MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monoord Structured version   Visualization version   GIF version

Theorem monoord 14001
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
monoord.1 (𝜑𝑁 ∈ (ℤ𝑀))
monoord.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
monoord.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
monoord (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monoord.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13512 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2815 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 6884 . . . . . . 7 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
65breq2d 5153 . . . . . 6 (𝑥 = 𝑀 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑀)))
74, 6imbi12d 344 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀))))
87imbi2d 340 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀)))))
9 eleq1 2815 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
10 fveq2 6884 . . . . . . 7 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
1110breq2d 5153 . . . . . 6 (𝑥 = 𝑛 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑛)))
129, 11imbi12d 344 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))))
1312imbi2d 340 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)))))
14 eleq1 2815 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
15 fveq2 6884 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
1615breq2d 5153 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
1714, 16imbi12d 344 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1)))))
1817imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))))
19 eleq1 2815 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
20 fveq2 6884 . . . . . . 7 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2120breq2d 5153 . . . . . 6 (𝑥 = 𝑁 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑁)))
2219, 21imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁))))
2322imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁)))))
24 fveq2 6884 . . . . . . . 8 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2524eleq1d 2812 . . . . . . 7 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
26 monoord.2 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
2726ralrimiva 3140 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
28 eluzfz1 13511 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
291, 28syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
3025, 27, 29rspcdva 3607 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ ℝ)
3130leidd 11781 . . . . 5 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑀))
3231a1d 25 . . . 4 (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀)))
33 peano2fzr 13517 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
3433adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
3534expr 456 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
3635imim1d 82 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))))
37 fveq2 6884 . . . . . . . 8 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
38 fvoveq1 7427 . . . . . . . 8 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
3937, 38breq12d 5154 . . . . . . 7 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))))
40 monoord.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
4140ralrimiva 3140 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
4241adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
43 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
44 eluzelz 12833 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
4543, 44syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ)
46 simprr 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
47 elfzuz3 13501 . . . . . . . . . 10 ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
4846, 47syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
49 eluzp1m1 12849 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))) → (𝑁 − 1) ∈ (ℤ𝑛))
5045, 48, 49syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑁 − 1) ∈ (ℤ𝑛))
51 elfzuzb 13498 . . . . . . . 8 (𝑛 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑛 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑛)))
5243, 50, 51sylanbrc 582 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...(𝑁 − 1)))
5339, 42, 52rspcdva 3607 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
5430adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑀) ∈ ℝ)
5537eleq1d 2812 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
5627adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
5755, 56, 34rspcdva 3607 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑛) ∈ ℝ)
58 fveq2 6884 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
5958eleq1d 2812 . . . . . . . 8 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ))
6059, 56, 46rspcdva 3607 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
61 letr 11309 . . . . . . 7 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑛) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝐹𝑀) ≤ (𝐹𝑛) ∧ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6254, 57, 60, 61syl3anc 1368 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (((𝐹𝑀) ≤ (𝐹𝑛) ∧ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6353, 62mpan2d 691 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐹𝑀) ≤ (𝐹𝑛) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6436, 63animpimp2impd 843 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))))
658, 13, 18, 23, 32, 64uzind4i 12895 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁))))
661, 65mpcom 38 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁)))
673, 66mpd 15 1 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3055   class class class wbr 5141  cfv 6536  (class class class)co 7404  cr 11108  1c1 11110   + caddc 11112  cle 11250  cmin 11445  cz 12559  cuz 12823  ...cfz 13487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488
This theorem is referenced by:  monoord2  14002  sermono  14003  climub  15612  isercolllem1  15615  climsup  15620  dvfsumlem3  25914  emcllem7  26885  lmdvg  33463  monoords  44560  iblspltprt  45242  itgspltprt  45248  fourierdlem11  45387  fourierdlem12  45388  fourierdlem15  45391  fourierdlem50  45425  fourierdlem79  45454
  Copyright terms: Public domain W3C validator