MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfveq2 Structured version   Visualization version   GIF version

Theorem seqfveq2 13395
Description: Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqfveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
seqfveq2.2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
seqfveq2.3 (𝜑𝑁 ∈ (ℤ𝐾))
seqfveq2.4 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
seqfveq2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝑀(𝑘)

Proof of Theorem seqfveq2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqfveq2.3 . . 3 (𝜑𝑁 ∈ (ℤ𝐾))
2 eluzfz2 12918 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (𝐾...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝐾...𝑁))
4 eleq1 2902 . . . . . 6 (𝑥 = 𝐾 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁)))
5 fveq2 6672 . . . . . . 7 (𝑥 = 𝐾 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝐾))
6 fveq2 6672 . . . . . . 7 (𝑥 = 𝐾 → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘𝐾))
75, 6eqeq12d 2839 . . . . . 6 (𝑥 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))
84, 7imbi12d 347 . . . . 5 (𝑥 = 𝐾 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))
98imbi2d 343 . . . 4 (𝑥 = 𝐾 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))))
10 eleq1 2902 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑛 ∈ (𝐾...𝑁)))
11 fveq2 6672 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛))
12 fveq2 6672 . . . . . . 7 (𝑥 = 𝑛 → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑛))
1311, 12eqeq12d 2839 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)))
1410, 13imbi12d 347 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛))))
1514imbi2d 343 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)))))
16 eleq1 2902 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝑛 + 1) ∈ (𝐾...𝑁)))
17 fveq2 6672 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
18 fveq2 6672 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))
1917, 18eqeq12d 2839 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))
2016, 19imbi12d 347 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))))
2120imbi2d 343 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))))
22 eleq1 2902 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁)))
23 fveq2 6672 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁))
24 fveq2 6672 . . . . . . 7 (𝑥 = 𝑁 → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑁))
2523, 24eqeq12d 2839 . . . . . 6 (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))
2622, 25imbi12d 347 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))
2726imbi2d 343 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))))
28 seqfveq2.2 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
29 seqfveq2.1 . . . . . . 7 (𝜑𝐾 ∈ (ℤ𝑀))
30 eluzelz 12256 . . . . . . 7 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
31 seq1 13385 . . . . . . 7 (𝐾 ∈ ℤ → (seq𝐾( + , 𝐺)‘𝐾) = (𝐺𝐾))
3229, 30, 313syl 18 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐺)‘𝐾) = (𝐺𝐾))
3328, 32eqtr4d 2861 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))
3433a1d 25 . . . 4 (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))
35 peano2fzr 12923 . . . . . . . 8 ((𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁)) → 𝑛 ∈ (𝐾...𝑁))
3635adantl 484 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (𝐾...𝑁))
3736expr 459 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑛 ∈ (𝐾...𝑁)))
3837imim1d 82 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛))))
39 oveq1 7165 . . . . . 6 ((seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1))))
40 simpl 485 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁)) → 𝑛 ∈ (ℤ𝐾))
41 uztrn 12264 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
4240, 29, 41syl2anr 598 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (ℤ𝑀))
43 seqp1 13387 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
4442, 43syl 17 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
45 seqp1 13387 . . . . . . . . 9 (𝑛 ∈ (ℤ𝐾) → (seq𝐾( + , 𝐺)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
4645ad2antrl 726 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
47 fveq2 6672 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
48 fveq2 6672 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
4947, 48eqeq12d 2839 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1))))
50 seqfveq2.4 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
5150ralrimiva 3184 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
5251adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
53 eluzp1p1 12273 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝐾) → (𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)))
5453ad2antrl 726 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)))
55 elfzuz3 12908 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
5655ad2antll 727 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
57 elfzuzb 12905 . . . . . . . . . . 11 ((𝑛 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))))
5854, 56, 57sylanbrc 585 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ ((𝐾 + 1)...𝑁))
5949, 52, 58rspcdva 3627 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1)))
6059oveq2d 7174 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
6146, 60eqtr4d 2861 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1))))
6244, 61eqeq12d 2839 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)) ↔ ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1)))))
6339, 62syl5ibr 248 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))
6438, 63animpimp2impd 842 . . . 4 (𝑛 ∈ (ℤ𝐾) → ((𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))))
659, 15, 21, 27, 34, 64uzind4i 12313 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))
661, 65mpcom 38 . 2 (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))
673, 66mpd 15 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  cfv 6357  (class class class)co 7158  1c1 10540   + caddc 10542  cz 11984  cuz 12246  ...cfz 12895  seqcseq 13372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373
This theorem is referenced by:  seqfeq2  13396  seqfveq  13397  seqz  13421  gsumsplit1r  17899
  Copyright terms: Public domain W3C validator