MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnres Structured version   Visualization version   GIF version

Theorem dvnres 25866
Description: Multiple derivative version of dvres3a 25848. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnres (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑁 ∈ ℕ0) ∧ dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))

Proof of Theorem dvnres
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . . . . 9 (𝑥 = 0 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘0))
21dmeqd 5859 . . . . . . . 8 (𝑥 = 0 → dom ((ℂ D𝑛 𝐹)‘𝑥) = dom ((ℂ D𝑛 𝐹)‘0))
32eqeq1d 2731 . . . . . . 7 (𝑥 = 0 → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 ↔ dom ((ℂ D𝑛 𝐹)‘0) = dom 𝐹))
4 fveq2 6840 . . . . . . . 8 (𝑥 = 0 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = ((𝑆 D𝑛 (𝐹𝑆))‘0))
51reseq1d 5938 . . . . . . . 8 (𝑥 = 0 → (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) = (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆))
64, 5eqeq12d 2745 . . . . . . 7 (𝑥 = 0 → (((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) ↔ ((𝑆 D𝑛 (𝐹𝑆))‘0) = (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆)))
73, 6imbi12d 344 . . . . . 6 (𝑥 = 0 → ((dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆)) ↔ (dom ((ℂ D𝑛 𝐹)‘0) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘0) = (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆))))
87imbi2d 340 . . . . 5 (𝑥 = 0 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆))) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘0) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘0) = (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆)))))
9 fveq2 6840 . . . . . . . . 9 (𝑥 = 𝑛 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘𝑛))
109dmeqd 5859 . . . . . . . 8 (𝑥 = 𝑛 → dom ((ℂ D𝑛 𝐹)‘𝑥) = dom ((ℂ D𝑛 𝐹)‘𝑛))
1110eqeq1d 2731 . . . . . . 7 (𝑥 = 𝑛 → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 ↔ dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹))
12 fveq2 6840 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = ((𝑆 D𝑛 (𝐹𝑆))‘𝑛))
139reseq1d 5938 . . . . . . . 8 (𝑥 = 𝑛 → (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆))
1412, 13eqeq12d 2745 . . . . . . 7 (𝑥 = 𝑛 → (((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) ↔ ((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)))
1511, 14imbi12d 344 . . . . . 6 (𝑥 = 𝑛 → ((dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆)) ↔ (dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆))))
1615imbi2d 340 . . . . 5 (𝑥 = 𝑛 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆))) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)))))
17 fveq2 6840 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘(𝑛 + 1)))
1817dmeqd 5859 . . . . . . . 8 (𝑥 = (𝑛 + 1) → dom ((ℂ D𝑛 𝐹)‘𝑥) = dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)))
1918eqeq1d 2731 . . . . . . 7 (𝑥 = (𝑛 + 1) → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 ↔ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹))
20 fveq2 6840 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)))
2117reseq1d 5938 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆))
2220, 21eqeq12d 2745 . . . . . . 7 (𝑥 = (𝑛 + 1) → (((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) ↔ ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆)))
2319, 22imbi12d 344 . . . . . 6 (𝑥 = (𝑛 + 1) → ((dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆)) ↔ (dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆))))
2423imbi2d 340 . . . . 5 (𝑥 = (𝑛 + 1) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆))) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆)))))
25 fveq2 6840 . . . . . . . . 9 (𝑥 = 𝑁 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘𝑁))
2625dmeqd 5859 . . . . . . . 8 (𝑥 = 𝑁 → dom ((ℂ D𝑛 𝐹)‘𝑥) = dom ((ℂ D𝑛 𝐹)‘𝑁))
2726eqeq1d 2731 . . . . . . 7 (𝑥 = 𝑁 → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 ↔ dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹))
28 fveq2 6840 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = ((𝑆 D𝑛 (𝐹𝑆))‘𝑁))
2925reseq1d 5938 . . . . . . . 8 (𝑥 = 𝑁 → (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
3028, 29eqeq12d 2745 . . . . . . 7 (𝑥 = 𝑁 → (((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) ↔ ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆)))
3127, 30imbi12d 344 . . . . . 6 (𝑥 = 𝑁 → ((dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆)) ↔ (dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))))
3231imbi2d 340 . . . . 5 (𝑥 = 𝑁 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆))) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆)))))
33 recnprss 25838 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3433adantr 480 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → 𝑆 ⊆ ℂ)
35 pmresg 8820 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (𝐹𝑆) ∈ (ℂ ↑pm 𝑆))
36 dvn0 25859 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ (𝐹𝑆) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝐹𝑆))‘0) = (𝐹𝑆))
3734, 35, 36syl2anc 584 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → ((𝑆 D𝑛 (𝐹𝑆))‘0) = (𝐹𝑆))
38 ssidd 3967 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → ℂ ⊆ ℂ)
39 dvn0 25859 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 𝐹)‘0) = 𝐹)
4038, 39sylan 580 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 𝐹)‘0) = 𝐹)
4140reseq1d 5938 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆) = (𝐹𝑆))
4237, 41eqtr4d 2767 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → ((𝑆 D𝑛 (𝐹𝑆))‘0) = (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆))
4342a1d 25 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘0) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘0) = (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆)))
44 cnelprrecn 11137 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
45 simplr 768 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → 𝐹 ∈ (ℂ ↑pm ℂ))
46 simprl 770 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → 𝑛 ∈ ℕ0)
47 dvnbss 25863 . . . . . . . . . 10 ((ℂ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → dom ((ℂ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
4844, 45, 46, 47mp3an2i 1468 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
49 simprr 772 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)
50 ssidd 3967 . . . . . . . . . . . . 13 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → ℂ ⊆ ℂ)
51 dvnp1 25860 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)))
5250, 45, 46, 51syl3anc 1373 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)))
5352dmeqd 5859 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)))
5449, 53eqtr3d 2766 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom 𝐹 = dom (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)))
55 dvnf 25862 . . . . . . . . . . . 12 ((ℂ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑛):dom ((ℂ D𝑛 𝐹)‘𝑛)⟶ℂ)
5644, 45, 46, 55mp3an2i 1468 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → ((ℂ D𝑛 𝐹)‘𝑛):dom ((ℂ D𝑛 𝐹)‘𝑛)⟶ℂ)
57 cnex 11125 . . . . . . . . . . . . . . 15 ℂ ∈ V
5857, 57elpm2 8824 . . . . . . . . . . . . . 14 (𝐹 ∈ (ℂ ↑pm ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ))
5958simprbi 496 . . . . . . . . . . . . 13 (𝐹 ∈ (ℂ ↑pm ℂ) → dom 𝐹 ⊆ ℂ)
6045, 59syl 17 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom 𝐹 ⊆ ℂ)
6148, 60sstrd 3954 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘𝑛) ⊆ ℂ)
6250, 56, 61dvbss 25835 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ⊆ dom ((ℂ D𝑛 𝐹)‘𝑛))
6354, 62eqsstrd 3978 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom 𝐹 ⊆ dom ((ℂ D𝑛 𝐹)‘𝑛))
6448, 63eqssd 3961 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹)
6564expr 456 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ 𝑛 ∈ ℕ0) → (dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹 → dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹))
6665imim1d 82 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ 𝑛 ∈ ℕ0) → ((dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)) → (dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆))))
67 oveq2 7377 . . . . . . 7 (((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆) → (𝑆 D ((𝑆 D𝑛 (𝐹𝑆))‘𝑛)) = (𝑆 D (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)))
6834adantr 480 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → 𝑆 ⊆ ℂ)
6935adantr 480 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (𝐹𝑆) ∈ (ℂ ↑pm 𝑆))
70 dvnp1 25860 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ (𝐹𝑆) ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝐹𝑆))‘𝑛)))
7168, 69, 46, 70syl3anc 1373 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝐹𝑆))‘𝑛)))
7252reseq1d 5938 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆) = ((ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ↾ 𝑆))
73 simpll 766 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → 𝑆 ∈ {ℝ, ℂ})
74 eqid 2729 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7574cnfldtop 24704 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ Top
76 unicntop 24706 . . . . . . . . . . . . . 14 ℂ = (TopOpen‘ℂfld)
7776ntrss2 22977 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ dom ((ℂ D𝑛 𝐹)‘𝑛) ⊆ ℂ) → ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)) ⊆ dom ((ℂ D𝑛 𝐹)‘𝑛))
7875, 61, 77sylancr 587 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)) ⊆ dom ((ℂ D𝑛 𝐹)‘𝑛))
7974cnfldtopon 24703 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
8079toponrestid 22841 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
8150, 56, 61, 80, 74dvbssntr 25834 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ⊆ ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)))
8254, 81eqsstrd 3978 . . . . . . . . . . . . 13 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom 𝐹 ⊆ ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)))
8348, 82sstrd 3954 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘𝑛) ⊆ ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)))
8478, 83eqssd 3961 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)) = dom ((ℂ D𝑛 𝐹)‘𝑛))
8576isopn3 22986 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ dom ((ℂ D𝑛 𝐹)‘𝑛) ⊆ ℂ) → (dom ((ℂ D𝑛 𝐹)‘𝑛) ∈ (TopOpen‘ℂfld) ↔ ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)) = dom ((ℂ D𝑛 𝐹)‘𝑛)))
8675, 61, 85sylancr 587 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (dom ((ℂ D𝑛 𝐹)‘𝑛) ∈ (TopOpen‘ℂfld) ↔ ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)) = dom ((ℂ D𝑛 𝐹)‘𝑛)))
8784, 86mpbird 257 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘𝑛) ∈ (TopOpen‘ℂfld))
8864, 54eqtr2d 2765 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) = dom ((ℂ D𝑛 𝐹)‘𝑛))
8974dvres3a 25848 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ ((ℂ D𝑛 𝐹)‘𝑛):dom ((ℂ D𝑛 𝐹)‘𝑛)⟶ℂ) ∧ (dom ((ℂ D𝑛 𝐹)‘𝑛) ∈ (TopOpen‘ℂfld) ∧ dom (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) = dom ((ℂ D𝑛 𝐹)‘𝑛))) → (𝑆 D (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)) = ((ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ↾ 𝑆))
9073, 56, 87, 88, 89syl22anc 838 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (𝑆 D (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)) = ((ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ↾ 𝑆))
9172, 90eqtr4d 2767 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆) = (𝑆 D (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)))
9271, 91eqeq12d 2745 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆) ↔ (𝑆 D ((𝑆 D𝑛 (𝐹𝑆))‘𝑛)) = (𝑆 D (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆))))
9367, 92imbitrrid 246 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆) → ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆)))
9466, 93animpimp2impd 846 . . . . 5 (𝑛 ∈ ℕ0 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆))) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆)))))
958, 16, 24, 32, 43, 94nn0ind 12605 . . . 4 (𝑁 ∈ ℕ0 → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))))
9695com12 32 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (𝑁 ∈ ℕ0 → (dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))))
97963impia 1117 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑁 ∈ ℕ0) → (dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆)))
9897imp 406 1 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑁 ∈ ℕ0) ∧ dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911  {cpr 4587  dom cdm 5631  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  pm cpm 8777  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  0cn0 12418  TopOpenctopn 17360  fldccnfld 21296  Topctop 22813  intcnt 22937   D cdv 25797   D𝑛 cdvn 25798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-icc 13289  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cnp 23148  df-haus 23235  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-limc 25800  df-dv 25801  df-dvn 25802
This theorem is referenced by:  cpnres  25872
  Copyright terms: Public domain W3C validator