Step | Hyp | Ref
| Expression |
1 | | seqid2.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) |
2 | | eluzfz2 13209 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → 𝑁 ∈ (𝐾...𝑁)) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝐾...𝑁)) |
4 | | eleq1 2824 |
. . . . . 6
⊢ (𝑥 = 𝐾 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁))) |
5 | | fveq2 6761 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝐾)) |
6 | 5 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑥 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾))) |
7 | 4, 6 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝐾 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾)))) |
8 | 7 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝐾 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾))))) |
9 | | eleq1 2824 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑛 ∈ (𝐾...𝑁))) |
10 | | fveq2 6761 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛)) |
11 | 10 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛))) |
12 | 9, 11 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥)) ↔ (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛)))) |
13 | 12 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛))))) |
14 | | eleq1 2824 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝑛 + 1) ∈ (𝐾...𝑁))) |
15 | | fveq2 6761 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))) |
16 | 15 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))) |
17 | 14, 16 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))))) |
18 | 17 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))))) |
19 | | eleq1 2824 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁))) |
20 | | fveq2 6761 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁)) |
21 | 20 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))) |
22 | 19, 21 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁)))) |
23 | 22 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))))) |
24 | | eqidd 2738 |
. . . . 5
⊢ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾)) |
25 | 24 | 2a1i 12 |
. . . 4
⊢ (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾)))) |
26 | | peano2fzr 13214 |
. . . . . . . 8
⊢ ((𝑛 ∈
(ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁)) → 𝑛 ∈ (𝐾...𝑁)) |
27 | 26 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (𝐾...𝑁)) |
28 | 27 | expr 456 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑛 ∈ (𝐾...𝑁))) |
29 | 28 | imim1d 82 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛)))) |
30 | | oveq1 7267 |
. . . . . 6
⊢
((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝐾) + (𝐹‘(𝑛 + 1))) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
31 | | fveqeq2 6770 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑥) = 𝑍 ↔ (𝐹‘(𝑛 + 1)) = 𝑍)) |
32 | | seqid2.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑥) = 𝑍) |
33 | 32 | ralrimiva 3106 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)(𝐹‘𝑥) = 𝑍) |
34 | 33 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)(𝐹‘𝑥) = 𝑍) |
35 | | eluzp1p1 12555 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘𝐾) → (𝑛 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
36 | 35 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
37 | | elfzuz3 13198 |
. . . . . . . . . . . 12
⊢ ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
38 | 37 | ad2antll 725 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
39 | | elfzuzb 13195 |
. . . . . . . . . . 11
⊢ ((𝑛 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑛 + 1) ∈
(ℤ≥‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑛 + 1)))) |
40 | 36, 38, 39 | sylanbrc 582 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ ((𝐾 + 1)...𝑁)) |
41 | 31, 34, 40 | rspcdva 3559 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑛 + 1)) = 𝑍) |
42 | 41 | oveq2d 7276 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝐾) + (𝐹‘(𝑛 + 1))) = ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍)) |
43 | | oveq1 7267 |
. . . . . . . . . . 11
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝐾) → (𝑥 + 𝑍) = ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍)) |
44 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝐾) → 𝑥 = (seq𝑀( + , 𝐹)‘𝐾)) |
45 | 43, 44 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝐾) → ((𝑥 + 𝑍) = 𝑥 ↔ ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹)‘𝐾))) |
46 | | seqid2.1 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 + 𝑍) = 𝑥) |
47 | 46 | ralrimiva 3106 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑥 + 𝑍) = 𝑥) |
48 | | seqid2.4 |
. . . . . . . . . 10
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆) |
49 | 45, 47, 48 | rspcdva 3559 |
. . . . . . . . 9
⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹)‘𝐾)) |
50 | 49 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹)‘𝐾)) |
51 | 42, 50 | eqtr2d 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘𝐾) = ((seq𝑀( + , 𝐹)‘𝐾) + (𝐹‘(𝑛 + 1)))) |
52 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (ℤ≥‘𝐾)) |
53 | | seqid2.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
54 | 53 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝐾 ∈ (ℤ≥‘𝑀)) |
55 | | uztrn 12545 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
56 | 52, 54, 55 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
57 | | seqp1 13680 |
. . . . . . . 8
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
58 | 56, 57 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
59 | 51, 58 | eqeq12d 2753 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ↔ ((seq𝑀( + , 𝐹)‘𝐾) + (𝐹‘(𝑛 + 1))) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
60 | 30, 59 | syl5ibr 245 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))) |
61 | 29, 60 | animpimp2impd 842 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝐾) → ((𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))))) |
62 | 8, 13, 18, 23, 25, 61 | uzind4 12591 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁)))) |
63 | 1, 62 | mpcom 38 |
. 2
⊢ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))) |
64 | 3, 63 | mpd 15 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁)) |