MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcl2 Structured version   Visualization version   GIF version

Theorem seqcl2 13989
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqcl2.1 (𝜑 → (𝐹𝑀) ∈ 𝐶)
seqcl2.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
seqcl2.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqcl2.4 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑥) ∈ 𝐷)
Assertion
Ref Expression
seqcl2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁   𝑥, + ,𝑦   𝜑,𝑥,𝑦
Allowed substitution hint:   𝑁(𝑦)

Proof of Theorem seqcl2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seqcl2.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13512 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2815 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 6884 . . . . . . 7 (𝑥 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑀))
65eleq1d 2812 . . . . . 6 (𝑥 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶 ↔ (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶))
74, 6imbi12d 344 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶) ↔ (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶)))
87imbi2d 340 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶)) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶))))
9 eleq1 2815 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
10 fveq2 6884 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛))
1110eleq1d 2812 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶 ↔ (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶))
129, 11imbi12d 344 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶) ↔ (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶)))
1312imbi2d 340 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶)) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶))))
14 eleq1 2815 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
15 fveq2 6884 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
1615eleq1d 2812 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶 ↔ (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶))
1714, 16imbi12d 344 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶)))
1817imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶)) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶))))
19 eleq1 2815 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
20 fveq2 6884 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁))
2120eleq1d 2812 . . . . . 6 (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶 ↔ (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶))
2219, 21imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶) ↔ (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)))
2322imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶)) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶))))
24 seqcl2.1 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ 𝐶)
25 seq1 13982 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
2625eleq1d 2812 . . . . . 6 (𝑀 ∈ ℤ → ((seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶 ↔ (𝐹𝑀) ∈ 𝐶))
2724, 26imbitrrid 245 . . . . 5 (𝑀 ∈ ℤ → (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶))
2827a1dd 50 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶)))
29 peano2fzr 13517 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
3029adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
3130expr 456 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
3231imim1d 82 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶)))
33 fveq2 6884 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
3433eleq1d 2812 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) ∈ 𝐷 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝐷))
35 seqcl2.4 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑥) ∈ 𝐷)
3635ralrimiva 3140 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑥) ∈ 𝐷)
3736adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑥) ∈ 𝐷)
38 eluzp1p1 12851 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ‘(𝑀 + 1)))
3938ad2antrl 725 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (ℤ‘(𝑀 + 1)))
40 elfzuz3 13501 . . . . . . . . . 10 ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
4140ad2antll 726 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
42 elfzuzb 13498 . . . . . . . . 9 ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) ↔ ((𝑛 + 1) ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))))
4339, 41, 42sylanbrc 582 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))
4434, 37, 43rspcdva 3607 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝐷)
45 seqcl2.2 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
4645caovclg 7595 . . . . . . . . 9 ((𝜑 ∧ ((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝐷)) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶)
4746ex 412 . . . . . . . 8 (𝜑 → (((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝐷) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶))
4847adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝐷) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶))
4944, 48mpan2d 691 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶))
50 seqp1 13984 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5150ad2antrl 725 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5251eleq1d 2812 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶 ↔ ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶))
5349, 52sylibrd 259 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶))
5432, 53animpimp2impd 843 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶)) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶))))
558, 13, 18, 23, 28, 54uzind4 12891 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)))
561, 55mpcom 38 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶))
573, 56mpd 15 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3055  cfv 6536  (class class class)co 7404  1c1 11110   + caddc 11112  cz 12559  cuz 12823  ...cfz 13487  seqcseq 13969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-seq 13970
This theorem is referenced by:  seqf2  13990  seqcl  13991  seqz  14019
  Copyright terms: Public domain W3C validator