Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem10 Structured version   Visualization version   GIF version

Theorem cvmliftlem10 35359
Description: Lemma for cvmlift 35364. The function 𝐾 is going to be our complete lifted path, formed by unioning together all the 𝑄 functions (each of which is defined on one segment [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] of the interval). Here we prove by induction that 𝐾 is a continuous function and a lift of 𝐺 by applying cvmliftlem6 35355, cvmliftlem7 35356 (to show it is a function and a lift), cvmliftlem8 35357 (to show it is continuous), and cvmliftlem9 35358 (to show that different 𝑄 functions agree on the intersection of their domains, so that the pasting lemma paste 23210 gives that 𝐾 is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem.k 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
cvmliftlem10.1 (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
Assertion
Ref Expression
cvmliftlem10 (𝜑 → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑛,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑛,𝐿,𝑧   𝑃,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑛,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝜒(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝑇(𝑛)   𝐽(𝑚)   𝐾(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑛,𝑠,𝑏)

Proof of Theorem cvmliftlem10
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cvmliftlem.n . . . 4 (𝜑𝑁 ∈ ℕ)
2 nnuz 12777 . . . 4 ℕ = (ℤ‘1)
31, 2eleqtrdi 2843 . . 3 (𝜑𝑁 ∈ (ℤ‘1))
4 eluzfz2 13434 . . 3 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
53, 4syl 17 . 2 (𝜑𝑁 ∈ (1...𝑁))
6 eleq1 2821 . . . . . 6 (𝑦 = 1 → (𝑦 ∈ (1...𝑁) ↔ 1 ∈ (1...𝑁)))
7 oveq2 7360 . . . . . . . . . . 11 (𝑦 = 1 → (1...𝑦) = (1...1))
8 1z 12508 . . . . . . . . . . . 12 1 ∈ ℤ
9 fzsn 13468 . . . . . . . . . . . 12 (1 ∈ ℤ → (1...1) = {1})
108, 9ax-mp 5 . . . . . . . . . . 11 (1...1) = {1}
117, 10eqtrdi 2784 . . . . . . . . . 10 (𝑦 = 1 → (1...𝑦) = {1})
1211iuneq1d 4969 . . . . . . . . 9 (𝑦 = 1 → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ {1} (𝑄𝑘))
13 1ex 11115 . . . . . . . . . 10 1 ∈ V
14 fveq2 6828 . . . . . . . . . 10 (𝑘 = 1 → (𝑄𝑘) = (𝑄‘1))
1513, 14iunxsn 5041 . . . . . . . . 9 𝑘 ∈ {1} (𝑄𝑘) = (𝑄‘1)
1612, 15eqtrdi 2784 . . . . . . . 8 (𝑦 = 1 → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = (𝑄‘1))
17 oveq1 7359 . . . . . . . . . . 11 (𝑦 = 1 → (𝑦 / 𝑁) = (1 / 𝑁))
1817oveq2d 7368 . . . . . . . . . 10 (𝑦 = 1 → (0[,](𝑦 / 𝑁)) = (0[,](1 / 𝑁)))
1918oveq2d 7368 . . . . . . . . 9 (𝑦 = 1 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](1 / 𝑁))))
2019oveq1d 7367 . . . . . . . 8 (𝑦 = 1 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
2116, 20eleq12d 2827 . . . . . . 7 (𝑦 = 1 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ (𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶)))
2216coeq2d 5806 . . . . . . . 8 (𝑦 = 1 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 ∘ (𝑄‘1)))
2318reseq2d 5932 . . . . . . . 8 (𝑦 = 1 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](1 / 𝑁))))
2422, 23eqeq12d 2749 . . . . . . 7 (𝑦 = 1 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))
2521, 24anbi12d 632 . . . . . 6 (𝑦 = 1 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))
266, 25imbi12d 344 . . . . 5 (𝑦 = 1 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))))
2726imbi2d 340 . . . 4 (𝑦 = 1 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))))
28 eleq1 2821 . . . . . 6 (𝑦 = 𝑛 → (𝑦 ∈ (1...𝑁) ↔ 𝑛 ∈ (1...𝑁)))
29 oveq2 7360 . . . . . . . . 9 (𝑦 = 𝑛 → (1...𝑦) = (1...𝑛))
3029iuneq1d 4969 . . . . . . . 8 (𝑦 = 𝑛 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
31 oveq1 7359 . . . . . . . . . . 11 (𝑦 = 𝑛 → (𝑦 / 𝑁) = (𝑛 / 𝑁))
3231oveq2d 7368 . . . . . . . . . 10 (𝑦 = 𝑛 → (0[,](𝑦 / 𝑁)) = (0[,](𝑛 / 𝑁)))
3332oveq2d 7368 . . . . . . . . 9 (𝑦 = 𝑛 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
3433oveq1d 7367 . . . . . . . 8 (𝑦 = 𝑛 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
3530, 34eleq12d 2827 . . . . . . 7 (𝑦 = 𝑛 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶)))
3630coeq2d 5806 . . . . . . . 8 (𝑦 = 𝑛 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)))
3732reseq2d 5932 . . . . . . . 8 (𝑦 = 𝑛 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))
3836, 37eqeq12d 2749 . . . . . . 7 (𝑦 = 𝑛 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
3935, 38anbi12d 632 . . . . . 6 (𝑦 = 𝑛 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
4028, 39imbi12d 344 . . . . 5 (𝑦 = 𝑛 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))))
4140imbi2d 340 . . . 4 (𝑦 = 𝑛 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))))
42 eleq1 2821 . . . . . 6 (𝑦 = (𝑛 + 1) → (𝑦 ∈ (1...𝑁) ↔ (𝑛 + 1) ∈ (1...𝑁)))
43 oveq2 7360 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (1...𝑦) = (1...(𝑛 + 1)))
4443iuneq1d 4969 . . . . . . . 8 (𝑦 = (𝑛 + 1) → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘))
45 oveq1 7359 . . . . . . . . . . 11 (𝑦 = (𝑛 + 1) → (𝑦 / 𝑁) = ((𝑛 + 1) / 𝑁))
4645oveq2d 7368 . . . . . . . . . 10 (𝑦 = (𝑛 + 1) → (0[,](𝑦 / 𝑁)) = (0[,]((𝑛 + 1) / 𝑁)))
4746oveq2d 7368 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
4847oveq1d 7367 . . . . . . . 8 (𝑦 = (𝑛 + 1) → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
4944, 48eleq12d 2827 . . . . . . 7 (𝑦 = (𝑛 + 1) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶)))
5044coeq2d 5806 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)))
5146reseq2d 5932 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))
5250, 51eqeq12d 2749 . . . . . . 7 (𝑦 = (𝑛 + 1) → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
5349, 52anbi12d 632 . . . . . 6 (𝑦 = (𝑛 + 1) → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))
5442, 53imbi12d 344 . . . . 5 (𝑦 = (𝑛 + 1) → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))))
5554imbi2d 340 . . . 4 (𝑦 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))))
56 eleq1 2821 . . . . . 6 (𝑦 = 𝑁 → (𝑦 ∈ (1...𝑁) ↔ 𝑁 ∈ (1...𝑁)))
57 oveq2 7360 . . . . . . . . . 10 (𝑦 = 𝑁 → (1...𝑦) = (1...𝑁))
5857iuneq1d 4969 . . . . . . . . 9 (𝑦 = 𝑁 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...𝑁)(𝑄𝑘))
59 cvmliftlem.k . . . . . . . . 9 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
6058, 59eqtr4di 2786 . . . . . . . 8 (𝑦 = 𝑁 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝐾)
61 oveq1 7359 . . . . . . . . . . 11 (𝑦 = 𝑁 → (𝑦 / 𝑁) = (𝑁 / 𝑁))
6261oveq2d 7368 . . . . . . . . . 10 (𝑦 = 𝑁 → (0[,](𝑦 / 𝑁)) = (0[,](𝑁 / 𝑁)))
6362oveq2d 7368 . . . . . . . . 9 (𝑦 = 𝑁 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](𝑁 / 𝑁))))
6463oveq1d 7367 . . . . . . . 8 (𝑦 = 𝑁 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶))
6560, 64eleq12d 2827 . . . . . . 7 (𝑦 = 𝑁 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶)))
6660coeq2d 5806 . . . . . . . 8 (𝑦 = 𝑁 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹𝐾))
6762reseq2d 5932 . . . . . . . 8 (𝑦 = 𝑁 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))
6866, 67eqeq12d 2749 . . . . . . 7 (𝑦 = 𝑁 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
6965, 68anbi12d 632 . . . . . 6 (𝑦 = 𝑁 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))
7056, 69imbi12d 344 . . . . 5 (𝑦 = 𝑁 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))))
7170imbi2d 340 . . . 4 (𝑦 = 𝑁 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))))
72 eluzfz1 13433 . . . . . . . . 9 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
733, 72syl 17 . . . . . . . 8 (𝜑 → 1 ∈ (1...𝑁))
74 cvmliftlem.1 . . . . . . . . 9 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
75 cvmliftlem.b . . . . . . . . 9 𝐵 = 𝐶
76 cvmliftlem.x . . . . . . . . 9 𝑋 = 𝐽
77 cvmliftlem.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
78 cvmliftlem.g . . . . . . . . 9 (𝜑𝐺 ∈ (II Cn 𝐽))
79 cvmliftlem.p . . . . . . . . 9 (𝜑𝑃𝐵)
80 cvmliftlem.e . . . . . . . . 9 (𝜑 → (𝐹𝑃) = (𝐺‘0))
81 cvmliftlem.t . . . . . . . . 9 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
82 cvmliftlem.a . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
83 cvmliftlem.l . . . . . . . . 9 𝐿 = (topGen‘ran (,))
84 cvmliftlem.q . . . . . . . . 9 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
85 eqid 2733 . . . . . . . . 9 (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (((1 − 1) / 𝑁)[,](1 / 𝑁))
8674, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85cvmliftlem8 35357 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → (𝑄‘1) ∈ ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶))
8773, 86mpdan 687 . . . . . . 7 (𝜑 → (𝑄‘1) ∈ ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶))
88 1m1e0 12204 . . . . . . . . . . . 12 (1 − 1) = 0
8988oveq1i 7362 . . . . . . . . . . 11 ((1 − 1) / 𝑁) = (0 / 𝑁)
901nncnd 12148 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
911nnne0d 12182 . . . . . . . . . . . 12 (𝜑𝑁 ≠ 0)
9290, 91div0d 11903 . . . . . . . . . . 11 (𝜑 → (0 / 𝑁) = 0)
9389, 92eqtrid 2780 . . . . . . . . . 10 (𝜑 → ((1 − 1) / 𝑁) = 0)
9493oveq1d 7367 . . . . . . . . 9 (𝜑 → (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (0[,](1 / 𝑁)))
9594oveq2d 7368 . . . . . . . 8 (𝜑 → (𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) = (𝐿t (0[,](1 / 𝑁))))
9695oveq1d 7367 . . . . . . 7 (𝜑 → ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
9787, 96eleqtrd 2835 . . . . . 6 (𝜑 → (𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
98 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ (1...𝑁)) → 1 ∈ (1...𝑁))
9974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85cvmliftlem7 35356 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((1 − 1) / 𝑁))}))
10074, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85, 98, 99cvmliftlem6 35355 . . . . . . . . 9 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
10173, 100mpdan 687 . . . . . . . 8 (𝜑 → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
102101simprd 495 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁))))
10394reseq2d 5932 . . . . . . 7 (𝜑 → (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁))) = (𝐺 ↾ (0[,](1 / 𝑁))))
104102, 103eqtrd 2768 . . . . . 6 (𝜑 → (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))
10597, 104jca 511 . . . . 5 (𝜑 → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))
106105a1d 25 . . . 4 (𝜑 → (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))
107 elnnuz 12778 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
108107biimpi 216 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
109108adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
110 peano2fzr 13439 . . . . . . . 8 ((𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑁)) → 𝑛 ∈ (1...𝑁))
111110ex 412 . . . . . . 7 (𝑛 ∈ (ℤ‘1) → ((𝑛 + 1) ∈ (1...𝑁) → 𝑛 ∈ (1...𝑁)))
112109, 111syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) ∈ (1...𝑁) → 𝑛 ∈ (1...𝑁)))
113112imim1d 82 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))) → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))))
114 cvmliftlem10.1 . . . . . . 7 (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
115 eqid 2733 . . . . . . . . 9 (𝐿t (0[,]((𝑛 + 1) / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁)))
116 0re 11121 . . . . . . . . . . 11 0 ∈ ℝ
117114simplbi 497 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)))
118117adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)))
119118simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (𝑛 + 1) ∈ (1...𝑁))
120 elfznn 13455 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (1...𝑁) → (𝑛 + 1) ∈ ℕ)
121119, 120syl 17 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑛 + 1) ∈ ℕ)
122121nnred 12147 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 + 1) ∈ ℝ)
1231adantr 480 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝑁 ∈ ℕ)
124122, 123nndivred 12186 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝑛 + 1) / 𝑁) ∈ ℝ)
125 iccssre 13331 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ)
126116, 124, 125sylancr 587 . . . . . . . . . 10 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ)
127117simpld 494 . . . . . . . . . . . . . . 15 (𝜒𝑛 ∈ ℕ)
128127adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑛 ∈ ℕ)
129128nnred 12147 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑛 ∈ ℝ)
130129, 123nndivred 12186 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ℝ)
131 icccld 24682 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (𝑛 / 𝑁) ∈ ℝ) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
132116, 130, 131sylancr 587 . . . . . . . . . . 11 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
13383fveq2i 6831 . . . . . . . . . . 11 (Clsd‘𝐿) = (Clsd‘(topGen‘ran (,)))
134132, 133eleqtrrdi 2844 . . . . . . . . . 10 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘𝐿))
135 ssun1 4127 . . . . . . . . . . 11 (0[,](𝑛 / 𝑁)) ⊆ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
136116a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → 0 ∈ ℝ)
137128nnnn0d 12449 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑛 ∈ ℕ0)
138137nn0ge0d 12452 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 0 ≤ 𝑛)
139123nnred 12147 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑁 ∈ ℝ)
140123nngt0d 12181 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 0 < 𝑁)
141 divge0 11998 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑛 / 𝑁))
142129, 138, 139, 140, 141syl22anc 838 . . . . . . . . . . . . 13 ((𝜑𝜒) → 0 ≤ (𝑛 / 𝑁))
143129ltp1d 12059 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑛 < (𝑛 + 1))
144 ltdiv1 11993 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
145129, 122, 139, 140, 144syl112anc 1376 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
146143, 145mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁))
147130, 124, 146ltled 11268 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))
148 elicc2 13313 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → ((𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)) ↔ ((𝑛 / 𝑁) ∈ ℝ ∧ 0 ≤ (𝑛 / 𝑁) ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))))
149116, 124, 148sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)) ↔ ((𝑛 / 𝑁) ∈ ℝ ∧ 0 ≤ (𝑛 / 𝑁) ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))))
150130, 142, 147, 149mpbir3and 1343 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)))
151 iccsplit 13387 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ ∧ (𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁))) → (0[,]((𝑛 + 1) / 𝑁)) = ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
152136, 124, 150, 151syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) = ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
153135, 152sseqtrrid 3974 . . . . . . . . . 10 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)))
154 uniretop 24678 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
15583unieqi 4870 . . . . . . . . . . . 12 𝐿 = (topGen‘ran (,))
156154, 155eqtr4i 2759 . . . . . . . . . . 11 ℝ = 𝐿
157156restcldi 23089 . . . . . . . . . 10 (((0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ ∧ (0[,](𝑛 / 𝑁)) ∈ (Clsd‘𝐿) ∧ (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁))) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
158126, 134, 153, 157syl3anc 1373 . . . . . . . . 9 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
159 icccld 24682 . . . . . . . . . . . 12 (((𝑛 / 𝑁) ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
160130, 124, 159syl2anc 584 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
161160, 133eleqtrrdi 2844 . . . . . . . . . 10 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘𝐿))
162 ssun2 4128 . . . . . . . . . . 11 ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
163162, 152sseqtrrid 3974 . . . . . . . . . 10 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)))
164156restcldi 23089 . . . . . . . . . 10 (((0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘𝐿) ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁))) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
165126, 161, 163, 164syl3anc 1373 . . . . . . . . 9 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
166 retop 24677 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ Top
16783, 166eqeltri 2829 . . . . . . . . . . 11 𝐿 ∈ Top
168156restuni 23078 . . . . . . . . . . 11 ((𝐿 ∈ Top ∧ (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ) → (0[,]((𝑛 + 1) / 𝑁)) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
169167, 126, 168sylancr 587 . . . . . . . . . 10 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
170152, 169eqtr3d 2770 . . . . . . . . 9 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
171114simprbi 496 . . . . . . . . . . . . . . . 16 (𝜒 → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
172171adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
173172simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
174 eqid 2733 . . . . . . . . . . . . . . 15 (𝐿t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁)))
175174, 75cnf 23162 . . . . . . . . . . . . . 14 ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) → 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵)
176173, 175syl 17 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵)
177 iccssre 13331 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (𝑛 / 𝑁) ∈ ℝ) → (0[,](𝑛 / 𝑁)) ⊆ ℝ)
178116, 130, 177sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ⊆ ℝ)
179156restuni 23078 . . . . . . . . . . . . . . 15 ((𝐿 ∈ Top ∧ (0[,](𝑛 / 𝑁)) ⊆ ℝ) → (0[,](𝑛 / 𝑁)) = (𝐿t (0[,](𝑛 / 𝑁))))
180167, 178, 179sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) = (𝐿t (0[,](𝑛 / 𝑁))))
181180feq2d 6640 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵))
182176, 181mpbird 257 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵)
183 eqid 2733 . . . . . . . . . . . . . . . 16 ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))
184 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → (𝑛 + 1) ∈ (1...𝑁))
18574, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183cvmliftlem7 35356 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}))
18674, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183, 184, 185cvmliftlem6 35355 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
187119, 186syldan 591 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
188187simpld 494 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
189128nncnd 12148 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → 𝑛 ∈ ℂ)
190 ax-1cn 11071 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
191 pncan 11373 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
192189, 190, 191sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ((𝑛 + 1) − 1) = 𝑛)
193192oveq1d 7367 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (((𝑛 + 1) − 1) / 𝑁) = (𝑛 / 𝑁))
194193oveq1d 7367 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
195194feq2d 6640 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ↔ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵))
196188, 195mpbid 232 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
197176ffund 6660 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → Fun 𝑘 ∈ (1...𝑛)(𝑄𝑘))
198128, 108syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → 𝑛 ∈ (ℤ‘1))
199 eluzfz2 13434 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ (1...𝑛))
200198, 199syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → 𝑛 ∈ (1...𝑛))
201 fveq2 6828 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (𝑄𝑘) = (𝑄𝑛))
202201ssiun2s 4999 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑛) → (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘))
203200, 202syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘))
204 peano2rem 11435 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
205129, 204syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → (𝑛 − 1) ∈ ℝ)
206205, 123nndivred 12186 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ∈ ℝ)
207206rexrd 11169 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ∈ ℝ*)
208130rexrd 11169 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ℝ*)
209129ltm1d 12061 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → (𝑛 − 1) < 𝑛)
210 ltdiv1 11993 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑛 − 1) < 𝑛 ↔ ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁)))
211205, 129, 139, 140, 210syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → ((𝑛 − 1) < 𝑛 ↔ ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁)))
212209, 211mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁))
213206, 130, 212ltled 11268 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ≤ (𝑛 / 𝑁))
214 ubicc2 13367 . . . . . . . . . . . . . . . . . . . 20 ((((𝑛 − 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 − 1) / 𝑁) ≤ (𝑛 / 𝑁)) → (𝑛 / 𝑁) ∈ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
215207, 208, 213, 214syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
216198, 119, 110syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → 𝑛 ∈ (1...𝑁))
217 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)) = (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))
218 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ (1...𝑁))
21974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 217cvmliftlem7 35356 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑄‘(𝑛 − 1))‘((𝑛 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 − 1) / 𝑁))}))
22074, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 217, 218, 219cvmliftlem6 35355 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄𝑛)) = (𝐺 ↾ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))))
221216, 220syldan 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄𝑛)) = (𝐺 ↾ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))))
222221simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → (𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵)
223222fdmd 6666 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → dom (𝑄𝑛) = (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
224215, 223eleqtrrd 2836 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ dom (𝑄𝑛))
225 funssfv 6849 . . . . . . . . . . . . . . . . . 18 ((Fun 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∧ (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∧ (𝑛 / 𝑁) ∈ dom (𝑄𝑛)) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
226197, 203, 224, 225syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
227192fveq2d 6832 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑄‘((𝑛 + 1) − 1)) = (𝑄𝑛))
228227, 193fveq12d 6835 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
22974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84cvmliftlem9 35358 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)))
230119, 229syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)))
231193fveq2d 6832 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
232230, 231eqtr3d 2770 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
233226, 228, 2323eqtr2d 2774 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
234233opeq2d 4831 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩ = ⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩)
235234sneqd 4587 . . . . . . . . . . . . . 14 ((𝜑𝜒) → {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩} = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
236182ffnd 6657 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘) Fn (0[,](𝑛 / 𝑁)))
237 0xr 11166 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
238237a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → 0 ∈ ℝ*)
239 ubicc2 13367 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ 0 ≤ (𝑛 / 𝑁)) → (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁)))
240238, 208, 142, 239syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁)))
241 fnressn 7097 . . . . . . . . . . . . . . 15 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) Fn (0[,](𝑛 / 𝑁)) ∧ (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁))) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩})
242236, 240, 241syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩})
243196ffnd 6657 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) Fn ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
244124rexrd 11169 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ((𝑛 + 1) / 𝑁) ∈ ℝ*)
245 lbicc2 13366 . . . . . . . . . . . . . . . 16 (((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁)) → (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
246208, 244, 147, 245syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
247 fnressn 7097 . . . . . . . . . . . . . . 15 (((𝑄‘(𝑛 + 1)) Fn ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∧ (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) → ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
248243, 246, 247syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
249235, 242, 2483eqtr4d 2778 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}))
250 df-icc 13254 . . . . . . . . . . . . . . . . 17 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
251 xrmaxle 13084 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ*𝑧 ∈ ℝ*) → (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0) ≤ 𝑧 ↔ (0 ≤ 𝑧 ∧ (𝑛 / 𝑁) ≤ 𝑧)))
252 xrlemin 13085 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ*) → (𝑧 ≤ if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁)) ↔ (𝑧 ≤ (𝑛 / 𝑁) ∧ 𝑧 ≤ ((𝑛 + 1) / 𝑁))))
253250, 251, 252ixxin 13264 . . . . . . . . . . . . . . . 16 (((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ*) ∧ ((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ*)) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))))
254238, 208, 208, 244, 253syl22anc 838 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))))
255142iftrued 4482 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0) = (𝑛 / 𝑁))
256147iftrued 4482 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁)) = (𝑛 / 𝑁))
257255, 256oveq12d 7370 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))) = ((𝑛 / 𝑁)[,](𝑛 / 𝑁)))
258 iccid 13292 . . . . . . . . . . . . . . . 16 ((𝑛 / 𝑁) ∈ ℝ* → ((𝑛 / 𝑁)[,](𝑛 / 𝑁)) = {(𝑛 / 𝑁)})
259208, 258syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ((𝑛 / 𝑁)[,](𝑛 / 𝑁)) = {(𝑛 / 𝑁)})
260254, 257, 2593eqtrd 2772 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = {(𝑛 / 𝑁)})
261260reseq2d 5932 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}))
262260reseq2d 5932 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}))
263249, 261, 2623eqtr4d 2778 . . . . . . . . . . . 12 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
264 fresaun 6699 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
265182, 196, 263, 264syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
266 fzsuc 13473 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
267198, 266syl 17 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
268267iuneq1d 4969 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) = 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘))
269 iunxun 5044 . . . . . . . . . . . . . 14 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘))
270 ovex 7385 . . . . . . . . . . . . . . . 16 (𝑛 + 1) ∈ V
271 fveq2 6828 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝑄𝑘) = (𝑄‘(𝑛 + 1)))
272270, 271iunxsn 5041 . . . . . . . . . . . . . . 15 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘) = (𝑄‘(𝑛 + 1))
273272uneq2i 4114 . . . . . . . . . . . . . 14 ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘)) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))
274269, 273eqtri 2756 . . . . . . . . . . . . 13 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))
275268, 274eqtr2di 2785 . . . . . . . . . . . 12 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) = 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘))
276275feq1d 6638 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵))
277265, 276mpbid 232 . . . . . . . . . 10 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
278170feq2d 6640 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘): (𝐿t (0[,]((𝑛 + 1) / 𝑁)))⟶𝐵))
279277, 278mpbid 232 . . . . . . . . 9 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘): (𝐿t (0[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
280275reseq1d 5931 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))))
281 fresaunres1 6701 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
282182, 196, 263, 281syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
283280, 282eqtr3d 2770 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
284167a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝐿 ∈ Top)
285 ovex 7385 . . . . . . . . . . . . 13 (0[,]((𝑛 + 1) / 𝑁)) ∈ V
286285a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) ∈ V)
287 restabs 23081 . . . . . . . . . . . 12 ((𝐿 ∈ Top ∧ (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)) ∧ (0[,]((𝑛 + 1) / 𝑁)) ∈ V) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
288284, 153, 286, 287syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
289288oveq1d 7367 . . . . . . . . . 10 ((𝜑𝜒) → (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
290173, 283, 2893eltr4d 2848 . . . . . . . . 9 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))) ∈ (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶))
29174, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183cvmliftlem8 35357 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
292119, 291syldan 591 . . . . . . . . . . 11 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
293194oveq2d 7368 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
294293oveq1d 7367 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) = ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
295292, 294eleqtrd 2835 . . . . . . . . . 10 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
296275reseq1d 5931 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
297 fresaunres2 6700 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
298182, 196, 263, 297syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
299296, 298eqtr3d 2770 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
300 restabs 23081 . . . . . . . . . . . 12 ((𝐿 ∈ Top ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)) ∧ (0[,]((𝑛 + 1) / 𝑁)) ∈ V) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
301284, 163, 286, 300syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
302301oveq1d 7367 . . . . . . . . . 10 ((𝜑𝜒) → (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) = ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
303295, 299, 3023eltr4d 2848 . . . . . . . . 9 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) ∈ (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
304115, 75, 158, 165, 170, 279, 290, 303paste 23210 . . . . . . . 8 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
305152reseq2d 5932 . . . . . . . . 9 ((𝜑𝜒) → (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
306172simprd 495 . . . . . . . . . . 11 ((𝜑𝜒) → (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))
307187simprd 495 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))))
308194reseq2d 5932 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
309307, 308eqtrd 2768 . . . . . . . . . . 11 ((𝜑𝜒) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
310306, 309uneq12d 4118 . . . . . . . . . 10 ((𝜑𝜒) → ((𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) ∪ (𝐹 ∘ (𝑄‘(𝑛 + 1)))) = ((𝐺 ↾ (0[,](𝑛 / 𝑁))) ∪ (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
311 coundi 6199 . . . . . . . . . 10 (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = ((𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) ∪ (𝐹 ∘ (𝑄‘(𝑛 + 1))))
312 resundi 5946 . . . . . . . . . 10 (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝐺 ↾ (0[,](𝑛 / 𝑁))) ∪ (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
313310, 311, 3123eqtr4g 2793 . . . . . . . . 9 ((𝜑𝜒) → (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
314275coeq2d 5806 . . . . . . . . 9 ((𝜑𝜒) → (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)))
315305, 313, 3143eqtr2rd 2775 . . . . . . . 8 ((𝜑𝜒) → (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))
316304, 315jca 511 . . . . . . 7 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
317114, 316sylan2br 595 . . . . . 6 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
318317expr 456 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))
319113, 318animpimp2impd 846 . . . 4 (𝑛 ∈ ℕ → ((𝜑 → (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) → (𝜑 → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))))
32027, 41, 55, 71, 106, 319nnind 12150 . . 3 (𝑁 ∈ ℕ → (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))))
3211, 320mpcom 38 . 2 (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))
3225, 321mpd 15 1 (𝜑 → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282  ifcif 4474  𝒫 cpw 4549  {csn 4575  cop 4581   cuni 4858   ciun 4941   class class class wbr 5093  cmpt 5174   I cid 5513   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  ccom 5623  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  crio 7308  (class class class)co 7352  cmpo 7354  1st c1st 7925  2nd c2nd 7926  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016  *cxr 11152   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  cn 12132  cz 12475  cuz 12738  (,)cioo 13247  [,]cicc 13250  ...cfz 13409  seqcseq 13910  t crest 17326  topGenctg 17343  Topctop 22809  Clsdccld 22932   Cn ccn 23140  Homeochmeo 23669  IIcii 24796   CovMap ccvm 35320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9302  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-icc 13254  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-rest 17328  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-top 22810  df-topon 22827  df-bases 22862  df-cld 22935  df-cn 23143  df-hmeo 23671  df-ii 24798  df-cvm 35321
This theorem is referenced by:  cvmliftlem11  35360
  Copyright terms: Public domain W3C validator