MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2lem3 Structured version   Visualization version   GIF version

Theorem ovolicc2lem3 24120
Description: Lemma for ovolicc2 24123. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolicc2.5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ovolicc2.6 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
ovolicc2.7 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
ovolicc2.8 (𝜑𝐺:𝑈⟶ℕ)
ovolicc2.9 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
ovolicc2.10 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
ovolicc2.11 (𝜑𝐻:𝑇𝑇)
ovolicc2.12 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐻𝑡))
ovolicc2.13 (𝜑𝐴𝐶)
ovolicc2.14 (𝜑𝐶𝑇)
ovolicc2.15 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶}))
ovolicc2.16 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾𝑛)}
Assertion
Ref Expression
ovolicc2lem3 ((𝜑 ∧ (𝑁 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚} ∧ 𝑃 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚})) → (𝑁 = 𝑃 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾𝑃))))))
Distinct variable groups:   𝑚,𝑛,𝑡,𝑢,𝐴   𝐵,𝑚,𝑛,𝑡,𝑢   𝑡,𝐻   𝐶,𝑚,𝑛,𝑡   𝑛,𝐹,𝑡   𝑛,𝐾,𝑡,𝑢   𝑛,𝐺,𝑡   𝑚,𝑊,𝑛   𝜑,𝑚,𝑛,𝑡   𝑇,𝑛,𝑡   𝑛,𝑁,𝑡,𝑢   𝑈,𝑛,𝑡,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐶(𝑢)   𝑃(𝑢,𝑡,𝑚,𝑛)   𝑆(𝑢,𝑡,𝑚,𝑛)   𝑇(𝑢,𝑚)   𝑈(𝑚)   𝐹(𝑢,𝑚)   𝐺(𝑢,𝑚)   𝐻(𝑢,𝑚,𝑛)   𝐾(𝑚)   𝑁(𝑚)   𝑊(𝑢,𝑡)

Proof of Theorem ovolicc2lem3
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6675 . . . 4 (𝑦 = 𝑘 → (𝐺‘(𝐾𝑦)) = (𝐺‘(𝐾𝑘)))
21fveq2d 6674 . . 3 (𝑦 = 𝑘 → (𝐹‘(𝐺‘(𝐾𝑦))) = (𝐹‘(𝐺‘(𝐾𝑘))))
32fveq2d 6674 . 2 (𝑦 = 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))))
4 2fveq3 6675 . . . 4 (𝑦 = 𝑁 → (𝐺‘(𝐾𝑦)) = (𝐺‘(𝐾𝑁)))
54fveq2d 6674 . . 3 (𝑦 = 𝑁 → (𝐹‘(𝐺‘(𝐾𝑦))) = (𝐹‘(𝐺‘(𝐾𝑁))))
65fveq2d 6674 . 2 (𝑦 = 𝑁 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))))
7 2fveq3 6675 . . . 4 (𝑦 = 𝑃 → (𝐺‘(𝐾𝑦)) = (𝐺‘(𝐾𝑃)))
87fveq2d 6674 . . 3 (𝑦 = 𝑃 → (𝐹‘(𝐺‘(𝐾𝑦))) = (𝐹‘(𝐺‘(𝐾𝑃))))
98fveq2d 6674 . 2 (𝑦 = 𝑃 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾𝑃)))))
10 ssrab2 4056 . . 3 {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚} ⊆ ℕ
11 nnssre 11642 . . 3 ℕ ⊆ ℝ
1210, 11sstri 3976 . 2 {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚} ⊆ ℝ
1310sseli 3963 . . 3 (𝑦 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚} → 𝑦 ∈ ℕ)
14 ovolicc2.5 . . . . . . 7 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
15 inss2 4206 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
16 fss 6527 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ × ℝ))
1714, 15, 16sylancl 588 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
1817adantr 483 . . . . 5 ((𝜑𝑦 ∈ ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
19 ovolicc2.8 . . . . . . 7 (𝜑𝐺:𝑈⟶ℕ)
2019adantr 483 . . . . . 6 ((𝜑𝑦 ∈ ℕ) → 𝐺:𝑈⟶ℕ)
21 nnuz 12282 . . . . . . . . . 10 ℕ = (ℤ‘1)
22 ovolicc2.15 . . . . . . . . . 10 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶}))
23 1zzd 12014 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
24 ovolicc2.14 . . . . . . . . . 10 (𝜑𝐶𝑇)
25 ovolicc2.11 . . . . . . . . . 10 (𝜑𝐻:𝑇𝑇)
2621, 22, 23, 24, 25algrf 15917 . . . . . . . . 9 (𝜑𝐾:ℕ⟶𝑇)
2726adantr 483 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ) → 𝐾:ℕ⟶𝑇)
28 ovolicc2.10 . . . . . . . . 9 𝑇 = {𝑢𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
2928ssrab3 4057 . . . . . . . 8 𝑇𝑈
30 fss 6527 . . . . . . . 8 ((𝐾:ℕ⟶𝑇𝑇𝑈) → 𝐾:ℕ⟶𝑈)
3127, 29, 30sylancl 588 . . . . . . 7 ((𝜑𝑦 ∈ ℕ) → 𝐾:ℕ⟶𝑈)
32 ffvelrn 6849 . . . . . . 7 ((𝐾:ℕ⟶𝑈𝑦 ∈ ℕ) → (𝐾𝑦) ∈ 𝑈)
3331, 32sylancom 590 . . . . . 6 ((𝜑𝑦 ∈ ℕ) → (𝐾𝑦) ∈ 𝑈)
3420, 33ffvelrnd 6852 . . . . 5 ((𝜑𝑦 ∈ ℕ) → (𝐺‘(𝐾𝑦)) ∈ ℕ)
3518, 34ffvelrnd 6852 . . . 4 ((𝜑𝑦 ∈ ℕ) → (𝐹‘(𝐺‘(𝐾𝑦))) ∈ (ℝ × ℝ))
36 xp2nd 7722 . . . 4 ((𝐹‘(𝐺‘(𝐾𝑦))) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) ∈ ℝ)
3735, 36syl 17 . . 3 ((𝜑𝑦 ∈ ℕ) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) ∈ ℝ)
3813, 37sylan2 594 . 2 ((𝜑𝑦 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚}) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) ∈ ℝ)
3910sseli 3963 . . . 4 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚} → 𝑘 ∈ ℕ)
4039ad2antll 727 . . 3 ((𝜑 ∧ (𝑦 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚} ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚})) → 𝑘 ∈ ℕ)
4113anim2i 618 . . . 4 ((𝜑𝑦 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚}) → (𝜑𝑦 ∈ ℕ))
4241adantrr 715 . . 3 ((𝜑 ∧ (𝑦 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚} ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚})) → (𝜑𝑦 ∈ ℕ))
43 breq1 5069 . . . . . . 7 (𝑛 = 𝑘 → (𝑛𝑚𝑘𝑚))
4443ralbidv 3197 . . . . . 6 (𝑛 = 𝑘 → (∀𝑚𝑊 𝑛𝑚 ↔ ∀𝑚𝑊 𝑘𝑚))
4544elrab 3680 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚} ↔ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 𝑘𝑚))
4645simprbi 499 . . . 4 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚} → ∀𝑚𝑊 𝑘𝑚)
4746ad2antll 727 . . 3 ((𝜑 ∧ (𝑦 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚} ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚})) → ∀𝑚𝑊 𝑘𝑚)
48 breq1 5069 . . . . . . 7 (𝑥 = 1 → (𝑥𝑚 ↔ 1 ≤ 𝑚))
4948ralbidv 3197 . . . . . 6 (𝑥 = 1 → (∀𝑚𝑊 𝑥𝑚 ↔ ∀𝑚𝑊 1 ≤ 𝑚))
50 breq2 5070 . . . . . . 7 (𝑥 = 1 → (𝑦 < 𝑥𝑦 < 1))
51 2fveq3 6675 . . . . . . . . . 10 (𝑥 = 1 → (𝐺‘(𝐾𝑥)) = (𝐺‘(𝐾‘1)))
5251fveq2d 6674 . . . . . . . . 9 (𝑥 = 1 → (𝐹‘(𝐺‘(𝐾𝑥))) = (𝐹‘(𝐺‘(𝐾‘1))))
5352fveq2d 6674 . . . . . . . 8 (𝑥 = 1 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘1)))))
5453breq2d 5078 . . . . . . 7 (𝑥 = 1 → ((2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥)))) ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘1))))))
5550, 54imbi12d 347 . . . . . 6 (𝑥 = 1 → ((𝑦 < 𝑥 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥))))) ↔ (𝑦 < 1 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘1)))))))
5649, 55imbi12d 347 . . . . 5 (𝑥 = 1 → ((∀𝑚𝑊 𝑥𝑚 → (𝑦 < 𝑥 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥)))))) ↔ (∀𝑚𝑊 1 ≤ 𝑚 → (𝑦 < 1 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘1))))))))
5756imbi2d 343 . . . 4 (𝑥 = 1 → (((𝜑𝑦 ∈ ℕ) → (∀𝑚𝑊 𝑥𝑚 → (𝑦 < 𝑥 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥))))))) ↔ ((𝜑𝑦 ∈ ℕ) → (∀𝑚𝑊 1 ≤ 𝑚 → (𝑦 < 1 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘1)))))))))
58 breq1 5069 . . . . . . 7 (𝑥 = 𝑘 → (𝑥𝑚𝑘𝑚))
5958ralbidv 3197 . . . . . 6 (𝑥 = 𝑘 → (∀𝑚𝑊 𝑥𝑚 ↔ ∀𝑚𝑊 𝑘𝑚))
60 breq2 5070 . . . . . . 7 (𝑥 = 𝑘 → (𝑦 < 𝑥𝑦 < 𝑘))
61 2fveq3 6675 . . . . . . . . . 10 (𝑥 = 𝑘 → (𝐺‘(𝐾𝑥)) = (𝐺‘(𝐾𝑘)))
6261fveq2d 6674 . . . . . . . . 9 (𝑥 = 𝑘 → (𝐹‘(𝐺‘(𝐾𝑥))) = (𝐹‘(𝐺‘(𝐾𝑘))))
6362fveq2d 6674 . . . . . . . 8 (𝑥 = 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))))
6463breq2d 5078 . . . . . . 7 (𝑥 = 𝑘 → ((2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥)))) ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))))
6560, 64imbi12d 347 . . . . . 6 (𝑥 = 𝑘 → ((𝑦 < 𝑥 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥))))) ↔ (𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))))))
6659, 65imbi12d 347 . . . . 5 (𝑥 = 𝑘 → ((∀𝑚𝑊 𝑥𝑚 → (𝑦 < 𝑥 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥)))))) ↔ (∀𝑚𝑊 𝑘𝑚 → (𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))))))
6766imbi2d 343 . . . 4 (𝑥 = 𝑘 → (((𝜑𝑦 ∈ ℕ) → (∀𝑚𝑊 𝑥𝑚 → (𝑦 < 𝑥 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥))))))) ↔ ((𝜑𝑦 ∈ ℕ) → (∀𝑚𝑊 𝑘𝑚 → (𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))))))))
68 breq1 5069 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝑥𝑚 ↔ (𝑘 + 1) ≤ 𝑚))
6968ralbidv 3197 . . . . . 6 (𝑥 = (𝑘 + 1) → (∀𝑚𝑊 𝑥𝑚 ↔ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚))
70 breq2 5070 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝑦 < 𝑥𝑦 < (𝑘 + 1)))
71 2fveq3 6675 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → (𝐺‘(𝐾𝑥)) = (𝐺‘(𝐾‘(𝑘 + 1))))
7271fveq2d 6674 . . . . . . . . 9 (𝑥 = (𝑘 + 1) → (𝐹‘(𝐺‘(𝐾𝑥))) = (𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))))
7372fveq2d 6674 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))
7473breq2d 5078 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥)))) ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))))))
7570, 74imbi12d 347 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝑦 < 𝑥 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥))))) ↔ (𝑦 < (𝑘 + 1) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))))
7669, 75imbi12d 347 . . . . 5 (𝑥 = (𝑘 + 1) → ((∀𝑚𝑊 𝑥𝑚 → (𝑦 < 𝑥 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥)))))) ↔ (∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚 → (𝑦 < (𝑘 + 1) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))))))))
7776imbi2d 343 . . . 4 (𝑥 = (𝑘 + 1) → (((𝜑𝑦 ∈ ℕ) → (∀𝑚𝑊 𝑥𝑚 → (𝑦 < 𝑥 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑥))))))) ↔ ((𝜑𝑦 ∈ ℕ) → (∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚 → (𝑦 < (𝑘 + 1) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))))))
78 nnnlt1 11670 . . . . . . 7 (𝑦 ∈ ℕ → ¬ 𝑦 < 1)
7978adantl 484 . . . . . 6 ((𝜑𝑦 ∈ ℕ) → ¬ 𝑦 < 1)
8079pm2.21d 121 . . . . 5 ((𝜑𝑦 ∈ ℕ) → (𝑦 < 1 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘1))))))
8180a1d 25 . . . 4 ((𝜑𝑦 ∈ ℕ) → (∀𝑚𝑊 1 ≤ 𝑚 → (𝑦 < 1 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘1)))))))
82 nnre 11645 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
8382adantr 483 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑚𝑊) → 𝑘 ∈ ℝ)
8483lep1d 11571 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑚𝑊) → 𝑘 ≤ (𝑘 + 1))
85 peano2re 10813 . . . . . . . . . . 11 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
8683, 85syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑚𝑊) → (𝑘 + 1) ∈ ℝ)
87 ovolicc2.16 . . . . . . . . . . . . . 14 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾𝑛)}
8887ssrab3 4057 . . . . . . . . . . . . 13 𝑊 ⊆ ℕ
8988, 11sstri 3976 . . . . . . . . . . . 12 𝑊 ⊆ ℝ
9089sseli 3963 . . . . . . . . . . 11 (𝑚𝑊𝑚 ∈ ℝ)
9190adantl 484 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑚𝑊) → 𝑚 ∈ ℝ)
92 letr 10734 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝑘 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≤ 𝑚) → 𝑘𝑚))
9383, 86, 91, 92syl3anc 1367 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑚𝑊) → ((𝑘 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≤ 𝑚) → 𝑘𝑚))
9484, 93mpand 693 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑚𝑊) → ((𝑘 + 1) ≤ 𝑚𝑘𝑚))
9594ralimdva 3177 . . . . . . 7 (𝑘 ∈ ℕ → (∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚 → ∀𝑚𝑊 𝑘𝑚))
9695imim1d 82 . . . . . 6 (𝑘 ∈ ℕ → ((∀𝑚𝑊 𝑘𝑚 → (𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))))) → (∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚 → (𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))))))
9796adantl 484 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((∀𝑚𝑊 𝑘𝑚 → (𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))))) → (∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚 → (𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))))))
98 simplr 767 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → 𝑦 ∈ ℕ)
99 simprl 769 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → 𝑘 ∈ ℕ)
100 nnleltp1 12038 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑦𝑘𝑦 < (𝑘 + 1)))
10198, 99, 100syl2anc 586 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝑦𝑘𝑦 < (𝑘 + 1)))
10298nnred 11653 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → 𝑦 ∈ ℝ)
10399nnred 11653 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → 𝑘 ∈ ℝ)
104102, 103leloed 10783 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝑦𝑘 ↔ (𝑦 < 𝑘𝑦 = 𝑘)))
105101, 104bitr3d 283 . . . . . . 7 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝑦 < (𝑘 + 1) ↔ (𝑦 < 𝑘𝑦 = 𝑘)))
106 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → 𝜑)
107 ltp1 11480 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1))
108 ltnle 10720 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘))
10985, 108mpdan 685 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℝ → (𝑘 < (𝑘 + 1) ↔ ¬ (𝑘 + 1) ≤ 𝑘))
110107, 109mpbid 234 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℝ → ¬ (𝑘 + 1) ≤ 𝑘)
111103, 110syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → ¬ (𝑘 + 1) ≤ 𝑘)
112 breq2 5070 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑘 → ((𝑘 + 1) ≤ 𝑚 ↔ (𝑘 + 1) ≤ 𝑘))
113112rspccv 3620 . . . . . . . . . . . . . . . . . . 19 (∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚 → (𝑘𝑊 → (𝑘 + 1) ≤ 𝑘))
114113ad2antll 727 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝑘𝑊 → (𝑘 + 1) ≤ 𝑘))
115111, 114mtod 200 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → ¬ 𝑘𝑊)
116 ovolicc.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ)
117 ovolicc.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ)
118 ovolicc.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐵)
119 ovolicc2.4 . . . . . . . . . . . . . . . . . 18 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
120 ovolicc2.6 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin))
121 ovolicc2.7 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
122 ovolicc2.9 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝑈) → (((,) ∘ 𝐹)‘(𝐺𝑡)) = 𝑡)
123 ovolicc2.12 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡𝑇) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐻𝑡))
124 ovolicc2.13 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐶)
125116, 117, 118, 119, 14, 120, 121, 19, 122, 28, 25, 123, 124, 24, 22, 87ovolicc2lem2 24119 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ ¬ 𝑘𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ≤ 𝐵)
126106, 99, 115, 125syl12anc 834 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ≤ 𝐵)
127126iftrued 4475 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → if((2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))), 𝐵) = (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))))
128 2fveq3 6675 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐾𝑘) → (𝐹‘(𝐺𝑡)) = (𝐹‘(𝐺‘(𝐾𝑘))))
129128fveq2d 6674 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐾𝑘) → (2nd ‘(𝐹‘(𝐺𝑡))) = (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))))
130129breq1d 5076 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐾𝑘) → ((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ≤ 𝐵))
131130, 129ifbieq1d 4490 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐾𝑘) → if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) = if((2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))), 𝐵))
132 fveq2 6670 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐾𝑘) → (𝐻𝑡) = (𝐻‘(𝐾𝑘)))
133131, 132eleq12d 2907 . . . . . . . . . . . . . . . 16 (𝑡 = (𝐾𝑘) → (if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐻𝑡) ↔ if((2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))), 𝐵) ∈ (𝐻‘(𝐾𝑘))))
134123ralrimiva 3182 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐻𝑡))
135134ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → ∀𝑡𝑇 if((2nd ‘(𝐹‘(𝐺𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺𝑡))), 𝐵) ∈ (𝐻𝑡))
13626ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → 𝐾:ℕ⟶𝑇)
137136, 99ffvelrnd 6852 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝐾𝑘) ∈ 𝑇)
138133, 135, 137rspcdva 3625 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → if((2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))), 𝐵) ∈ (𝐻‘(𝐾𝑘)))
139127, 138eqeltrrd 2914 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∈ (𝐻‘(𝐾𝑘)))
14021, 22, 23, 24, 25algrp1 15918 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐾‘(𝑘 + 1)) = (𝐻‘(𝐾𝑘)))
141140ad2ant2r 745 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝐾‘(𝑘 + 1)) = (𝐻‘(𝐾𝑘)))
142139, 141eleqtrrd 2916 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∈ (𝐾‘(𝑘 + 1)))
143136, 29, 30sylancl 588 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → 𝐾:ℕ⟶𝑈)
14499peano2nnd 11655 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝑘 + 1) ∈ ℕ)
145143, 144ffvelrnd 6852 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝐾‘(𝑘 + 1)) ∈ 𝑈)
146116, 117, 118, 119, 14, 120, 121, 19, 122ovolicc2lem1 24118 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐾‘(𝑘 + 1)) ∈ 𝑈) → ((2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∈ (𝐾‘(𝑘 + 1)) ↔ ((2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))))
147106, 145, 146syl2anc 586 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → ((2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∈ (𝐾‘(𝑘 + 1)) ↔ ((2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))))
148142, 147mpbid 234 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → ((2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))))))
149148simp3d 1140 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))
15037adantr 483 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) ∈ ℝ)
15117ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → 𝐹:ℕ⟶(ℝ × ℝ))
15219ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → 𝐺:𝑈⟶ℕ)
153143, 99ffvelrnd 6852 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝐾𝑘) ∈ 𝑈)
154152, 153ffvelrnd 6852 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝐺‘(𝐾𝑘)) ∈ ℕ)
155151, 154ffvelrnd 6852 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝐹‘(𝐺‘(𝐾𝑘))) ∈ (ℝ × ℝ))
156 xp2nd 7722 . . . . . . . . . . . . 13 ((𝐹‘(𝐺‘(𝐾𝑘))) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∈ ℝ)
157155, 156syl 17 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∈ ℝ)
158152, 145ffvelrnd 6852 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝐺‘(𝐾‘(𝑘 + 1))) ∈ ℕ)
159151, 158ffvelrnd 6852 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))) ∈ (ℝ × ℝ))
160 xp2nd 7722 . . . . . . . . . . . . 13 ((𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))) ∈ ℝ)
161159, 160syl 17 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))) ∈ ℝ)
162 lttr 10717 . . . . . . . . . . . 12 (((2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) ∈ ℝ ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∈ ℝ ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))) ∈ ℝ) → (((2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))))) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))))))
163150, 157, 161, 162syl3anc 1367 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (((2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) ∧ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))))) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))))))
164149, 163mpan2d 692 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → ((2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))))))
165164imim2d 57 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → ((𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))) → (𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))))
166165com23 86 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝑦 < 𝑘 → ((𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))))
1673breq1d 5076 . . . . . . . . . 10 (𝑦 = 𝑘 → ((2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))) ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))))))
168149, 167syl5ibrcom 249 . . . . . . . . 9 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝑦 = 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1)))))))
169168a1dd 50 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝑦 = 𝑘 → ((𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))))
170166, 169jaod 855 . . . . . . 7 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → ((𝑦 < 𝑘𝑦 = 𝑘) → ((𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))))
171105, 170sylbid 242 . . . . . 6 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → (𝑦 < (𝑘 + 1) → ((𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))))
172171com23 86 . . . . 5 (((𝜑𝑦 ∈ ℕ) ∧ (𝑘 ∈ ℕ ∧ ∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚)) → ((𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))) → (𝑦 < (𝑘 + 1) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))))
17397, 172animpimp2impd 842 . . . 4 (𝑘 ∈ ℕ → (((𝜑𝑦 ∈ ℕ) → (∀𝑚𝑊 𝑘𝑚 → (𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))))) → ((𝜑𝑦 ∈ ℕ) → (∀𝑚𝑊 (𝑘 + 1) ≤ 𝑚 → (𝑦 < (𝑘 + 1) → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾‘(𝑘 + 1))))))))))
17457, 67, 77, 67, 81, 173nnind 11656 . . 3 (𝑘 ∈ ℕ → ((𝜑𝑦 ∈ ℕ) → (∀𝑚𝑊 𝑘𝑚 → (𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))))))
17540, 42, 47, 174syl3c 66 . 2 ((𝜑 ∧ (𝑦 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚} ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚})) → (𝑦 < 𝑘 → (2nd ‘(𝐹‘(𝐺‘(𝐾𝑦)))) < (2nd ‘(𝐹‘(𝐺‘(𝐾𝑘))))))
1763, 6, 9, 12, 38, 175eqord1 11168 1 ((𝜑 ∧ (𝑁 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚} ∧ 𝑃 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑊 𝑛𝑚})) → (𝑁 = 𝑃 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾𝑁)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾𝑃))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  {crab 3142  cin 3935  wss 3936  c0 4291  ifcif 4467  𝒫 cpw 4539  {csn 4567   cuni 4838   class class class wbr 5066   × cxp 5553  ran crn 5556  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  Fincfn 8509  cr 10536  1c1 10538   + caddc 10540   < clt 10675  cle 10676  cmin 10870  cn 11638  (,)cioo 12739  [,]cicc 12742  seqcseq 13370  abscabs 14593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-ioo 12743  df-icc 12746  df-fz 12894  df-seq 13371
This theorem is referenced by:  ovolicc2lem4  24121
  Copyright terms: Public domain W3C validator