Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem10 Structured version   Visualization version   GIF version

Theorem cvmliftlem10 35266
Description: Lemma for cvmlift 35271. The function 𝐾 is going to be our complete lifted path, formed by unioning together all the 𝑄 functions (each of which is defined on one segment [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] of the interval). Here we prove by induction that 𝐾 is a continuous function and a lift of 𝐺 by applying cvmliftlem6 35262, cvmliftlem7 35263 (to show it is a function and a lift), cvmliftlem8 35264 (to show it is continuous), and cvmliftlem9 35265 (to show that different 𝑄 functions agree on the intersection of their domains, so that the pasting lemma paste 23197 gives that 𝐾 is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem.k 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
cvmliftlem10.1 (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
Assertion
Ref Expression
cvmliftlem10 (𝜑 → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑛,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑛,𝐿,𝑧   𝑃,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑛,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝜒(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝑇(𝑛)   𝐽(𝑚)   𝐾(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑛,𝑠,𝑏)

Proof of Theorem cvmliftlem10
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cvmliftlem.n . . . 4 (𝜑𝑁 ∈ ℕ)
2 nnuz 12796 . . . 4 ℕ = (ℤ‘1)
31, 2eleqtrdi 2838 . . 3 (𝜑𝑁 ∈ (ℤ‘1))
4 eluzfz2 13453 . . 3 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
53, 4syl 17 . 2 (𝜑𝑁 ∈ (1...𝑁))
6 eleq1 2816 . . . . . 6 (𝑦 = 1 → (𝑦 ∈ (1...𝑁) ↔ 1 ∈ (1...𝑁)))
7 oveq2 7361 . . . . . . . . . . 11 (𝑦 = 1 → (1...𝑦) = (1...1))
8 1z 12523 . . . . . . . . . . . 12 1 ∈ ℤ
9 fzsn 13487 . . . . . . . . . . . 12 (1 ∈ ℤ → (1...1) = {1})
108, 9ax-mp 5 . . . . . . . . . . 11 (1...1) = {1}
117, 10eqtrdi 2780 . . . . . . . . . 10 (𝑦 = 1 → (1...𝑦) = {1})
1211iuneq1d 4972 . . . . . . . . 9 (𝑦 = 1 → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ {1} (𝑄𝑘))
13 1ex 11130 . . . . . . . . . 10 1 ∈ V
14 fveq2 6826 . . . . . . . . . 10 (𝑘 = 1 → (𝑄𝑘) = (𝑄‘1))
1513, 14iunxsn 5043 . . . . . . . . 9 𝑘 ∈ {1} (𝑄𝑘) = (𝑄‘1)
1612, 15eqtrdi 2780 . . . . . . . 8 (𝑦 = 1 → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = (𝑄‘1))
17 oveq1 7360 . . . . . . . . . . 11 (𝑦 = 1 → (𝑦 / 𝑁) = (1 / 𝑁))
1817oveq2d 7369 . . . . . . . . . 10 (𝑦 = 1 → (0[,](𝑦 / 𝑁)) = (0[,](1 / 𝑁)))
1918oveq2d 7369 . . . . . . . . 9 (𝑦 = 1 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](1 / 𝑁))))
2019oveq1d 7368 . . . . . . . 8 (𝑦 = 1 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
2116, 20eleq12d 2822 . . . . . . 7 (𝑦 = 1 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ (𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶)))
2216coeq2d 5809 . . . . . . . 8 (𝑦 = 1 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 ∘ (𝑄‘1)))
2318reseq2d 5934 . . . . . . . 8 (𝑦 = 1 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](1 / 𝑁))))
2422, 23eqeq12d 2745 . . . . . . 7 (𝑦 = 1 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))
2521, 24anbi12d 632 . . . . . 6 (𝑦 = 1 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))
266, 25imbi12d 344 . . . . 5 (𝑦 = 1 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))))
2726imbi2d 340 . . . 4 (𝑦 = 1 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))))
28 eleq1 2816 . . . . . 6 (𝑦 = 𝑛 → (𝑦 ∈ (1...𝑁) ↔ 𝑛 ∈ (1...𝑁)))
29 oveq2 7361 . . . . . . . . 9 (𝑦 = 𝑛 → (1...𝑦) = (1...𝑛))
3029iuneq1d 4972 . . . . . . . 8 (𝑦 = 𝑛 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
31 oveq1 7360 . . . . . . . . . . 11 (𝑦 = 𝑛 → (𝑦 / 𝑁) = (𝑛 / 𝑁))
3231oveq2d 7369 . . . . . . . . . 10 (𝑦 = 𝑛 → (0[,](𝑦 / 𝑁)) = (0[,](𝑛 / 𝑁)))
3332oveq2d 7369 . . . . . . . . 9 (𝑦 = 𝑛 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
3433oveq1d 7368 . . . . . . . 8 (𝑦 = 𝑛 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
3530, 34eleq12d 2822 . . . . . . 7 (𝑦 = 𝑛 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶)))
3630coeq2d 5809 . . . . . . . 8 (𝑦 = 𝑛 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)))
3732reseq2d 5934 . . . . . . . 8 (𝑦 = 𝑛 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))
3836, 37eqeq12d 2745 . . . . . . 7 (𝑦 = 𝑛 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
3935, 38anbi12d 632 . . . . . 6 (𝑦 = 𝑛 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
4028, 39imbi12d 344 . . . . 5 (𝑦 = 𝑛 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))))
4140imbi2d 340 . . . 4 (𝑦 = 𝑛 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))))
42 eleq1 2816 . . . . . 6 (𝑦 = (𝑛 + 1) → (𝑦 ∈ (1...𝑁) ↔ (𝑛 + 1) ∈ (1...𝑁)))
43 oveq2 7361 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (1...𝑦) = (1...(𝑛 + 1)))
4443iuneq1d 4972 . . . . . . . 8 (𝑦 = (𝑛 + 1) → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘))
45 oveq1 7360 . . . . . . . . . . 11 (𝑦 = (𝑛 + 1) → (𝑦 / 𝑁) = ((𝑛 + 1) / 𝑁))
4645oveq2d 7369 . . . . . . . . . 10 (𝑦 = (𝑛 + 1) → (0[,](𝑦 / 𝑁)) = (0[,]((𝑛 + 1) / 𝑁)))
4746oveq2d 7369 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
4847oveq1d 7368 . . . . . . . 8 (𝑦 = (𝑛 + 1) → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
4944, 48eleq12d 2822 . . . . . . 7 (𝑦 = (𝑛 + 1) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶)))
5044coeq2d 5809 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)))
5146reseq2d 5934 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))
5250, 51eqeq12d 2745 . . . . . . 7 (𝑦 = (𝑛 + 1) → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
5349, 52anbi12d 632 . . . . . 6 (𝑦 = (𝑛 + 1) → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))
5442, 53imbi12d 344 . . . . 5 (𝑦 = (𝑛 + 1) → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))))
5554imbi2d 340 . . . 4 (𝑦 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))))
56 eleq1 2816 . . . . . 6 (𝑦 = 𝑁 → (𝑦 ∈ (1...𝑁) ↔ 𝑁 ∈ (1...𝑁)))
57 oveq2 7361 . . . . . . . . . 10 (𝑦 = 𝑁 → (1...𝑦) = (1...𝑁))
5857iuneq1d 4972 . . . . . . . . 9 (𝑦 = 𝑁 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...𝑁)(𝑄𝑘))
59 cvmliftlem.k . . . . . . . . 9 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
6058, 59eqtr4di 2782 . . . . . . . 8 (𝑦 = 𝑁 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝐾)
61 oveq1 7360 . . . . . . . . . . 11 (𝑦 = 𝑁 → (𝑦 / 𝑁) = (𝑁 / 𝑁))
6261oveq2d 7369 . . . . . . . . . 10 (𝑦 = 𝑁 → (0[,](𝑦 / 𝑁)) = (0[,](𝑁 / 𝑁)))
6362oveq2d 7369 . . . . . . . . 9 (𝑦 = 𝑁 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](𝑁 / 𝑁))))
6463oveq1d 7368 . . . . . . . 8 (𝑦 = 𝑁 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶))
6560, 64eleq12d 2822 . . . . . . 7 (𝑦 = 𝑁 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶)))
6660coeq2d 5809 . . . . . . . 8 (𝑦 = 𝑁 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹𝐾))
6762reseq2d 5934 . . . . . . . 8 (𝑦 = 𝑁 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))
6866, 67eqeq12d 2745 . . . . . . 7 (𝑦 = 𝑁 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
6965, 68anbi12d 632 . . . . . 6 (𝑦 = 𝑁 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))
7056, 69imbi12d 344 . . . . 5 (𝑦 = 𝑁 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))))
7170imbi2d 340 . . . 4 (𝑦 = 𝑁 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))))
72 eluzfz1 13452 . . . . . . . . 9 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
733, 72syl 17 . . . . . . . 8 (𝜑 → 1 ∈ (1...𝑁))
74 cvmliftlem.1 . . . . . . . . 9 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
75 cvmliftlem.b . . . . . . . . 9 𝐵 = 𝐶
76 cvmliftlem.x . . . . . . . . 9 𝑋 = 𝐽
77 cvmliftlem.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
78 cvmliftlem.g . . . . . . . . 9 (𝜑𝐺 ∈ (II Cn 𝐽))
79 cvmliftlem.p . . . . . . . . 9 (𝜑𝑃𝐵)
80 cvmliftlem.e . . . . . . . . 9 (𝜑 → (𝐹𝑃) = (𝐺‘0))
81 cvmliftlem.t . . . . . . . . 9 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
82 cvmliftlem.a . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
83 cvmliftlem.l . . . . . . . . 9 𝐿 = (topGen‘ran (,))
84 cvmliftlem.q . . . . . . . . 9 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
85 eqid 2729 . . . . . . . . 9 (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (((1 − 1) / 𝑁)[,](1 / 𝑁))
8674, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85cvmliftlem8 35264 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → (𝑄‘1) ∈ ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶))
8773, 86mpdan 687 . . . . . . 7 (𝜑 → (𝑄‘1) ∈ ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶))
88 1m1e0 12218 . . . . . . . . . . . 12 (1 − 1) = 0
8988oveq1i 7363 . . . . . . . . . . 11 ((1 − 1) / 𝑁) = (0 / 𝑁)
901nncnd 12162 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
911nnne0d 12196 . . . . . . . . . . . 12 (𝜑𝑁 ≠ 0)
9290, 91div0d 11917 . . . . . . . . . . 11 (𝜑 → (0 / 𝑁) = 0)
9389, 92eqtrid 2776 . . . . . . . . . 10 (𝜑 → ((1 − 1) / 𝑁) = 0)
9493oveq1d 7368 . . . . . . . . 9 (𝜑 → (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (0[,](1 / 𝑁)))
9594oveq2d 7369 . . . . . . . 8 (𝜑 → (𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) = (𝐿t (0[,](1 / 𝑁))))
9695oveq1d 7368 . . . . . . 7 (𝜑 → ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
9787, 96eleqtrd 2830 . . . . . 6 (𝜑 → (𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
98 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ (1...𝑁)) → 1 ∈ (1...𝑁))
9974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85cvmliftlem7 35263 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((1 − 1) / 𝑁))}))
10074, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85, 98, 99cvmliftlem6 35262 . . . . . . . . 9 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
10173, 100mpdan 687 . . . . . . . 8 (𝜑 → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
102101simprd 495 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁))))
10394reseq2d 5934 . . . . . . 7 (𝜑 → (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁))) = (𝐺 ↾ (0[,](1 / 𝑁))))
104102, 103eqtrd 2764 . . . . . 6 (𝜑 → (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))
10597, 104jca 511 . . . . 5 (𝜑 → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))
106105a1d 25 . . . 4 (𝜑 → (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))
107 elnnuz 12797 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
108107biimpi 216 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
109108adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
110 peano2fzr 13458 . . . . . . . 8 ((𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑁)) → 𝑛 ∈ (1...𝑁))
111110ex 412 . . . . . . 7 (𝑛 ∈ (ℤ‘1) → ((𝑛 + 1) ∈ (1...𝑁) → 𝑛 ∈ (1...𝑁)))
112109, 111syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) ∈ (1...𝑁) → 𝑛 ∈ (1...𝑁)))
113112imim1d 82 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))) → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))))
114 cvmliftlem10.1 . . . . . . 7 (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
115 eqid 2729 . . . . . . . . 9 (𝐿t (0[,]((𝑛 + 1) / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁)))
116 0re 11136 . . . . . . . . . . 11 0 ∈ ℝ
117114simplbi 497 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)))
118117adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)))
119118simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (𝑛 + 1) ∈ (1...𝑁))
120 elfznn 13474 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (1...𝑁) → (𝑛 + 1) ∈ ℕ)
121119, 120syl 17 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑛 + 1) ∈ ℕ)
122121nnred 12161 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 + 1) ∈ ℝ)
1231adantr 480 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝑁 ∈ ℕ)
124122, 123nndivred 12200 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝑛 + 1) / 𝑁) ∈ ℝ)
125 iccssre 13350 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ)
126116, 124, 125sylancr 587 . . . . . . . . . 10 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ)
127117simpld 494 . . . . . . . . . . . . . . 15 (𝜒𝑛 ∈ ℕ)
128127adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑛 ∈ ℕ)
129128nnred 12161 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑛 ∈ ℝ)
130129, 123nndivred 12200 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ℝ)
131 icccld 24670 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (𝑛 / 𝑁) ∈ ℝ) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
132116, 130, 131sylancr 587 . . . . . . . . . . 11 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
13383fveq2i 6829 . . . . . . . . . . 11 (Clsd‘𝐿) = (Clsd‘(topGen‘ran (,)))
134132, 133eleqtrrdi 2839 . . . . . . . . . 10 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘𝐿))
135 ssun1 4131 . . . . . . . . . . 11 (0[,](𝑛 / 𝑁)) ⊆ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
136116a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → 0 ∈ ℝ)
137128nnnn0d 12463 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑛 ∈ ℕ0)
138137nn0ge0d 12466 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 0 ≤ 𝑛)
139123nnred 12161 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑁 ∈ ℝ)
140123nngt0d 12195 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 0 < 𝑁)
141 divge0 12012 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑛 / 𝑁))
142129, 138, 139, 140, 141syl22anc 838 . . . . . . . . . . . . 13 ((𝜑𝜒) → 0 ≤ (𝑛 / 𝑁))
143129ltp1d 12073 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑛 < (𝑛 + 1))
144 ltdiv1 12007 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
145129, 122, 139, 140, 144syl112anc 1376 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
146143, 145mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁))
147130, 124, 146ltled 11282 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))
148 elicc2 13332 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → ((𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)) ↔ ((𝑛 / 𝑁) ∈ ℝ ∧ 0 ≤ (𝑛 / 𝑁) ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))))
149116, 124, 148sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)) ↔ ((𝑛 / 𝑁) ∈ ℝ ∧ 0 ≤ (𝑛 / 𝑁) ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))))
150130, 142, 147, 149mpbir3and 1343 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)))
151 iccsplit 13406 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ ∧ (𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁))) → (0[,]((𝑛 + 1) / 𝑁)) = ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
152136, 124, 150, 151syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) = ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
153135, 152sseqtrrid 3981 . . . . . . . . . 10 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)))
154 uniretop 24666 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
15583unieqi 4873 . . . . . . . . . . . 12 𝐿 = (topGen‘ran (,))
156154, 155eqtr4i 2755 . . . . . . . . . . 11 ℝ = 𝐿
157156restcldi 23076 . . . . . . . . . 10 (((0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ ∧ (0[,](𝑛 / 𝑁)) ∈ (Clsd‘𝐿) ∧ (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁))) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
158126, 134, 153, 157syl3anc 1373 . . . . . . . . 9 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
159 icccld 24670 . . . . . . . . . . . 12 (((𝑛 / 𝑁) ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
160130, 124, 159syl2anc 584 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
161160, 133eleqtrrdi 2839 . . . . . . . . . 10 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘𝐿))
162 ssun2 4132 . . . . . . . . . . 11 ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
163162, 152sseqtrrid 3981 . . . . . . . . . 10 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)))
164156restcldi 23076 . . . . . . . . . 10 (((0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘𝐿) ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁))) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
165126, 161, 163, 164syl3anc 1373 . . . . . . . . 9 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
166 retop 24665 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ Top
16783, 166eqeltri 2824 . . . . . . . . . . 11 𝐿 ∈ Top
168156restuni 23065 . . . . . . . . . . 11 ((𝐿 ∈ Top ∧ (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ) → (0[,]((𝑛 + 1) / 𝑁)) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
169167, 126, 168sylancr 587 . . . . . . . . . 10 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
170152, 169eqtr3d 2766 . . . . . . . . 9 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
171114simprbi 496 . . . . . . . . . . . . . . . 16 (𝜒 → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
172171adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
173172simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
174 eqid 2729 . . . . . . . . . . . . . . 15 (𝐿t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁)))
175174, 75cnf 23149 . . . . . . . . . . . . . 14 ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) → 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵)
176173, 175syl 17 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵)
177 iccssre 13350 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (𝑛 / 𝑁) ∈ ℝ) → (0[,](𝑛 / 𝑁)) ⊆ ℝ)
178116, 130, 177sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ⊆ ℝ)
179156restuni 23065 . . . . . . . . . . . . . . 15 ((𝐿 ∈ Top ∧ (0[,](𝑛 / 𝑁)) ⊆ ℝ) → (0[,](𝑛 / 𝑁)) = (𝐿t (0[,](𝑛 / 𝑁))))
180167, 178, 179sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) = (𝐿t (0[,](𝑛 / 𝑁))))
181180feq2d 6640 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵))
182176, 181mpbird 257 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵)
183 eqid 2729 . . . . . . . . . . . . . . . 16 ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))
184 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → (𝑛 + 1) ∈ (1...𝑁))
18574, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183cvmliftlem7 35263 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}))
18674, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183, 184, 185cvmliftlem6 35262 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
187119, 186syldan 591 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
188187simpld 494 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
189128nncnd 12162 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → 𝑛 ∈ ℂ)
190 ax-1cn 11086 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
191 pncan 11387 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
192189, 190, 191sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ((𝑛 + 1) − 1) = 𝑛)
193192oveq1d 7368 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (((𝑛 + 1) − 1) / 𝑁) = (𝑛 / 𝑁))
194193oveq1d 7368 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
195194feq2d 6640 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ↔ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵))
196188, 195mpbid 232 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
197176ffund 6660 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → Fun 𝑘 ∈ (1...𝑛)(𝑄𝑘))
198128, 108syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → 𝑛 ∈ (ℤ‘1))
199 eluzfz2 13453 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ (1...𝑛))
200198, 199syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → 𝑛 ∈ (1...𝑛))
201 fveq2 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (𝑄𝑘) = (𝑄𝑛))
202201ssiun2s 5000 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑛) → (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘))
203200, 202syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘))
204 peano2rem 11449 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
205129, 204syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → (𝑛 − 1) ∈ ℝ)
206205, 123nndivred 12200 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ∈ ℝ)
207206rexrd 11184 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ∈ ℝ*)
208130rexrd 11184 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ℝ*)
209129ltm1d 12075 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → (𝑛 − 1) < 𝑛)
210 ltdiv1 12007 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑛 − 1) < 𝑛 ↔ ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁)))
211205, 129, 139, 140, 210syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → ((𝑛 − 1) < 𝑛 ↔ ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁)))
212209, 211mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁))
213206, 130, 212ltled 11282 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ≤ (𝑛 / 𝑁))
214 ubicc2 13386 . . . . . . . . . . . . . . . . . . . 20 ((((𝑛 − 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 − 1) / 𝑁) ≤ (𝑛 / 𝑁)) → (𝑛 / 𝑁) ∈ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
215207, 208, 213, 214syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
216198, 119, 110syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → 𝑛 ∈ (1...𝑁))
217 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)) = (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))
218 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ (1...𝑁))
21974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 217cvmliftlem7 35263 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑄‘(𝑛 − 1))‘((𝑛 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 − 1) / 𝑁))}))
22074, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 217, 218, 219cvmliftlem6 35262 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄𝑛)) = (𝐺 ↾ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))))
221216, 220syldan 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄𝑛)) = (𝐺 ↾ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))))
222221simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → (𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵)
223222fdmd 6666 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → dom (𝑄𝑛) = (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
224215, 223eleqtrrd 2831 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ dom (𝑄𝑛))
225 funssfv 6847 . . . . . . . . . . . . . . . . . 18 ((Fun 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∧ (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∧ (𝑛 / 𝑁) ∈ dom (𝑄𝑛)) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
226197, 203, 224, 225syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
227192fveq2d 6830 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑄‘((𝑛 + 1) − 1)) = (𝑄𝑛))
228227, 193fveq12d 6833 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
22974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84cvmliftlem9 35265 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)))
230119, 229syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)))
231193fveq2d 6830 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
232230, 231eqtr3d 2766 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
233226, 228, 2323eqtr2d 2770 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
234233opeq2d 4834 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩ = ⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩)
235234sneqd 4591 . . . . . . . . . . . . . 14 ((𝜑𝜒) → {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩} = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
236182ffnd 6657 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘) Fn (0[,](𝑛 / 𝑁)))
237 0xr 11181 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
238237a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → 0 ∈ ℝ*)
239 ubicc2 13386 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ 0 ≤ (𝑛 / 𝑁)) → (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁)))
240238, 208, 142, 239syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁)))
241 fnressn 7096 . . . . . . . . . . . . . . 15 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) Fn (0[,](𝑛 / 𝑁)) ∧ (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁))) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩})
242236, 240, 241syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩})
243196ffnd 6657 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) Fn ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
244124rexrd 11184 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ((𝑛 + 1) / 𝑁) ∈ ℝ*)
245 lbicc2 13385 . . . . . . . . . . . . . . . 16 (((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁)) → (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
246208, 244, 147, 245syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
247 fnressn 7096 . . . . . . . . . . . . . . 15 (((𝑄‘(𝑛 + 1)) Fn ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∧ (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) → ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
248243, 246, 247syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
249235, 242, 2483eqtr4d 2774 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}))
250 df-icc 13273 . . . . . . . . . . . . . . . . 17 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
251 xrmaxle 13103 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ*𝑧 ∈ ℝ*) → (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0) ≤ 𝑧 ↔ (0 ≤ 𝑧 ∧ (𝑛 / 𝑁) ≤ 𝑧)))
252 xrlemin 13104 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ*) → (𝑧 ≤ if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁)) ↔ (𝑧 ≤ (𝑛 / 𝑁) ∧ 𝑧 ≤ ((𝑛 + 1) / 𝑁))))
253250, 251, 252ixxin 13283 . . . . . . . . . . . . . . . 16 (((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ*) ∧ ((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ*)) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))))
254238, 208, 208, 244, 253syl22anc 838 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))))
255142iftrued 4486 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0) = (𝑛 / 𝑁))
256147iftrued 4486 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁)) = (𝑛 / 𝑁))
257255, 256oveq12d 7371 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))) = ((𝑛 / 𝑁)[,](𝑛 / 𝑁)))
258 iccid 13311 . . . . . . . . . . . . . . . 16 ((𝑛 / 𝑁) ∈ ℝ* → ((𝑛 / 𝑁)[,](𝑛 / 𝑁)) = {(𝑛 / 𝑁)})
259208, 258syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ((𝑛 / 𝑁)[,](𝑛 / 𝑁)) = {(𝑛 / 𝑁)})
260254, 257, 2593eqtrd 2768 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = {(𝑛 / 𝑁)})
261260reseq2d 5934 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}))
262260reseq2d 5934 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}))
263249, 261, 2623eqtr4d 2774 . . . . . . . . . . . 12 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
264 fresaun 6699 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
265182, 196, 263, 264syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
266 fzsuc 13492 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
267198, 266syl 17 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
268267iuneq1d 4972 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) = 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘))
269 iunxun 5046 . . . . . . . . . . . . . 14 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘))
270 ovex 7386 . . . . . . . . . . . . . . . 16 (𝑛 + 1) ∈ V
271 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝑄𝑘) = (𝑄‘(𝑛 + 1)))
272270, 271iunxsn 5043 . . . . . . . . . . . . . . 15 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘) = (𝑄‘(𝑛 + 1))
273272uneq2i 4118 . . . . . . . . . . . . . 14 ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘)) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))
274269, 273eqtri 2752 . . . . . . . . . . . . 13 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))
275268, 274eqtr2di 2781 . . . . . . . . . . . 12 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) = 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘))
276275feq1d 6638 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵))
277265, 276mpbid 232 . . . . . . . . . 10 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
278170feq2d 6640 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘): (𝐿t (0[,]((𝑛 + 1) / 𝑁)))⟶𝐵))
279277, 278mpbid 232 . . . . . . . . 9 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘): (𝐿t (0[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
280275reseq1d 5933 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))))
281 fresaunres1 6701 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
282182, 196, 263, 281syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
283280, 282eqtr3d 2766 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
284167a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝐿 ∈ Top)
285 ovex 7386 . . . . . . . . . . . . 13 (0[,]((𝑛 + 1) / 𝑁)) ∈ V
286285a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) ∈ V)
287 restabs 23068 . . . . . . . . . . . 12 ((𝐿 ∈ Top ∧ (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)) ∧ (0[,]((𝑛 + 1) / 𝑁)) ∈ V) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
288284, 153, 286, 287syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
289288oveq1d 7368 . . . . . . . . . 10 ((𝜑𝜒) → (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
290173, 283, 2893eltr4d 2843 . . . . . . . . 9 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))) ∈ (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶))
29174, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183cvmliftlem8 35264 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
292119, 291syldan 591 . . . . . . . . . . 11 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
293194oveq2d 7369 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
294293oveq1d 7368 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) = ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
295292, 294eleqtrd 2830 . . . . . . . . . 10 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
296275reseq1d 5933 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
297 fresaunres2 6700 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
298182, 196, 263, 297syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
299296, 298eqtr3d 2766 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
300 restabs 23068 . . . . . . . . . . . 12 ((𝐿 ∈ Top ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)) ∧ (0[,]((𝑛 + 1) / 𝑁)) ∈ V) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
301284, 163, 286, 300syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
302301oveq1d 7368 . . . . . . . . . 10 ((𝜑𝜒) → (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) = ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
303295, 299, 3023eltr4d 2843 . . . . . . . . 9 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) ∈ (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
304115, 75, 158, 165, 170, 279, 290, 303paste 23197 . . . . . . . 8 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
305152reseq2d 5934 . . . . . . . . 9 ((𝜑𝜒) → (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
306172simprd 495 . . . . . . . . . . 11 ((𝜑𝜒) → (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))
307187simprd 495 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))))
308194reseq2d 5934 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
309307, 308eqtrd 2764 . . . . . . . . . . 11 ((𝜑𝜒) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
310306, 309uneq12d 4122 . . . . . . . . . 10 ((𝜑𝜒) → ((𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) ∪ (𝐹 ∘ (𝑄‘(𝑛 + 1)))) = ((𝐺 ↾ (0[,](𝑛 / 𝑁))) ∪ (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
311 coundi 6200 . . . . . . . . . 10 (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = ((𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) ∪ (𝐹 ∘ (𝑄‘(𝑛 + 1))))
312 resundi 5948 . . . . . . . . . 10 (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝐺 ↾ (0[,](𝑛 / 𝑁))) ∪ (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
313310, 311, 3123eqtr4g 2789 . . . . . . . . 9 ((𝜑𝜒) → (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
314275coeq2d 5809 . . . . . . . . 9 ((𝜑𝜒) → (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)))
315305, 313, 3143eqtr2rd 2771 . . . . . . . 8 ((𝜑𝜒) → (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))
316304, 315jca 511 . . . . . . 7 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
317114, 316sylan2br 595 . . . . . 6 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
318317expr 456 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))
319113, 318animpimp2impd 846 . . . 4 (𝑛 ∈ ℕ → ((𝜑 → (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) → (𝜑 → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))))
32027, 41, 55, 71, 106, 319nnind 12164 . . 3 (𝑁 ∈ ℕ → (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))))
3211, 320mpcom 38 . 2 (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))
3225, 321mpd 15 1 (𝜑 → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  ifcif 4478  𝒫 cpw 4553  {csn 4579  cop 4585   cuni 4861   ciun 4944   class class class wbr 5095  cmpt 5176   I cid 5517   × cxp 5621  ccnv 5622  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  ccom 5627  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  crio 7309  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  *cxr 11167   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  cz 12489  cuz 12753  (,)cioo 13266  [,]cicc 13269  ...cfz 13428  seqcseq 13926  t crest 17342  topGenctg 17359  Topctop 22796  Clsdccld 22919   Cn ccn 23127  Homeochmeo 23656  IIcii 24784   CovMap ccvm 35227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-icc 13273  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cld 22922  df-cn 23130  df-hmeo 23658  df-ii 24786  df-cvm 35228
This theorem is referenced by:  cvmliftlem11  35267
  Copyright terms: Public domain W3C validator