| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | seqcl2.3 | . . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 2 |  | eluzfz2 13572 | . . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | 
| 3 | 1, 2 | syl 17 | . 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) | 
| 4 |  | eleq1 2829 | . . . . . 6
⊢ (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁))) | 
| 5 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑥 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑀)) | 
| 6 | 5 | eleq1d 2826 | . . . . . 6
⊢ (𝑥 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶 ↔ (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶)) | 
| 7 | 4, 6 | imbi12d 344 | . . . . 5
⊢ (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶) ↔ (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶))) | 
| 8 | 7 | imbi2d 340 | . . . 4
⊢ (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶)) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶)))) | 
| 9 |  | eleq1 2829 | . . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁))) | 
| 10 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛)) | 
| 11 | 10 | eleq1d 2826 | . . . . . 6
⊢ (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶 ↔ (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶)) | 
| 12 | 9, 11 | imbi12d 344 | . . . . 5
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶) ↔ (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶))) | 
| 13 | 12 | imbi2d 340 | . . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶)) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶)))) | 
| 14 |  | eleq1 2829 | . . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁))) | 
| 15 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))) | 
| 16 | 15 | eleq1d 2826 | . . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶 ↔ (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶)) | 
| 17 | 14, 16 | imbi12d 344 | . . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶))) | 
| 18 | 17 | imbi2d 340 | . . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶)) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶)))) | 
| 19 |  | eleq1 2829 | . . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁))) | 
| 20 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁)) | 
| 21 | 20 | eleq1d 2826 | . . . . . 6
⊢ (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶 ↔ (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)) | 
| 22 | 19, 21 | imbi12d 344 | . . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶) ↔ (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶))) | 
| 23 | 22 | imbi2d 340 | . . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) ∈ 𝐶)) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)))) | 
| 24 |  | seqcl2.1 | . . . . . 6
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) | 
| 25 |  | seq1 14055 | . . . . . . 7
⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | 
| 26 | 25 | eleq1d 2826 | . . . . . 6
⊢ (𝑀 ∈ ℤ →
((seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶 ↔ (𝐹‘𝑀) ∈ 𝐶)) | 
| 27 | 24, 26 | imbitrrid 246 | . . . . 5
⊢ (𝑀 ∈ ℤ → (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶)) | 
| 28 | 27 | a1dd 50 | . . . 4
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝐶))) | 
| 29 |  | peano2fzr 13577 | . . . . . . . 8
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁)) | 
| 30 | 29 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁)) | 
| 31 | 30 | expr 456 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁))) | 
| 32 | 31 | imim1d 82 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶))) | 
| 33 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) | 
| 34 | 33 | eleq1d 2826 | . . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑥) ∈ 𝐷 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝐷)) | 
| 35 |  | seqcl2.4 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑀 + 1)...𝑁)) → (𝐹‘𝑥) ∈ 𝐷) | 
| 36 | 35 | ralrimiva 3146 | . . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑥) ∈ 𝐷) | 
| 37 | 36 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑥 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑥) ∈ 𝐷) | 
| 38 |  | eluzp1p1 12906 | . . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 + 1) ∈
(ℤ≥‘(𝑀 + 1))) | 
| 39 | 38 | ad2antrl 728 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈
(ℤ≥‘(𝑀 + 1))) | 
| 40 |  | elfzuz3 13561 | . . . . . . . . . 10
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) | 
| 41 | 40 | ad2antll 729 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) | 
| 42 |  | elfzuzb 13558 | . . . . . . . . 9
⊢ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) ↔ ((𝑛 + 1) ∈
(ℤ≥‘(𝑀 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑛 + 1)))) | 
| 43 | 39, 41, 42 | sylanbrc 583 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) | 
| 44 | 34, 37, 43 | rspcdva 3623 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝐷) | 
| 45 |  | seqcl2.2 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) | 
| 46 | 45 | caovclg 7625 | . . . . . . . . 9
⊢ ((𝜑 ∧ ((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝐷)) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶) | 
| 47 | 46 | ex 412 | . . . . . . . 8
⊢ (𝜑 → (((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝐷) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶)) | 
| 48 | 47 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝐷) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶)) | 
| 49 | 44, 48 | mpan2d 694 | . . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶)) | 
| 50 |  | seqp1 14057 | . . . . . . . 8
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) | 
| 51 | 50 | ad2antrl 728 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) | 
| 52 | 51 | eleq1d 2826 | . . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶 ↔ ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) ∈ 𝐶)) | 
| 53 | 49, 52 | sylibrd 259 | . . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶 → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶)) | 
| 54 | 32, 53 | animpimp2impd 847 | . . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝐶)) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ∈ 𝐶)))) | 
| 55 | 8, 13, 18, 23, 28, 54 | uzind4 12948 | . . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶))) | 
| 56 | 1, 55 | mpcom 38 | . 2
⊢ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶)) | 
| 57 | 3, 56 | mpd 15 | 1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝐶) |