Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem10 Structured version   Visualization version   GIF version

Theorem cvmliftlem10 35281
Description: Lemma for cvmlift 35286. The function 𝐾 is going to be our complete lifted path, formed by unioning together all the 𝑄 functions (each of which is defined on one segment [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] of the interval). Here we prove by induction that 𝐾 is a continuous function and a lift of 𝐺 by applying cvmliftlem6 35277, cvmliftlem7 35278 (to show it is a function and a lift), cvmliftlem8 35279 (to show it is continuous), and cvmliftlem9 35280 (to show that different 𝑄 functions agree on the intersection of their domains, so that the pasting lemma paste 23181 gives that 𝐾 is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem.k 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
cvmliftlem10.1 (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
Assertion
Ref Expression
cvmliftlem10 (𝜑 → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑛,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑛,𝐿,𝑧   𝑃,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑛,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝜒(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝑇(𝑛)   𝐽(𝑚)   𝐾(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑛,𝑠,𝑏)

Proof of Theorem cvmliftlem10
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cvmliftlem.n . . . 4 (𝜑𝑁 ∈ ℕ)
2 nnuz 12836 . . . 4 ℕ = (ℤ‘1)
31, 2eleqtrdi 2838 . . 3 (𝜑𝑁 ∈ (ℤ‘1))
4 eluzfz2 13493 . . 3 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
53, 4syl 17 . 2 (𝜑𝑁 ∈ (1...𝑁))
6 eleq1 2816 . . . . . 6 (𝑦 = 1 → (𝑦 ∈ (1...𝑁) ↔ 1 ∈ (1...𝑁)))
7 oveq2 7395 . . . . . . . . . . 11 (𝑦 = 1 → (1...𝑦) = (1...1))
8 1z 12563 . . . . . . . . . . . 12 1 ∈ ℤ
9 fzsn 13527 . . . . . . . . . . . 12 (1 ∈ ℤ → (1...1) = {1})
108, 9ax-mp 5 . . . . . . . . . . 11 (1...1) = {1}
117, 10eqtrdi 2780 . . . . . . . . . 10 (𝑦 = 1 → (1...𝑦) = {1})
1211iuneq1d 4983 . . . . . . . . 9 (𝑦 = 1 → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ {1} (𝑄𝑘))
13 1ex 11170 . . . . . . . . . 10 1 ∈ V
14 fveq2 6858 . . . . . . . . . 10 (𝑘 = 1 → (𝑄𝑘) = (𝑄‘1))
1513, 14iunxsn 5055 . . . . . . . . 9 𝑘 ∈ {1} (𝑄𝑘) = (𝑄‘1)
1612, 15eqtrdi 2780 . . . . . . . 8 (𝑦 = 1 → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = (𝑄‘1))
17 oveq1 7394 . . . . . . . . . . 11 (𝑦 = 1 → (𝑦 / 𝑁) = (1 / 𝑁))
1817oveq2d 7403 . . . . . . . . . 10 (𝑦 = 1 → (0[,](𝑦 / 𝑁)) = (0[,](1 / 𝑁)))
1918oveq2d 7403 . . . . . . . . 9 (𝑦 = 1 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](1 / 𝑁))))
2019oveq1d 7402 . . . . . . . 8 (𝑦 = 1 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
2116, 20eleq12d 2822 . . . . . . 7 (𝑦 = 1 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ (𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶)))
2216coeq2d 5826 . . . . . . . 8 (𝑦 = 1 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 ∘ (𝑄‘1)))
2318reseq2d 5950 . . . . . . . 8 (𝑦 = 1 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](1 / 𝑁))))
2422, 23eqeq12d 2745 . . . . . . 7 (𝑦 = 1 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))
2521, 24anbi12d 632 . . . . . 6 (𝑦 = 1 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))
266, 25imbi12d 344 . . . . 5 (𝑦 = 1 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))))
2726imbi2d 340 . . . 4 (𝑦 = 1 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))))
28 eleq1 2816 . . . . . 6 (𝑦 = 𝑛 → (𝑦 ∈ (1...𝑁) ↔ 𝑛 ∈ (1...𝑁)))
29 oveq2 7395 . . . . . . . . 9 (𝑦 = 𝑛 → (1...𝑦) = (1...𝑛))
3029iuneq1d 4983 . . . . . . . 8 (𝑦 = 𝑛 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
31 oveq1 7394 . . . . . . . . . . 11 (𝑦 = 𝑛 → (𝑦 / 𝑁) = (𝑛 / 𝑁))
3231oveq2d 7403 . . . . . . . . . 10 (𝑦 = 𝑛 → (0[,](𝑦 / 𝑁)) = (0[,](𝑛 / 𝑁)))
3332oveq2d 7403 . . . . . . . . 9 (𝑦 = 𝑛 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
3433oveq1d 7402 . . . . . . . 8 (𝑦 = 𝑛 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
3530, 34eleq12d 2822 . . . . . . 7 (𝑦 = 𝑛 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶)))
3630coeq2d 5826 . . . . . . . 8 (𝑦 = 𝑛 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)))
3732reseq2d 5950 . . . . . . . 8 (𝑦 = 𝑛 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))
3836, 37eqeq12d 2745 . . . . . . 7 (𝑦 = 𝑛 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
3935, 38anbi12d 632 . . . . . 6 (𝑦 = 𝑛 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
4028, 39imbi12d 344 . . . . 5 (𝑦 = 𝑛 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))))
4140imbi2d 340 . . . 4 (𝑦 = 𝑛 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))))
42 eleq1 2816 . . . . . 6 (𝑦 = (𝑛 + 1) → (𝑦 ∈ (1...𝑁) ↔ (𝑛 + 1) ∈ (1...𝑁)))
43 oveq2 7395 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (1...𝑦) = (1...(𝑛 + 1)))
4443iuneq1d 4983 . . . . . . . 8 (𝑦 = (𝑛 + 1) → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘))
45 oveq1 7394 . . . . . . . . . . 11 (𝑦 = (𝑛 + 1) → (𝑦 / 𝑁) = ((𝑛 + 1) / 𝑁))
4645oveq2d 7403 . . . . . . . . . 10 (𝑦 = (𝑛 + 1) → (0[,](𝑦 / 𝑁)) = (0[,]((𝑛 + 1) / 𝑁)))
4746oveq2d 7403 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
4847oveq1d 7402 . . . . . . . 8 (𝑦 = (𝑛 + 1) → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
4944, 48eleq12d 2822 . . . . . . 7 (𝑦 = (𝑛 + 1) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶)))
5044coeq2d 5826 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)))
5146reseq2d 5950 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))
5250, 51eqeq12d 2745 . . . . . . 7 (𝑦 = (𝑛 + 1) → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
5349, 52anbi12d 632 . . . . . 6 (𝑦 = (𝑛 + 1) → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))
5442, 53imbi12d 344 . . . . 5 (𝑦 = (𝑛 + 1) → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))))
5554imbi2d 340 . . . 4 (𝑦 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))))
56 eleq1 2816 . . . . . 6 (𝑦 = 𝑁 → (𝑦 ∈ (1...𝑁) ↔ 𝑁 ∈ (1...𝑁)))
57 oveq2 7395 . . . . . . . . . 10 (𝑦 = 𝑁 → (1...𝑦) = (1...𝑁))
5857iuneq1d 4983 . . . . . . . . 9 (𝑦 = 𝑁 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...𝑁)(𝑄𝑘))
59 cvmliftlem.k . . . . . . . . 9 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
6058, 59eqtr4di 2782 . . . . . . . 8 (𝑦 = 𝑁 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝐾)
61 oveq1 7394 . . . . . . . . . . 11 (𝑦 = 𝑁 → (𝑦 / 𝑁) = (𝑁 / 𝑁))
6261oveq2d 7403 . . . . . . . . . 10 (𝑦 = 𝑁 → (0[,](𝑦 / 𝑁)) = (0[,](𝑁 / 𝑁)))
6362oveq2d 7403 . . . . . . . . 9 (𝑦 = 𝑁 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](𝑁 / 𝑁))))
6463oveq1d 7402 . . . . . . . 8 (𝑦 = 𝑁 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶))
6560, 64eleq12d 2822 . . . . . . 7 (𝑦 = 𝑁 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶)))
6660coeq2d 5826 . . . . . . . 8 (𝑦 = 𝑁 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹𝐾))
6762reseq2d 5950 . . . . . . . 8 (𝑦 = 𝑁 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))
6866, 67eqeq12d 2745 . . . . . . 7 (𝑦 = 𝑁 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
6965, 68anbi12d 632 . . . . . 6 (𝑦 = 𝑁 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))
7056, 69imbi12d 344 . . . . 5 (𝑦 = 𝑁 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))))
7170imbi2d 340 . . . 4 (𝑦 = 𝑁 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))))
72 eluzfz1 13492 . . . . . . . . 9 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
733, 72syl 17 . . . . . . . 8 (𝜑 → 1 ∈ (1...𝑁))
74 cvmliftlem.1 . . . . . . . . 9 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
75 cvmliftlem.b . . . . . . . . 9 𝐵 = 𝐶
76 cvmliftlem.x . . . . . . . . 9 𝑋 = 𝐽
77 cvmliftlem.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
78 cvmliftlem.g . . . . . . . . 9 (𝜑𝐺 ∈ (II Cn 𝐽))
79 cvmliftlem.p . . . . . . . . 9 (𝜑𝑃𝐵)
80 cvmliftlem.e . . . . . . . . 9 (𝜑 → (𝐹𝑃) = (𝐺‘0))
81 cvmliftlem.t . . . . . . . . 9 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
82 cvmliftlem.a . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
83 cvmliftlem.l . . . . . . . . 9 𝐿 = (topGen‘ran (,))
84 cvmliftlem.q . . . . . . . . 9 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
85 eqid 2729 . . . . . . . . 9 (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (((1 − 1) / 𝑁)[,](1 / 𝑁))
8674, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85cvmliftlem8 35279 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → (𝑄‘1) ∈ ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶))
8773, 86mpdan 687 . . . . . . 7 (𝜑 → (𝑄‘1) ∈ ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶))
88 1m1e0 12258 . . . . . . . . . . . 12 (1 − 1) = 0
8988oveq1i 7397 . . . . . . . . . . 11 ((1 − 1) / 𝑁) = (0 / 𝑁)
901nncnd 12202 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
911nnne0d 12236 . . . . . . . . . . . 12 (𝜑𝑁 ≠ 0)
9290, 91div0d 11957 . . . . . . . . . . 11 (𝜑 → (0 / 𝑁) = 0)
9389, 92eqtrid 2776 . . . . . . . . . 10 (𝜑 → ((1 − 1) / 𝑁) = 0)
9493oveq1d 7402 . . . . . . . . 9 (𝜑 → (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (0[,](1 / 𝑁)))
9594oveq2d 7403 . . . . . . . 8 (𝜑 → (𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) = (𝐿t (0[,](1 / 𝑁))))
9695oveq1d 7402 . . . . . . 7 (𝜑 → ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
9787, 96eleqtrd 2830 . . . . . 6 (𝜑 → (𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
98 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ (1...𝑁)) → 1 ∈ (1...𝑁))
9974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85cvmliftlem7 35278 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((1 − 1) / 𝑁))}))
10074, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85, 98, 99cvmliftlem6 35277 . . . . . . . . 9 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
10173, 100mpdan 687 . . . . . . . 8 (𝜑 → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
102101simprd 495 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁))))
10394reseq2d 5950 . . . . . . 7 (𝜑 → (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁))) = (𝐺 ↾ (0[,](1 / 𝑁))))
104102, 103eqtrd 2764 . . . . . 6 (𝜑 → (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))
10597, 104jca 511 . . . . 5 (𝜑 → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))
106105a1d 25 . . . 4 (𝜑 → (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))
107 elnnuz 12837 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
108107biimpi 216 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
109108adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
110 peano2fzr 13498 . . . . . . . 8 ((𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑁)) → 𝑛 ∈ (1...𝑁))
111110ex 412 . . . . . . 7 (𝑛 ∈ (ℤ‘1) → ((𝑛 + 1) ∈ (1...𝑁) → 𝑛 ∈ (1...𝑁)))
112109, 111syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) ∈ (1...𝑁) → 𝑛 ∈ (1...𝑁)))
113112imim1d 82 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))) → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))))
114 cvmliftlem10.1 . . . . . . 7 (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
115 eqid 2729 . . . . . . . . 9 (𝐿t (0[,]((𝑛 + 1) / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁)))
116 0re 11176 . . . . . . . . . . 11 0 ∈ ℝ
117114simplbi 497 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)))
118117adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)))
119118simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (𝑛 + 1) ∈ (1...𝑁))
120 elfznn 13514 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (1...𝑁) → (𝑛 + 1) ∈ ℕ)
121119, 120syl 17 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑛 + 1) ∈ ℕ)
122121nnred 12201 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 + 1) ∈ ℝ)
1231adantr 480 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝑁 ∈ ℕ)
124122, 123nndivred 12240 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝑛 + 1) / 𝑁) ∈ ℝ)
125 iccssre 13390 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ)
126116, 124, 125sylancr 587 . . . . . . . . . 10 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ)
127117simpld 494 . . . . . . . . . . . . . . 15 (𝜒𝑛 ∈ ℕ)
128127adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑛 ∈ ℕ)
129128nnred 12201 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑛 ∈ ℝ)
130129, 123nndivred 12240 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ℝ)
131 icccld 24654 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (𝑛 / 𝑁) ∈ ℝ) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
132116, 130, 131sylancr 587 . . . . . . . . . . 11 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
13383fveq2i 6861 . . . . . . . . . . 11 (Clsd‘𝐿) = (Clsd‘(topGen‘ran (,)))
134132, 133eleqtrrdi 2839 . . . . . . . . . 10 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘𝐿))
135 ssun1 4141 . . . . . . . . . . 11 (0[,](𝑛 / 𝑁)) ⊆ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
136116a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → 0 ∈ ℝ)
137128nnnn0d 12503 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑛 ∈ ℕ0)
138137nn0ge0d 12506 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 0 ≤ 𝑛)
139123nnred 12201 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑁 ∈ ℝ)
140123nngt0d 12235 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 0 < 𝑁)
141 divge0 12052 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑛 / 𝑁))
142129, 138, 139, 140, 141syl22anc 838 . . . . . . . . . . . . 13 ((𝜑𝜒) → 0 ≤ (𝑛 / 𝑁))
143129ltp1d 12113 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑛 < (𝑛 + 1))
144 ltdiv1 12047 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
145129, 122, 139, 140, 144syl112anc 1376 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
146143, 145mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁))
147130, 124, 146ltled 11322 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))
148 elicc2 13372 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → ((𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)) ↔ ((𝑛 / 𝑁) ∈ ℝ ∧ 0 ≤ (𝑛 / 𝑁) ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))))
149116, 124, 148sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)) ↔ ((𝑛 / 𝑁) ∈ ℝ ∧ 0 ≤ (𝑛 / 𝑁) ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))))
150130, 142, 147, 149mpbir3and 1343 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)))
151 iccsplit 13446 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ ∧ (𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁))) → (0[,]((𝑛 + 1) / 𝑁)) = ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
152136, 124, 150, 151syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) = ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
153135, 152sseqtrrid 3990 . . . . . . . . . 10 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)))
154 uniretop 24650 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
15583unieqi 4883 . . . . . . . . . . . 12 𝐿 = (topGen‘ran (,))
156154, 155eqtr4i 2755 . . . . . . . . . . 11 ℝ = 𝐿
157156restcldi 23060 . . . . . . . . . 10 (((0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ ∧ (0[,](𝑛 / 𝑁)) ∈ (Clsd‘𝐿) ∧ (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁))) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
158126, 134, 153, 157syl3anc 1373 . . . . . . . . 9 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
159 icccld 24654 . . . . . . . . . . . 12 (((𝑛 / 𝑁) ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
160130, 124, 159syl2anc 584 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
161160, 133eleqtrrdi 2839 . . . . . . . . . 10 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘𝐿))
162 ssun2 4142 . . . . . . . . . . 11 ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
163162, 152sseqtrrid 3990 . . . . . . . . . 10 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)))
164156restcldi 23060 . . . . . . . . . 10 (((0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘𝐿) ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁))) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
165126, 161, 163, 164syl3anc 1373 . . . . . . . . 9 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
166 retop 24649 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ Top
16783, 166eqeltri 2824 . . . . . . . . . . 11 𝐿 ∈ Top
168156restuni 23049 . . . . . . . . . . 11 ((𝐿 ∈ Top ∧ (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ) → (0[,]((𝑛 + 1) / 𝑁)) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
169167, 126, 168sylancr 587 . . . . . . . . . 10 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
170152, 169eqtr3d 2766 . . . . . . . . 9 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
171114simprbi 496 . . . . . . . . . . . . . . . 16 (𝜒 → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
172171adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
173172simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
174 eqid 2729 . . . . . . . . . . . . . . 15 (𝐿t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁)))
175174, 75cnf 23133 . . . . . . . . . . . . . 14 ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) → 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵)
176173, 175syl 17 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵)
177 iccssre 13390 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (𝑛 / 𝑁) ∈ ℝ) → (0[,](𝑛 / 𝑁)) ⊆ ℝ)
178116, 130, 177sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ⊆ ℝ)
179156restuni 23049 . . . . . . . . . . . . . . 15 ((𝐿 ∈ Top ∧ (0[,](𝑛 / 𝑁)) ⊆ ℝ) → (0[,](𝑛 / 𝑁)) = (𝐿t (0[,](𝑛 / 𝑁))))
180167, 178, 179sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) = (𝐿t (0[,](𝑛 / 𝑁))))
181180feq2d 6672 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵))
182176, 181mpbird 257 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵)
183 eqid 2729 . . . . . . . . . . . . . . . 16 ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))
184 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → (𝑛 + 1) ∈ (1...𝑁))
18574, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183cvmliftlem7 35278 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}))
18674, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183, 184, 185cvmliftlem6 35277 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
187119, 186syldan 591 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
188187simpld 494 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
189128nncnd 12202 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → 𝑛 ∈ ℂ)
190 ax-1cn 11126 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
191 pncan 11427 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
192189, 190, 191sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ((𝑛 + 1) − 1) = 𝑛)
193192oveq1d 7402 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (((𝑛 + 1) − 1) / 𝑁) = (𝑛 / 𝑁))
194193oveq1d 7402 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
195194feq2d 6672 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ↔ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵))
196188, 195mpbid 232 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
197176ffund 6692 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → Fun 𝑘 ∈ (1...𝑛)(𝑄𝑘))
198128, 108syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → 𝑛 ∈ (ℤ‘1))
199 eluzfz2 13493 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ (1...𝑛))
200198, 199syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → 𝑛 ∈ (1...𝑛))
201 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (𝑄𝑘) = (𝑄𝑛))
202201ssiun2s 5012 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑛) → (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘))
203200, 202syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘))
204 peano2rem 11489 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
205129, 204syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → (𝑛 − 1) ∈ ℝ)
206205, 123nndivred 12240 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ∈ ℝ)
207206rexrd 11224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ∈ ℝ*)
208130rexrd 11224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ℝ*)
209129ltm1d 12115 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → (𝑛 − 1) < 𝑛)
210 ltdiv1 12047 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑛 − 1) < 𝑛 ↔ ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁)))
211205, 129, 139, 140, 210syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → ((𝑛 − 1) < 𝑛 ↔ ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁)))
212209, 211mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁))
213206, 130, 212ltled 11322 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ≤ (𝑛 / 𝑁))
214 ubicc2 13426 . . . . . . . . . . . . . . . . . . . 20 ((((𝑛 − 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 − 1) / 𝑁) ≤ (𝑛 / 𝑁)) → (𝑛 / 𝑁) ∈ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
215207, 208, 213, 214syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
216198, 119, 110syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → 𝑛 ∈ (1...𝑁))
217 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)) = (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))
218 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ (1...𝑁))
21974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 217cvmliftlem7 35278 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑄‘(𝑛 − 1))‘((𝑛 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 − 1) / 𝑁))}))
22074, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 217, 218, 219cvmliftlem6 35277 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄𝑛)) = (𝐺 ↾ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))))
221216, 220syldan 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄𝑛)) = (𝐺 ↾ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))))
222221simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → (𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵)
223222fdmd 6698 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → dom (𝑄𝑛) = (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
224215, 223eleqtrrd 2831 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ dom (𝑄𝑛))
225 funssfv 6879 . . . . . . . . . . . . . . . . . 18 ((Fun 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∧ (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∧ (𝑛 / 𝑁) ∈ dom (𝑄𝑛)) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
226197, 203, 224, 225syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
227192fveq2d 6862 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑄‘((𝑛 + 1) − 1)) = (𝑄𝑛))
228227, 193fveq12d 6865 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
22974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84cvmliftlem9 35280 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)))
230119, 229syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)))
231193fveq2d 6862 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
232230, 231eqtr3d 2766 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
233226, 228, 2323eqtr2d 2770 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
234233opeq2d 4844 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩ = ⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩)
235234sneqd 4601 . . . . . . . . . . . . . 14 ((𝜑𝜒) → {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩} = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
236182ffnd 6689 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘) Fn (0[,](𝑛 / 𝑁)))
237 0xr 11221 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
238237a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → 0 ∈ ℝ*)
239 ubicc2 13426 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ 0 ≤ (𝑛 / 𝑁)) → (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁)))
240238, 208, 142, 239syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁)))
241 fnressn 7130 . . . . . . . . . . . . . . 15 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) Fn (0[,](𝑛 / 𝑁)) ∧ (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁))) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩})
242236, 240, 241syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩})
243196ffnd 6689 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) Fn ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
244124rexrd 11224 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ((𝑛 + 1) / 𝑁) ∈ ℝ*)
245 lbicc2 13425 . . . . . . . . . . . . . . . 16 (((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁)) → (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
246208, 244, 147, 245syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
247 fnressn 7130 . . . . . . . . . . . . . . 15 (((𝑄‘(𝑛 + 1)) Fn ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∧ (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) → ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
248243, 246, 247syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
249235, 242, 2483eqtr4d 2774 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}))
250 df-icc 13313 . . . . . . . . . . . . . . . . 17 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
251 xrmaxle 13143 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ*𝑧 ∈ ℝ*) → (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0) ≤ 𝑧 ↔ (0 ≤ 𝑧 ∧ (𝑛 / 𝑁) ≤ 𝑧)))
252 xrlemin 13144 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ*) → (𝑧 ≤ if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁)) ↔ (𝑧 ≤ (𝑛 / 𝑁) ∧ 𝑧 ≤ ((𝑛 + 1) / 𝑁))))
253250, 251, 252ixxin 13323 . . . . . . . . . . . . . . . 16 (((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ*) ∧ ((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ*)) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))))
254238, 208, 208, 244, 253syl22anc 838 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))))
255142iftrued 4496 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0) = (𝑛 / 𝑁))
256147iftrued 4496 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁)) = (𝑛 / 𝑁))
257255, 256oveq12d 7405 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))) = ((𝑛 / 𝑁)[,](𝑛 / 𝑁)))
258 iccid 13351 . . . . . . . . . . . . . . . 16 ((𝑛 / 𝑁) ∈ ℝ* → ((𝑛 / 𝑁)[,](𝑛 / 𝑁)) = {(𝑛 / 𝑁)})
259208, 258syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ((𝑛 / 𝑁)[,](𝑛 / 𝑁)) = {(𝑛 / 𝑁)})
260254, 257, 2593eqtrd 2768 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = {(𝑛 / 𝑁)})
261260reseq2d 5950 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}))
262260reseq2d 5950 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}))
263249, 261, 2623eqtr4d 2774 . . . . . . . . . . . 12 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
264 fresaun 6731 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
265182, 196, 263, 264syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
266 fzsuc 13532 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
267198, 266syl 17 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
268267iuneq1d 4983 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) = 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘))
269 iunxun 5058 . . . . . . . . . . . . . 14 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘))
270 ovex 7420 . . . . . . . . . . . . . . . 16 (𝑛 + 1) ∈ V
271 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝑄𝑘) = (𝑄‘(𝑛 + 1)))
272270, 271iunxsn 5055 . . . . . . . . . . . . . . 15 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘) = (𝑄‘(𝑛 + 1))
273272uneq2i 4128 . . . . . . . . . . . . . 14 ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘)) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))
274269, 273eqtri 2752 . . . . . . . . . . . . 13 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))
275268, 274eqtr2di 2781 . . . . . . . . . . . 12 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) = 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘))
276275feq1d 6670 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵))
277265, 276mpbid 232 . . . . . . . . . 10 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
278170feq2d 6672 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘): (𝐿t (0[,]((𝑛 + 1) / 𝑁)))⟶𝐵))
279277, 278mpbid 232 . . . . . . . . 9 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘): (𝐿t (0[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
280275reseq1d 5949 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))))
281 fresaunres1 6733 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
282182, 196, 263, 281syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
283280, 282eqtr3d 2766 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
284167a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝐿 ∈ Top)
285 ovex 7420 . . . . . . . . . . . . 13 (0[,]((𝑛 + 1) / 𝑁)) ∈ V
286285a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) ∈ V)
287 restabs 23052 . . . . . . . . . . . 12 ((𝐿 ∈ Top ∧ (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)) ∧ (0[,]((𝑛 + 1) / 𝑁)) ∈ V) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
288284, 153, 286, 287syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
289288oveq1d 7402 . . . . . . . . . 10 ((𝜑𝜒) → (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
290173, 283, 2893eltr4d 2843 . . . . . . . . 9 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))) ∈ (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶))
29174, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183cvmliftlem8 35279 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
292119, 291syldan 591 . . . . . . . . . . 11 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
293194oveq2d 7403 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
294293oveq1d 7402 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) = ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
295292, 294eleqtrd 2830 . . . . . . . . . 10 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
296275reseq1d 5949 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
297 fresaunres2 6732 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
298182, 196, 263, 297syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
299296, 298eqtr3d 2766 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
300 restabs 23052 . . . . . . . . . . . 12 ((𝐿 ∈ Top ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)) ∧ (0[,]((𝑛 + 1) / 𝑁)) ∈ V) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
301284, 163, 286, 300syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
302301oveq1d 7402 . . . . . . . . . 10 ((𝜑𝜒) → (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) = ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
303295, 299, 3023eltr4d 2843 . . . . . . . . 9 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) ∈ (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
304115, 75, 158, 165, 170, 279, 290, 303paste 23181 . . . . . . . 8 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
305152reseq2d 5950 . . . . . . . . 9 ((𝜑𝜒) → (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
306172simprd 495 . . . . . . . . . . 11 ((𝜑𝜒) → (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))
307187simprd 495 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))))
308194reseq2d 5950 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
309307, 308eqtrd 2764 . . . . . . . . . . 11 ((𝜑𝜒) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
310306, 309uneq12d 4132 . . . . . . . . . 10 ((𝜑𝜒) → ((𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) ∪ (𝐹 ∘ (𝑄‘(𝑛 + 1)))) = ((𝐺 ↾ (0[,](𝑛 / 𝑁))) ∪ (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
311 coundi 6220 . . . . . . . . . 10 (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = ((𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) ∪ (𝐹 ∘ (𝑄‘(𝑛 + 1))))
312 resundi 5964 . . . . . . . . . 10 (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝐺 ↾ (0[,](𝑛 / 𝑁))) ∪ (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
313310, 311, 3123eqtr4g 2789 . . . . . . . . 9 ((𝜑𝜒) → (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
314275coeq2d 5826 . . . . . . . . 9 ((𝜑𝜒) → (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)))
315305, 313, 3143eqtr2rd 2771 . . . . . . . 8 ((𝜑𝜒) → (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))
316304, 315jca 511 . . . . . . 7 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
317114, 316sylan2br 595 . . . . . 6 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
318317expr 456 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))
319113, 318animpimp2impd 846 . . . 4 (𝑛 ∈ ℕ → ((𝜑 → (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) → (𝜑 → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))))
32027, 41, 55, 71, 106, 319nnind 12204 . . 3 (𝑁 ∈ ℕ → (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))))
3211, 320mpcom 38 . 2 (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))
3225, 321mpd 15 1 (𝜑 → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563  {csn 4589  cop 4595   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188   I cid 5532   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  ccom 5642  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  crio 7343  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  cz 12529  cuz 12793  (,)cioo 13306  [,]cicc 13309  ...cfz 13468  seqcseq 13966  t crest 17383  topGenctg 17400  Topctop 22780  Clsdccld 22903   Cn ccn 23111  Homeochmeo 23640  IIcii 24768   CovMap ccvm 35242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-cn 23114  df-hmeo 23642  df-ii 24770  df-cvm 35243
This theorem is referenced by:  cvmliftlem11  35282
  Copyright terms: Public domain W3C validator