . . . . . 13
⊢ 𝑊 ∈ CMnd |
67 | 66 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑊 ∈ CMnd) |
68 | | c0ex 10969 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
69 | 68 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 0 ∈ V) |
70 | 51, 26, 69 | fdmfifsupp 9138 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐸 ∘ 𝑔) finSupp 0) |
71 | 64, 65, 67, 26, 51, 70 | gsumcl 19516 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑊 Σg (𝐸 ∘ 𝑔)) ∈ (ℝ* ∖
{-∞})) |
72 | 62, 71 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) →
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)) ∈ (ℝ* ∖
{-∞})) |
73 | 72 | eldifad 3899 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) →
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)) ∈
ℝ*) |
74 | 73 | fmpttd 6989 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))):𝑆⟶ℝ*) |
75 | 74 | frnd 6608 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⊆
ℝ*) |
76 | 75 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⊆
ℝ*) |
77 | | iunss 4975 |
. . . . . 6
⊢ (∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⊆ ℝ* ↔
∀𝑛 ∈ ℕ
ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⊆
ℝ*) |
78 | 76, 77 | sylibr 233 |
. . . . 5
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⊆
ℝ*) |
79 | 18, 78 | eqsstrid 3969 |
. . . 4
⊢ (𝜑 → 𝑇 ⊆
ℝ*) |
80 | | infxrcl 13067 |
. . . 4
⊢ (𝑇 ⊆ ℝ*
→ inf(𝑇,
ℝ*, < ) ∈ ℝ*) |
81 | 79, 80 | syl 17 |
. . 3
⊢ (𝜑 → inf(𝑇, ℝ*, < ) ∈
ℝ*) |
82 | | xmetcl 23484 |
. . . 4
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋𝐸𝑌) ∈
ℝ*) |
83 | 29, 11, 13, 82 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝑋𝐸𝑌) ∈
ℝ*) |
84 | | 1nn 11984 |
. . . . . . 7
⊢ 1 ∈
ℕ |
85 | | 1ex 10971 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
86 | | opex 5379 |
. . . . . . . . . . . 12
⊢
〈𝑋, 𝑌〉 ∈ V |
87 | 85, 86 | f1osn 6756 |
. . . . . . . . . . 11
⊢ {〈1,
〈𝑋, 𝑌〉〉}:{1}–1-1-onto→{〈𝑋, 𝑌〉} |
88 | | f1of 6716 |
. . . . . . . . . . 11
⊢
({〈1, 〈𝑋,
𝑌〉〉}:{1}–1-1-onto→{〈𝑋, 𝑌〉} → {〈1, 〈𝑋, 𝑌〉〉}:{1}⟶{〈𝑋, 𝑌〉}) |
89 | 87, 88 | ax-mp 5 |
. . . . . . . . . 10
⊢ {〈1,
〈𝑋, 𝑌〉〉}:{1}⟶{〈𝑋, 𝑌〉} |
90 | 11, 13 | opelxpd 5627 |
. . . . . . . . . . 11
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝑉 × 𝑉)) |
91 | 90 | snssd 4742 |
. . . . . . . . . 10
⊢ (𝜑 → {〈𝑋, 𝑌〉} ⊆ (𝑉 × 𝑉)) |
92 | | fss 6617 |
. . . . . . . . . 10
⊢
(({〈1, 〈𝑋,
𝑌〉〉}:{1}⟶{〈𝑋, 𝑌〉} ∧ {〈𝑋, 𝑌〉} ⊆ (𝑉 × 𝑉)) → {〈1, 〈𝑋, 𝑌〉〉}:{1}⟶(𝑉 × 𝑉)) |
93 | 89, 91, 92 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → {〈1, 〈𝑋, 𝑌〉〉}:{1}⟶(𝑉 × 𝑉)) |
94 | 29 | elfvexd 6808 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉 ∈ V) |
95 | 94, 94 | xpexd 7601 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑉 × 𝑉) ∈ V) |
96 | | snex 5354 |
. . . . . . . . . 10
⊢ {1}
∈ V |
97 | | elmapg 8628 |
. . . . . . . . . 10
⊢ (((𝑉 × 𝑉) ∈ V ∧ {1} ∈ V) →
({〈1, 〈𝑋, 𝑌〉〉} ∈ ((𝑉 × 𝑉) ↑m {1}) ↔ {〈1,
〈𝑋, 𝑌〉〉}:{1}⟶(𝑉 × 𝑉))) |
98 | 95, 96, 97 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → ({〈1, 〈𝑋, 𝑌〉〉} ∈ ((𝑉 × 𝑉) ↑m {1}) ↔ {〈1,
〈𝑋, 𝑌〉〉}:{1}⟶(𝑉 × 𝑉))) |
99 | 93, 98 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → {〈1, 〈𝑋, 𝑌〉〉} ∈ ((𝑉 × 𝑉) ↑m {1})) |
100 | | op1stg 7843 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
101 | 11, 13, 100 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘〈𝑋, 𝑌〉) = 𝑋) |
102 | 101 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋)) |
103 | | op2ndg 7844 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
104 | 11, 13, 103 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (2nd
‘〈𝑋, 𝑌〉) = 𝑌) |
105 | 104 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌)) |
106 | 102, 105 | jca 512 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌))) |
107 | 24 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 →
ℝ*𝑠 ∈ V) |
108 | | snfi 8834 |
. . . . . . . . . . 11
⊢ {1}
∈ Fin |
109 | 108 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → {1} ∈
Fin) |
110 | 27 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ*
∖ {-∞}) ⊆ ℝ*) |
111 | | xmetge0 23497 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 0 ≤ (𝑋𝐸𝑌)) |
112 | 29, 11, 13, 111 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ (𝑋𝐸𝑌)) |
113 | | ge0nemnf 12907 |
. . . . . . . . . . . . . 14
⊢ (((𝑋𝐸𝑌) ∈ ℝ* ∧ 0 ≤
(𝑋𝐸𝑌)) → (𝑋𝐸𝑌) ≠ -∞) |
114 | 83, 112, 113 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋𝐸𝑌) ≠ -∞) |
115 | | eldifsn 4720 |
. . . . . . . . . . . . 13
⊢ ((𝑋𝐸𝑌) ∈ (ℝ* ∖
{-∞}) ↔ ((𝑋𝐸𝑌) ∈ ℝ* ∧ (𝑋𝐸𝑌) ≠ -∞)) |
116 | 83, 114, 115 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋𝐸𝑌) ∈ (ℝ* ∖
{-∞})) |
117 | | fconst6g 6663 |
. . . . . . . . . . . 12
⊢ ((𝑋𝐸𝑌) ∈ (ℝ* ∖
{-∞}) → ({1} × {(𝑋𝐸𝑌)}):{1}⟶(ℝ* ∖
{-∞})) |
118 | 116, 117 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ({1} × {(𝑋𝐸𝑌)}):{1}⟶(ℝ* ∖
{-∞})) |
119 | | fcoconst 7006 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 Fn (𝑉 × 𝑉) ∧ 〈𝑋, 𝑌〉 ∈ (𝑉 × 𝑉)) → (𝐸 ∘ ({1} × {〈𝑋, 𝑌〉})) = ({1} × {(𝐸‘〈𝑋, 𝑌〉)})) |
120 | 32, 90, 119 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ∘ ({1} × {〈𝑋, 𝑌〉})) = ({1} × {(𝐸‘〈𝑋, 𝑌〉)})) |
121 | 85, 86 | xpsn 7013 |
. . . . . . . . . . . . . 14
⊢ ({1}
× {〈𝑋, 𝑌〉}) = {〈1, 〈𝑋, 𝑌〉〉} |
122 | 121 | coeq2i 5769 |
. . . . . . . . . . . . 13
⊢ (𝐸 ∘ ({1} ×
{〈𝑋, 𝑌〉})) = (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}) |
123 | | df-ov 7278 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋𝐸𝑌) = (𝐸‘〈𝑋, 𝑌〉) |
124 | 123 | eqcomi 2747 |
. . . . . . . . . . . . . . 15
⊢ (𝐸‘〈𝑋, 𝑌〉) = (𝑋𝐸𝑌) |
125 | 124 | sneqi 4572 |
. . . . . . . . . . . . . 14
⊢ {(𝐸‘〈𝑋, 𝑌〉)} = {(𝑋𝐸𝑌)} |
126 | 125 | xpeq2i 5616 |
. . . . . . . . . . . . 13
⊢ ({1}
× {(𝐸‘〈𝑋, 𝑌〉)}) = ({1} × {(𝑋𝐸𝑌)}) |
127 | 120, 122,
126 | 3eqtr3g 2801 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}) = ({1} × {(𝑋𝐸𝑌)})) |
128 | 127 | feq1d 6585 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}):{1}⟶(ℝ*
∖ {-∞}) ↔ ({1} × {(𝑋𝐸𝑌)}):{1}⟶(ℝ* ∖
{-∞}))) |
129 | 118, 128 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}):{1}⟶(ℝ*
∖ {-∞})) |
130 | 52, 56 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
(ℝ* ∖ {-∞})) |
131 | 60 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → ((0
+𝑒 𝑥) =
𝑥 ∧ (𝑥 +𝑒 0) = 𝑥)) |
132 | 21, 22, 23, 107, 109, 110, 129, 130, 131 | gsumress 18366 |
. . . . . . . . 9
⊢ (𝜑 →
(ℝ*𝑠 Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉})) = (𝑊 Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}))) |
133 | | fconstmpt 5649 |
. . . . . . . . . . 11
⊢ ({1}
× {(𝑋𝐸𝑌)}) = (𝑗 ∈ {1} ↦ (𝑋𝐸𝑌)) |
134 | 127, 133 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}) = (𝑗 ∈ {1} ↦ (𝑋𝐸𝑌))) |
135 | 134 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉})) = (𝑊 Σg (𝑗 ∈ {1} ↦ (𝑋𝐸𝑌)))) |
136 | | cmnmnd 19402 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ CMnd → 𝑊 ∈ Mnd) |
137 | 66, 136 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ Mnd) |
138 | 84 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℕ) |
139 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝑗 = 1 → (𝑋𝐸𝑌) = (𝑋𝐸𝑌)) |
140 | 64, 139 | gsumsn 19555 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Mnd ∧ 1 ∈
ℕ ∧ (𝑋𝐸𝑌) ∈ (ℝ* ∖
{-∞})) → (𝑊
Σg (𝑗 ∈ {1} ↦ (𝑋𝐸𝑌))) = (𝑋𝐸𝑌)) |
141 | 137, 138,
116, 140 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊 Σg (𝑗 ∈ {1} ↦ (𝑋𝐸𝑌))) = (𝑋𝐸𝑌)) |
142 | 132, 135,
141 | 3eqtrrd 2783 |
. . . . . . . 8
⊢ (𝜑 → (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}))) |
143 | | fveq1 6773 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (𝑔‘1) = ({〈1, 〈𝑋, 𝑌〉〉}‘1)) |
144 | 85, 86 | fvsn 7053 |
. . . . . . . . . . . . . 14
⊢
({〈1, 〈𝑋,
𝑌〉〉}‘1) =
〈𝑋, 𝑌〉 |
145 | 143, 144 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (𝑔‘1) = 〈𝑋, 𝑌〉) |
146 | 145 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (1st
‘(𝑔‘1)) =
(1st ‘〈𝑋, 𝑌〉)) |
147 | 146 | fveqeq2d 6782 |
. . . . . . . . . . 11
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ↔ (𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋))) |
148 | 145 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (2nd
‘(𝑔‘1)) =
(2nd ‘〈𝑋, 𝑌〉)) |
149 | 148 | fveqeq2d 6782 |
. . . . . . . . . . 11
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → ((𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌) ↔ (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌))) |
150 | 147, 149 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ↔ ((𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌)))) |
151 | | coeq2 5767 |
. . . . . . . . . . . 12
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → (𝐸 ∘ 𝑔) = (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉})) |
152 | 151 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} →
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)) = (ℝ*𝑠
Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}))) |
153 | 152 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → ((𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) ↔ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉})))) |
154 | 150, 153 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑔 = {〈1, 〈𝑋, 𝑌〉〉} → ((((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))) ↔ (((𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉}))))) |
155 | 154 | rspcev 3561 |
. . . . . . . 8
⊢
(({〈1, 〈𝑋,
𝑌〉〉} ∈
((𝑉 × 𝑉) ↑m {1}) ∧
(((𝐹‘(1st
‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ {〈1, 〈𝑋, 𝑌〉〉})))) → ∃𝑔 ∈ ((𝑉 × 𝑉) ↑m {1})(((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) |
156 | 99, 106, 142, 155 | syl12anc 834 |
. . . . . . 7
⊢ (𝜑 → ∃𝑔 ∈ ((𝑉 × 𝑉) ↑m {1})(((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) |
157 | | ovex 7308 |
. . . . . . . . . 10
⊢ (𝑋𝐸𝑌) ∈ V |
158 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
159 | 158 | elrnmpt 5865 |
. . . . . . . . . 10
⊢ ((𝑋𝐸𝑌) ∈ V → ((𝑋𝐸𝑌) ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑔 ∈ 𝑆 (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) |
160 | 157, 159 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑋𝐸𝑌) ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑔 ∈ 𝑆 (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))) |
161 | 15 | rexeqi 3347 |
. . . . . . . . . . 11
⊢
(∃𝑔 ∈
𝑆 (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) ↔ ∃𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))) |
162 | | fveq1 6773 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑔 → (ℎ‘1) = (𝑔‘1)) |
163 | 162 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑔 → (1st ‘(ℎ‘1)) = (1st
‘(𝑔‘1))) |
164 | 163 | fveqeq2d 6782 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑔 → ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ↔ (𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋))) |
165 | | fveq1 6773 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑔 → (ℎ‘𝑛) = (𝑔‘𝑛)) |
166 | 165 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑔 → (2nd ‘(ℎ‘𝑛)) = (2nd ‘(𝑔‘𝑛))) |
167 | 166 | fveqeq2d 6782 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑔 → ((𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ↔ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌))) |
168 | | fveq1 6773 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝑔 → (ℎ‘𝑖) = (𝑔‘𝑖)) |
169 | 168 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝑔 → (2nd ‘(ℎ‘𝑖)) = (2nd ‘(𝑔‘𝑖))) |
170 | 169 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑔 → (𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(2nd ‘(𝑔‘𝑖)))) |
171 | | fveq1 6773 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝑔 → (ℎ‘(𝑖 + 1)) = (𝑔‘(𝑖 + 1))) |
172 | 171 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝑔 → (1st ‘(ℎ‘(𝑖 + 1))) = (1st ‘(𝑔‘(𝑖 + 1)))) |
173 | 172 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑔 → (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) |
174 | 170, 173 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑔 → ((𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))) ↔ (𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))))) |
175 | 174 | ralbidv 3112 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑔 → (∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))) ↔ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))))) |
176 | 164, 167,
175 | 3anbi123d 1435 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑔 → (((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1))))) ↔ ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))))) |
177 | 176 | rexrab 3633 |
. . . . . . . . . . 11
⊢
(∃𝑔 ∈
{ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) ↔ ∃𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛))(((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) |
178 | 161, 177 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑔 ∈
𝑆 (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) ↔ ∃𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛))(((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) |
179 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (1...𝑛) = (1...1)) |
180 | | 1z 12350 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℤ |
181 | | fzsn 13298 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℤ → (1...1) = {1}) |
182 | 180, 181 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (1...1) =
{1} |
183 | 179, 182 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (1...𝑛) = {1}) |
184 | 183 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝑉 × 𝑉) ↑m (1...𝑛)) = ((𝑉 × 𝑉) ↑m {1})) |
185 | | df-3an 1088 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ↔ (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌)) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))))) |
186 | | ral0 4443 |
. . . . . . . . . . . . . . . 16
⊢
∀𝑖 ∈
∅ (𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))) |
187 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (𝑛 − 1) = (1 − 1)) |
188 | | 1m1e0 12045 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1
− 1) = 0 |
189 | 187, 188 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → (𝑛 − 1) = 0) |
190 | 189 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → (1...(𝑛 − 1)) =
(1...0)) |
191 | | fz10 13277 |
. . . . . . . . . . . . . . . . . 18
⊢ (1...0) =
∅ |
192 | 190, 191 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → (1...(𝑛 − 1)) =
∅) |
193 | 192 | raleqdv 3348 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → (∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))) ↔ ∀𝑖 ∈ ∅ (𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))))) |
194 | 186, 193 | mpbiri 257 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 1 → ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) |
195 | 194 | biantrud 532 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 1 → (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌)) ↔ (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌)) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))))) |
196 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 1 → (2nd
‘(𝑔‘𝑛)) = (2nd
‘(𝑔‘1))) |
197 | 196 | fveqeq2d 6782 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 1 → ((𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ↔ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌))) |
198 | 197 | anbi2d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 1 → (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌)) ↔ ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)))) |
199 | 195, 198 | bitr3d 280 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → ((((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌)) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ↔ ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)))) |
200 | 185, 199 | bitrid 282 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ↔ ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)))) |
201 | 200 | anbi1d 630 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))) ↔ (((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))))) |
202 | 184, 201 | rexeqbidv 3337 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (∃𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛))(((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑔 ∈ ((𝑉 × 𝑉) ↑m {1})(((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))))) |
203 | 178, 202 | bitrid 282 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (∃𝑔 ∈ 𝑆 (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) ↔ ∃𝑔 ∈ ((𝑉 × 𝑉) ↑m {1})(((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))))) |
204 | 160, 203 | bitrid 282 |
. . . . . . . 8
⊢ (𝑛 = 1 → ((𝑋𝐸𝑌) ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑔 ∈ ((𝑉 × 𝑉) ↑m {1})(((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))))) |
205 | 204 | rspcev 3561 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ ∃𝑔 ∈ ((𝑉 × 𝑉) ↑m {1})(((𝐹‘(1st
‘(𝑔‘1))) =
(𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘1))) = (𝐹‘𝑌)) ∧ (𝑋𝐸𝑌) = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) → ∃𝑛 ∈ ℕ (𝑋𝐸𝑌) ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
206 | 84, 156, 205 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → ∃𝑛 ∈ ℕ (𝑋𝐸𝑌) ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
207 | | eliun 4928 |
. . . . . 6
⊢ ((𝑋𝐸𝑌) ∈ ∪
𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑛 ∈ ℕ (𝑋𝐸𝑌) ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
208 | 206, 207 | sylibr 233 |
. . . . 5
⊢ (𝜑 → (𝑋𝐸𝑌) ∈ ∪
𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
209 | 208, 18 | eleqtrrdi 2850 |
. . . 4
⊢ (𝜑 → (𝑋𝐸𝑌) ∈ 𝑇) |
210 | | infxrlb 13068 |
. . . 4
⊢ ((𝑇 ⊆ ℝ*
∧ (𝑋𝐸𝑌) ∈ 𝑇) → inf(𝑇, ℝ*, < ) ≤ (𝑋𝐸𝑌)) |
211 | 79, 209, 210 | syl2anc 584 |
. . 3
⊢ (𝜑 → inf(𝑇, ℝ*, < ) ≤ (𝑋𝐸𝑌)) |
212 | 18 | eleq2i 2830 |
. . . . . . 7
⊢ (𝑝 ∈ 𝑇 ↔ 𝑝 ∈ ∪
𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
213 | | eliun 4928 |
. . . . . . 7
⊢ (𝑝 ∈ ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑛 ∈ ℕ 𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
214 | 212, 213 | bitri 274 |
. . . . . 6
⊢ (𝑝 ∈ 𝑇 ↔ ∃𝑛 ∈ ℕ 𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
215 | 158 | elrnmpt 5865 |
. . . . . . . . 9
⊢ (𝑝 ∈ V → (𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑔 ∈ 𝑆 𝑝 = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)))) |
216 | 215 | elv 3438 |
. . . . . . . 8
⊢ (𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ↔ ∃𝑔 ∈ 𝑆 𝑝 = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔))) |
217 | 176, 15 | elrab2 3627 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ 𝑆 ↔ (𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∧ ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))))) |
218 | 217 | simprbi 497 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ 𝑆 → ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))))) |
219 | 218 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))))) |
220 | 219 | simp2d 1142 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌)) |
221 | 3 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝐹:𝑉–1-1-onto→𝐵) |
222 | | f1of1 6715 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–1-1→𝐵) |
223 | 221, 222 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝐹:𝑉–1-1→𝐵) |
224 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑛 ∈ ℕ) |
225 | | elfz1end 13286 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈ (1...𝑛)) |
226 | 224, 225 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑛 ∈ (1...𝑛)) |
227 | 49, 226 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑔‘𝑛) ∈ (𝑉 × 𝑉)) |
228 | | xp2nd 7864 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔‘𝑛) ∈ (𝑉 × 𝑉) → (2nd ‘(𝑔‘𝑛)) ∈ 𝑉) |
229 | 227, 228 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (2nd ‘(𝑔‘𝑛)) ∈ 𝑉) |
230 | 13 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑌 ∈ 𝑉) |
231 | | f1fveq 7135 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑉–1-1→𝐵 ∧ ((2nd ‘(𝑔‘𝑛)) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ↔ (2nd ‘(𝑔‘𝑛)) = 𝑌)) |
232 | 223, 229,
230, 231 | syl12anc 834 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝐹‘(2nd ‘(𝑔‘𝑛))) = (𝐹‘𝑌) ↔ (2nd ‘(𝑔‘𝑛)) = 𝑌)) |
233 | 220, 232 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (2nd ‘(𝑔‘𝑛)) = 𝑌) |
234 | 233 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸(2nd ‘(𝑔‘𝑛))) = (𝑋𝐸𝑌)) |
235 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 1 → (𝑚 ∈ (1...𝑛) ↔ 1 ∈ (1...𝑛))) |
236 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 1 → (2nd
‘(𝑔‘𝑚)) = (2nd
‘(𝑔‘1))) |
237 | 236 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 1 → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) = (𝑋𝐸(2nd ‘(𝑔‘1)))) |
238 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 1 → (1...𝑚) = (1...1)) |
239 | 238, 182 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 1 → (1...𝑚) = {1}) |
240 | 239 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 1 → ((𝐸 ∘ 𝑔) ↾ (1...𝑚)) = ((𝐸 ∘ 𝑔) ↾ {1})) |
241 | 240 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 1 → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) = (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1}))) |
242 | 237, 241 | breq12d 5087 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 1 → ((𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) ↔ (𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1})))) |
243 | 235, 242 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 1 → ((𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚)))) ↔ (1 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1}))))) |
244 | 243 | imbi2d 341 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 1 → ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))))) ↔ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (1 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1})))))) |
245 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑥 → (𝑚 ∈ (1...𝑛) ↔ 𝑥 ∈ (1...𝑛))) |
246 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑥 → (2nd ‘(𝑔‘𝑚)) = (2nd ‘(𝑔‘𝑥))) |
247 | 246 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑥 → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) = (𝑋𝐸(2nd ‘(𝑔‘𝑥)))) |
248 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑥 → (1...𝑚) = (1...𝑥)) |
249 | 248 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑥 → ((𝐸 ∘ 𝑔) ↾ (1...𝑚)) = ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) |
250 | 249 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑥 → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) = (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))) |
251 | 247, 250 | breq12d 5087 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑥 → ((𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) ↔ (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))))) |
252 | 245, 251 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑥 → ((𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚)))) ↔ (𝑥 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))))) |
253 | 252 | imbi2d 341 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑥 → ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))))) ↔ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑥 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))))))) |
254 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑥 + 1) → (𝑚 ∈ (1...𝑛) ↔ (𝑥 + 1) ∈ (1...𝑛))) |
255 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = (𝑥 + 1) → (2nd ‘(𝑔‘𝑚)) = (2nd ‘(𝑔‘(𝑥 + 1)))) |
256 | 255 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = (𝑥 + 1) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) = (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1))))) |
257 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = (𝑥 + 1) → (1...𝑚) = (1...(𝑥 + 1))) |
258 | 257 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = (𝑥 + 1) → ((𝐸 ∘ 𝑔) ↾ (1...𝑚)) = ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))) |
259 | 258 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = (𝑥 + 1) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) = (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1))))) |
260 | 256, 259 | breq12d 5087 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑥 + 1) → ((𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) ↔ (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))))) |
261 | 254, 260 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝑥 + 1) → ((𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚)))) ↔ ((𝑥 + 1) ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1))))))) |
262 | 261 | imbi2d 341 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑥 + 1) → ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))))) ↔ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝑥 + 1) ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))))))) |
263 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → (𝑚 ∈ (1...𝑛) ↔ 𝑛 ∈ (1...𝑛))) |
264 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑛 → (2nd ‘(𝑔‘𝑚)) = (2nd ‘(𝑔‘𝑛))) |
265 | 264 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) = (𝑋𝐸(2nd ‘(𝑔‘𝑛)))) |
266 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛)) |
267 | 266 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑛 → ((𝐸 ∘ 𝑔) ↾ (1...𝑚)) = ((𝐸 ∘ 𝑔) ↾ (1...𝑛))) |
268 | 267 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) = (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛)))) |
269 | 265, 268 | breq12d 5087 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → ((𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))) ↔ (𝑋𝐸(2nd ‘(𝑔‘𝑛))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛))))) |
270 | 263, 269 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑛 → ((𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚)))) ↔ (𝑛 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑛))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛)))))) |
271 | 270 | imbi2d 341 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑚 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑚))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑚))))) ↔ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑛 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑛))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛))))))) |
272 | 29 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝐸 ∈ (∞Met‘𝑉)) |
273 | 11 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑋 ∈ 𝑉) |
274 | | nnuz 12621 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ℕ =
(ℤ≥‘1) |
275 | 224, 274 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑛 ∈
(ℤ≥‘1)) |
276 | | eluzfz1 13263 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑛)) |
277 | 275, 276 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 1 ∈ (1...𝑛)) |
278 | 49, 277 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑔‘1) ∈ (𝑉 × 𝑉)) |
279 | | xp2nd 7864 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔‘1) ∈ (𝑉 × 𝑉) → (2nd ‘(𝑔‘1)) ∈ 𝑉) |
280 | 278, 279 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (2nd ‘(𝑔‘1)) ∈ 𝑉) |
281 | | xmetcl 23484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑋 ∈ 𝑉 ∧ (2nd ‘(𝑔‘1)) ∈ 𝑉) → (𝑋𝐸(2nd ‘(𝑔‘1))) ∈
ℝ*) |
282 | 272, 273,
280, 281 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸(2nd ‘(𝑔‘1))) ∈
ℝ*) |
283 | 282 | xrleidd 12886 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑋𝐸(2nd ‘(𝑔‘1)))) |
284 | 137 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝑊 ∈ Mnd) |
285 | 84 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 1 ∈ ℕ) |
286 | 44, 278 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐸‘(𝑔‘1)) ∈ (ℝ*
∖ {-∞})) |
287 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 1 → (𝐸‘(𝑔‘𝑗)) = (𝐸‘(𝑔‘1))) |
288 | 64, 287 | gsumsn 19555 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈ Mnd ∧ 1 ∈
ℕ ∧ (𝐸‘(𝑔‘1)) ∈ (ℝ*
∖ {-∞})) → (𝑊 Σg (𝑗 ∈ {1} ↦ (𝐸‘(𝑔‘𝑗)))) = (𝐸‘(𝑔‘1))) |
289 | 284, 285,
286, 288 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑊 Σg (𝑗 ∈ {1} ↦ (𝐸‘(𝑔‘𝑗)))) = (𝐸‘(𝑔‘1))) |
290 | 272, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 𝐸:(𝑉 × 𝑉)⟶ℝ*) |
291 | | fcompt 7005 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐸:(𝑉 × 𝑉)⟶ℝ* ∧ 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) → (𝐸 ∘ 𝑔) = (𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗)))) |
292 | 290, 49, 291 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐸 ∘ 𝑔) = (𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗)))) |
293 | 292 | reseq1d 5890 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝐸 ∘ 𝑔) ↾ {1}) = ((𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗))) ↾ {1})) |
294 | 277 | snssd 4742 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → {1} ⊆ (1...𝑛)) |
295 | 294 | resmptd 5948 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗))) ↾ {1}) = (𝑗 ∈ {1} ↦ (𝐸‘(𝑔‘𝑗)))) |
296 | 293, 295 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝐸 ∘ 𝑔) ↾ {1}) = (𝑗 ∈ {1} ↦ (𝐸‘(𝑔‘𝑗)))) |
297 | 296 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1})) = (𝑊 Σg (𝑗 ∈ {1} ↦ (𝐸‘(𝑔‘𝑗))))) |
298 | | df-ov 7278 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋𝐸(2nd ‘(𝑔‘1))) = (𝐸‘〈𝑋, (2nd ‘(𝑔‘1))〉) |
299 | | 1st2nd2 7870 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔‘1) ∈ (𝑉 × 𝑉) → (𝑔‘1) = 〈(1st
‘(𝑔‘1)),
(2nd ‘(𝑔‘1))〉) |
300 | 278, 299 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑔‘1) = 〈(1st
‘(𝑔‘1)),
(2nd ‘(𝑔‘1))〉) |
301 | 219 | simp1d 1141 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋)) |
302 | | xp1st 7863 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔‘1) ∈ (𝑉 × 𝑉) → (1st ‘(𝑔‘1)) ∈ 𝑉) |
303 | 278, 302 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (1st ‘(𝑔‘1)) ∈ 𝑉) |
304 | | f1fveq 7135 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹:𝑉–1-1→𝐵 ∧ ((1st ‘(𝑔‘1)) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ↔ (1st ‘(𝑔‘1)) = 𝑋)) |
305 | 223, 303,
273, 304 | syl12anc 834 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝐹‘(1st ‘(𝑔‘1))) = (𝐹‘𝑋) ↔ (1st ‘(𝑔‘1)) = 𝑋)) |
306 | 301, 305 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (1st ‘(𝑔‘1)) = 𝑋) |
307 | 306 | opeq1d 4810 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 〈(1st ‘(𝑔‘1)), (2nd
‘(𝑔‘1))〉 =
〈𝑋, (2nd
‘(𝑔‘1))〉) |
308 | 300, 307 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → 〈𝑋, (2nd ‘(𝑔‘1))〉 = (𝑔‘1)) |
309 | 308 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝐸‘〈𝑋, (2nd ‘(𝑔‘1))〉) = (𝐸‘(𝑔‘1))) |
310 | 298, 309 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸(2nd ‘(𝑔‘1))) = (𝐸‘(𝑔‘1))) |
311 | 289, 297,
310 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1})) = (𝑋𝐸(2nd ‘(𝑔‘1)))) |
312 | 283, 311 | breqtrrd 5102 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1}))) |
313 | 312 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (1 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘1))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ {1})))) |
314 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑥 ∈ ℕ) |
315 | 314, 274 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑥 ∈
(ℤ≥‘1)) |
316 | | simprr 770 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑥 + 1) ∈ (1...𝑛)) |
317 | | peano2fzr 13269 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈
(ℤ≥‘1) ∧ (𝑥 + 1) ∈ (1...𝑛)) → 𝑥 ∈ (1...𝑛)) |
318 | 315, 316,
317 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑥 ∈ (1...𝑛)) |
319 | 318 | expr 457 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → ((𝑥 + 1) ∈ (1...𝑛) → 𝑥 ∈ (1...𝑛))) |
320 | 319 | imim1d 82 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → ((𝑥 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))) → ((𝑥 + 1) ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))))) |
321 | 272 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝐸 ∈ (∞Met‘𝑉)) |
322 | 273 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑋 ∈ 𝑉) |
323 | 49 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) |
324 | 323, 318 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑔‘𝑥) ∈ (𝑉 × 𝑉)) |
325 | | xp2nd 7864 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑔‘𝑥) ∈ (𝑉 × 𝑉) → (2nd ‘(𝑔‘𝑥)) ∈ 𝑉) |
326 | 324, 325 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (2nd ‘(𝑔‘𝑥)) ∈ 𝑉) |
327 | | xmetcl 23484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑋 ∈ 𝑉 ∧ (2nd ‘(𝑔‘𝑥)) ∈ 𝑉) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ∈
ℝ*) |
328 | 321, 322,
326, 327 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ∈
ℝ*) |
329 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑊 ∈ CMnd) |
330 | | fzfid 13693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (1...𝑥) ∈ Fin) |
331 | 51 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐸 ∘ 𝑔):(1...𝑛)⟶(ℝ* ∖
{-∞})) |
332 | | fzsuc 13303 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈
(ℤ≥‘1) → (1...(𝑥 + 1)) = ((1...𝑥) ∪ {(𝑥 + 1)})) |
333 | 315, 332 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (1...(𝑥 + 1)) = ((1...𝑥) ∪ {(𝑥 + 1)})) |
334 | | elfzuz3 13253 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 + 1) ∈ (1...𝑛) → 𝑛 ∈ (ℤ≥‘(𝑥 + 1))) |
335 | 334 | ad2antll 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑛 ∈ (ℤ≥‘(𝑥 + 1))) |
336 | | fzss2 13296 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈
(ℤ≥‘(𝑥 + 1)) → (1...(𝑥 + 1)) ⊆ (1...𝑛)) |
337 | 335, 336 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (1...(𝑥 + 1)) ⊆ (1...𝑛)) |
338 | 333, 337 | eqsstrrd 3960 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((1...𝑥) ∪ {(𝑥 + 1)}) ⊆ (1...𝑛)) |
339 | 338 | unssad 4121 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (1...𝑥) ⊆ (1...𝑛)) |
340 | 331, 339 | fssresd 6641 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐸 ∘ 𝑔) ↾ (1...𝑥)):(1...𝑥)⟶(ℝ* ∖
{-∞})) |
341 | 68 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 0 ∈ V) |
342 | 340, 330,
341 | fdmfifsupp 9138 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐸 ∘ 𝑔) ↾ (1...𝑥)) finSupp 0) |
343 | 64, 65, 329, 330, 340, 342 | gsumcl 19516 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) ∈ (ℝ* ∖
{-∞})) |
344 | 343 | eldifad 3899 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) ∈
ℝ*) |
345 | 321, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝐸:(𝑉 × 𝑉)⟶ℝ*) |
346 | 323, 316 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑔‘(𝑥 + 1)) ∈ (𝑉 × 𝑉)) |
347 | 345, 346 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐸‘(𝑔‘(𝑥 + 1))) ∈
ℝ*) |
348 | | xleadd1a 12987 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ∈ ℝ* ∧ (𝑊 Σg
((𝐸 ∘ 𝑔) ↾ (1...𝑥))) ∈ ℝ*
∧ (𝐸‘(𝑔‘(𝑥 + 1))) ∈ ℝ*) ∧
(𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥)))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) |
349 | 348 | ex 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ∈ ℝ* ∧ (𝑊 Σg
((𝐸 ∘ 𝑔) ↾ (1...𝑥))) ∈ ℝ*
∧ (𝐸‘(𝑔‘(𝑥 + 1))) ∈ ℝ*) →
((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
350 | 328, 344,
347, 349 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
351 | | xp2nd 7864 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔‘(𝑥 + 1)) ∈ (𝑉 × 𝑉) → (2nd ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉) |
352 | 346, 351 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (2nd ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉) |
353 | | xmettri 23504 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑋 ∈ 𝑉 ∧ (2nd ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉 ∧ (2nd ‘(𝑔‘𝑥)) ∈ 𝑉)) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 ((2nd
‘(𝑔‘𝑥))𝐸(2nd ‘(𝑔‘(𝑥 + 1)))))) |
354 | 321, 322,
352, 326, 353 | syl13anc 1371 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 ((2nd
‘(𝑔‘𝑥))𝐸(2nd ‘(𝑔‘(𝑥 + 1)))))) |
355 | | 1st2nd2 7870 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔‘(𝑥 + 1)) ∈ (𝑉 × 𝑉) → (𝑔‘(𝑥 + 1)) = 〈(1st ‘(𝑔‘(𝑥 + 1))), (2nd ‘(𝑔‘(𝑥 + 1)))〉) |
356 | 346, 355 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑔‘(𝑥 + 1)) = 〈(1st ‘(𝑔‘(𝑥 + 1))), (2nd ‘(𝑔‘(𝑥 + 1)))〉) |
357 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 = 𝑥 → (2nd ‘(𝑔‘𝑖)) = (2nd ‘(𝑔‘𝑥))) |
358 | 357 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 = 𝑥 → (𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(2nd ‘(𝑔‘𝑥)))) |
359 | | fvoveq1 7298 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 = 𝑥 → (𝑔‘(𝑖 + 1)) = (𝑔‘(𝑥 + 1))) |
360 | 359 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 = 𝑥 → (1st ‘(𝑔‘(𝑖 + 1))) = (1st ‘(𝑔‘(𝑥 + 1)))) |
361 | 360 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 = 𝑥 → (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))) = (𝐹‘(1st ‘(𝑔‘(𝑥 + 1))))) |
362 | 358, 361 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝑥 → ((𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1)))) ↔ (𝐹‘(2nd ‘(𝑔‘𝑥))) = (𝐹‘(1st ‘(𝑔‘(𝑥 + 1)))))) |
363 | 219 | simp3d 1143 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) |
364 | 363 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑔‘𝑖))) = (𝐹‘(1st ‘(𝑔‘(𝑖 + 1))))) |
365 | | nnz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℤ) |
366 | 365 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑥 ∈ ℤ) |
367 | | eluzp1m1 12608 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑥 ∈ ℤ ∧ 𝑛 ∈
(ℤ≥‘(𝑥 + 1))) → (𝑛 − 1) ∈
(ℤ≥‘𝑥)) |
368 | 366, 335,
367 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑛 − 1) ∈
(ℤ≥‘𝑥)) |
369 | | elfzuzb 13250 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 ∈ (1...(𝑛 − 1)) ↔ (𝑥 ∈ (ℤ≥‘1)
∧ (𝑛 − 1) ∈
(ℤ≥‘𝑥))) |
370 | 315, 368,
369 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝑥 ∈ (1...(𝑛 − 1))) |
371 | 362, 364,
370 | rspcdva 3562 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐹‘(2nd ‘(𝑔‘𝑥))) = (𝐹‘(1st ‘(𝑔‘(𝑥 + 1))))) |
372 | 223 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝐹:𝑉–1-1→𝐵) |
373 | | xp1st 7863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔‘(𝑥 + 1)) ∈ (𝑉 × 𝑉) → (1st ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉) |
374 | 346, 373 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (1st ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉) |
375 | | f1fveq 7135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹:𝑉–1-1→𝐵 ∧ ((2nd ‘(𝑔‘𝑥)) ∈ 𝑉 ∧ (1st ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉)) → ((𝐹‘(2nd ‘(𝑔‘𝑥))) = (𝐹‘(1st ‘(𝑔‘(𝑥 + 1)))) ↔ (2nd ‘(𝑔‘𝑥)) = (1st ‘(𝑔‘(𝑥 + 1))))) |
376 | 372, 326,
374, 375 | syl12anc 834 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐹‘(2nd ‘(𝑔‘𝑥))) = (𝐹‘(1st ‘(𝑔‘(𝑥 + 1)))) ↔ (2nd ‘(𝑔‘𝑥)) = (1st ‘(𝑔‘(𝑥 + 1))))) |
377 | 371, 376 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (2nd ‘(𝑔‘𝑥)) = (1st ‘(𝑔‘(𝑥 + 1)))) |
378 | 377 | opeq1d 4810 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 〈(2nd
‘(𝑔‘𝑥)), (2nd
‘(𝑔‘(𝑥 + 1)))〉 =
〈(1st ‘(𝑔‘(𝑥 + 1))), (2nd ‘(𝑔‘(𝑥 + 1)))〉) |
379 | 356, 378 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑔‘(𝑥 + 1)) = 〈(2nd ‘(𝑔‘𝑥)), (2nd ‘(𝑔‘(𝑥 + 1)))〉) |
380 | 379 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐸‘(𝑔‘(𝑥 + 1))) = (𝐸‘〈(2nd ‘(𝑔‘𝑥)), (2nd ‘(𝑔‘(𝑥 + 1)))〉)) |
381 | | df-ov 7278 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((2nd ‘(𝑔‘𝑥))𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) = (𝐸‘〈(2nd ‘(𝑔‘𝑥)), (2nd ‘(𝑔‘(𝑥 + 1)))〉) |
382 | 380, 381 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐸‘(𝑔‘(𝑥 + 1))) = ((2nd ‘(𝑔‘𝑥))𝐸(2nd ‘(𝑔‘(𝑥 + 1))))) |
383 | 382 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) = ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 ((2nd
‘(𝑔‘𝑥))𝐸(2nd ‘(𝑔‘(𝑥 + 1)))))) |
384 | 354, 383 | breqtrrd 5102 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) |
385 | | xmetcl 23484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑋 ∈ 𝑉 ∧ (2nd ‘(𝑔‘(𝑥 + 1))) ∈ 𝑉) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ∈
ℝ*) |
386 | 321, 322,
352, 385 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ∈
ℝ*) |
387 | 328, 347 | xaddcld 13035 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ∈
ℝ*) |
388 | 344, 347 | xaddcld 13035 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ∈
ℝ*) |
389 | | xrletr 12892 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ∈ ℝ* ∧
((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ∈ ℝ* ∧
((𝑊
Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ∈ ℝ*) →
(((𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ∧ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
390 | 386, 387,
388, 389 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (((𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ∧ ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
391 | 384, 390 | mpand 692 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (((𝑋𝐸(2nd ‘(𝑔‘𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
392 | 350, 391 | syld 47 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
393 | | xrex 12727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
ℝ* ∈ V |
394 | 393 | difexi 5252 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(ℝ* ∖ {-∞}) ∈ V |
395 | 23, 22 | ressplusg 17000 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((ℝ* ∖ {-∞}) ∈ V →
+𝑒 = (+g‘𝑊)) |
396 | 394, 395 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢
+𝑒 = (+g‘𝑊) |
397 | 44 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...𝑥)) → 𝐸:(𝑉 × 𝑉)⟶(ℝ* ∖
{-∞})) |
398 | | fzelp1 13308 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (1...𝑥) → 𝑗 ∈ (1...(𝑥 + 1))) |
399 | 49 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...(𝑥 + 1))) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) |
400 | 337 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...(𝑥 + 1))) → 𝑗 ∈ (1...𝑛)) |
401 | 399, 400 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...(𝑥 + 1))) → (𝑔‘𝑗) ∈ (𝑉 × 𝑉)) |
402 | 398, 401 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...𝑥)) → (𝑔‘𝑗) ∈ (𝑉 × 𝑉)) |
403 | 397, 402 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) ∧ 𝑗 ∈ (1...𝑥)) → (𝐸‘(𝑔‘𝑗)) ∈ (ℝ* ∖
{-∞})) |
404 | | fzp1disj 13315 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((1...𝑥) ∩
{(𝑥 + 1)}) =
∅ |
405 | 404 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((1...𝑥) ∩ {(𝑥 + 1)}) = ∅) |
406 | | disjsn 4647 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((1...𝑥) ∩
{(𝑥 + 1)}) = ∅ ↔
¬ (𝑥 + 1) ∈
(1...𝑥)) |
407 | 405, 406 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ¬ (𝑥 + 1) ∈ (1...𝑥)) |
408 | 44 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → 𝐸:(𝑉 × 𝑉)⟶(ℝ* ∖
{-∞})) |
409 | 408, 346 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐸‘(𝑔‘(𝑥 + 1))) ∈ (ℝ* ∖
{-∞})) |
410 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑥 + 1) → (𝐸‘(𝑔‘𝑗)) = (𝐸‘(𝑔‘(𝑥 + 1)))) |
411 | 64, 396, 329, 330, 403, 316, 407, 409, 410 | gsumunsn 19561 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑊 Σg (𝑗 ∈ ((1...𝑥) ∪ {(𝑥 + 1)}) ↦ (𝐸‘(𝑔‘𝑗)))) = ((𝑊 Σg (𝑗 ∈ (1...𝑥) ↦ (𝐸‘(𝑔‘𝑗)))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) |
412 | 292 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝐸 ∘ 𝑔) = (𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗)))) |
413 | 412, 333 | reseq12d 5892 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1))) = ((𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗))) ↾ ((1...𝑥) ∪ {(𝑥 + 1)}))) |
414 | 338 | resmptd 5948 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗))) ↾ ((1...𝑥) ∪ {(𝑥 + 1)})) = (𝑗 ∈ ((1...𝑥) ∪ {(𝑥 + 1)}) ↦ (𝐸‘(𝑔‘𝑗)))) |
415 | 413, 414 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1))) = (𝑗 ∈ ((1...𝑥) ∪ {(𝑥 + 1)}) ↦ (𝐸‘(𝑔‘𝑗)))) |
416 | 415 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))) = (𝑊 Σg (𝑗 ∈ ((1...𝑥) ∪ {(𝑥 + 1)}) ↦ (𝐸‘(𝑔‘𝑗))))) |
417 | 412 | reseq1d 5890 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐸 ∘ 𝑔) ↾ (1...𝑥)) = ((𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗))) ↾ (1...𝑥))) |
418 | 339 | resmptd 5948 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑗 ∈ (1...𝑛) ↦ (𝐸‘(𝑔‘𝑗))) ↾ (1...𝑥)) = (𝑗 ∈ (1...𝑥) ↦ (𝐸‘(𝑔‘𝑗)))) |
419 | 417, 418 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝐸 ∘ 𝑔) ↾ (1...𝑥)) = (𝑗 ∈ (1...𝑥) ↦ (𝐸‘(𝑔‘𝑗)))) |
420 | 419 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) = (𝑊 Σg (𝑗 ∈ (1...𝑥) ↦ (𝐸‘(𝑔‘𝑗))))) |
421 | 420 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))) = ((𝑊 Σg (𝑗 ∈ (1...𝑥) ↦ (𝐸‘(𝑔‘𝑗)))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) |
422 | 411, 416,
421 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))) = ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1))))) |
423 | 422 | breq2d 5086 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))) ↔ (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ ((𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) +𝑒 (𝐸‘(𝑔‘(𝑥 + 1)))))) |
424 | 392, 423 | sylibrd 258 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) ∧ (𝑥 ∈ ℕ ∧ (𝑥 + 1) ∈ (1...𝑛))) → ((𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))))) |
425 | 320, 424 | animpimp2impd 843 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℕ → ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑥 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑥))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑥))))) → (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝑥 + 1) ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘(𝑥 + 1)))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...(𝑥 + 1)))))))) |
426 | 244, 253,
262, 271, 313, 425 | nnind 11991 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑛 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑛))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛)))))) |
427 | 224, 426 | mpcom 38 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑛 ∈ (1...𝑛) → (𝑋𝐸(2nd ‘(𝑔‘𝑛))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛))))) |
428 | 226, 427 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸(2nd ‘(𝑔‘𝑛))) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛)))) |
429 | 234, 428 | eqbrtrrd 5098 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸𝑌) ≤ (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛)))) |
430 | | ffn 6600 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 ∘ 𝑔):(1...𝑛)⟶(ℝ* ∖
{-∞}) → (𝐸
∘ 𝑔) Fn (1...𝑛)) |
431 | | fnresdm 6551 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 ∘ 𝑔) Fn (1...𝑛) → ((𝐸 ∘ 𝑔) ↾ (1...𝑛)) = (𝐸 ∘ 𝑔)) |
432 | 51, 430, 431 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → ((𝐸 ∘ 𝑔) ↾ (1...𝑛)) = (𝐸 ∘ 𝑔)) |
433 | 432 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛))) = (𝑊 Σg (𝐸 ∘ 𝑔))) |
434 | 62, 433 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) →
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)) = (𝑊 Σg ((𝐸 ∘ 𝑔) ↾ (1...𝑛)))) |
435 | 429, 434 | breqtrrd 5102 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑋𝐸𝑌) ≤
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
436 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑝 =
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)) → ((𝑋𝐸𝑌) ≤ 𝑝 ↔ (𝑋𝐸𝑌) ≤
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
437 | 435, 436 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑔 ∈ 𝑆) → (𝑝 = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) → (𝑋𝐸𝑌) ≤ 𝑝)) |
438 | 437 | rexlimdva 3213 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∃𝑔 ∈ 𝑆 𝑝 = (ℝ*𝑠
Σg (𝐸 ∘ 𝑔)) → (𝑋𝐸𝑌) ≤ 𝑝)) |
439 | 216, 438 | syl5bi 241 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) → (𝑋𝐸𝑌) ≤ 𝑝)) |
440 | 439 | rexlimdva 3213 |
. . . . . 6
⊢ (𝜑 → (∃𝑛 ∈ ℕ 𝑝 ∈ ran (𝑔 ∈ 𝑆 ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) → (𝑋𝐸𝑌) ≤ 𝑝)) |
441 | 214, 440 | syl5bi 241 |
. . . . 5
⊢ (𝜑 → (𝑝 ∈ 𝑇 → (𝑋𝐸𝑌) ≤ 𝑝)) |
442 | 441 | ralrimiv 3102 |
. . . 4
⊢ (𝜑 → ∀𝑝 ∈ 𝑇 (𝑋𝐸𝑌) ≤ 𝑝) |
443 | | infxrgelb 13069 |
. . . . 5
⊢ ((𝑇 ⊆ ℝ*
∧ (𝑋𝐸𝑌) ∈ ℝ*) → ((𝑋𝐸𝑌) ≤ inf(𝑇, ℝ*, < ) ↔
∀𝑝 ∈ 𝑇 (𝑋𝐸𝑌) ≤ 𝑝)) |
444 | 79, 83, 443 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝑋𝐸𝑌) ≤ inf(𝑇, ℝ*, < ) ↔
∀𝑝 ∈ 𝑇 (𝑋𝐸𝑌) ≤ 𝑝)) |
445 | 442, 444 | mpbird 256 |
. . 3
⊢ (𝜑 → (𝑋𝐸𝑌) ≤ inf(𝑇, ℝ*, <
)) |
446 | 81, 83, 211, 445 | xrletrid 12889 |
. 2
⊢ (𝜑 → inf(𝑇, ℝ*, < ) = (𝑋𝐸𝑌)) |
447 | 20, 446 | eqtrd 2778 |
1
⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = (𝑋𝐸𝑌)) |