Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem10 Structured version   Visualization version   GIF version

Theorem cvmliftlem10 32438
Description: Lemma for cvmlift 32443. The function 𝐾 is going to be our complete lifted path, formed by unioning together all the 𝑄 functions (each of which is defined on one segment [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] of the interval). Here we prove by induction that 𝐾 is a continuous function and a lift of 𝐺 by applying cvmliftlem6 32434, cvmliftlem7 32435 (to show it is a function and a lift), cvmliftlem8 32436 (to show it is continuous), and cvmliftlem9 32437 (to show that different 𝑄 functions agree on the intersection of their domains, so that the pasting lemma paste 21830 gives that 𝐾 is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem.k 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
cvmliftlem10.1 (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
Assertion
Ref Expression
cvmliftlem10 (𝜑 → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑛,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑛,𝐿,𝑧   𝑃,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑛,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝜒(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝑇(𝑛)   𝐽(𝑚)   𝐾(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑛,𝑠,𝑏)

Proof of Theorem cvmliftlem10
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cvmliftlem.n . . . 4 (𝜑𝑁 ∈ ℕ)
2 nnuz 12269 . . . 4 ℕ = (ℤ‘1)
31, 2eleqtrdi 2920 . . 3 (𝜑𝑁 ∈ (ℤ‘1))
4 eluzfz2 12903 . . 3 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
53, 4syl 17 . 2 (𝜑𝑁 ∈ (1...𝑁))
6 eleq1 2897 . . . . . 6 (𝑦 = 1 → (𝑦 ∈ (1...𝑁) ↔ 1 ∈ (1...𝑁)))
7 oveq2 7153 . . . . . . . . . . 11 (𝑦 = 1 → (1...𝑦) = (1...1))
8 1z 12000 . . . . . . . . . . . 12 1 ∈ ℤ
9 fzsn 12937 . . . . . . . . . . . 12 (1 ∈ ℤ → (1...1) = {1})
108, 9ax-mp 5 . . . . . . . . . . 11 (1...1) = {1}
117, 10syl6eq 2869 . . . . . . . . . 10 (𝑦 = 1 → (1...𝑦) = {1})
1211iuneq1d 4937 . . . . . . . . 9 (𝑦 = 1 → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ {1} (𝑄𝑘))
13 1ex 10625 . . . . . . . . . 10 1 ∈ V
14 fveq2 6663 . . . . . . . . . 10 (𝑘 = 1 → (𝑄𝑘) = (𝑄‘1))
1513, 14iunxsn 5004 . . . . . . . . 9 𝑘 ∈ {1} (𝑄𝑘) = (𝑄‘1)
1612, 15syl6eq 2869 . . . . . . . 8 (𝑦 = 1 → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = (𝑄‘1))
17 oveq1 7152 . . . . . . . . . . 11 (𝑦 = 1 → (𝑦 / 𝑁) = (1 / 𝑁))
1817oveq2d 7161 . . . . . . . . . 10 (𝑦 = 1 → (0[,](𝑦 / 𝑁)) = (0[,](1 / 𝑁)))
1918oveq2d 7161 . . . . . . . . 9 (𝑦 = 1 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](1 / 𝑁))))
2019oveq1d 7160 . . . . . . . 8 (𝑦 = 1 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
2116, 20eleq12d 2904 . . . . . . 7 (𝑦 = 1 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ (𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶)))
2216coeq2d 5726 . . . . . . . 8 (𝑦 = 1 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 ∘ (𝑄‘1)))
2318reseq2d 5846 . . . . . . . 8 (𝑦 = 1 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](1 / 𝑁))))
2422, 23eqeq12d 2834 . . . . . . 7 (𝑦 = 1 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))
2521, 24anbi12d 630 . . . . . 6 (𝑦 = 1 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))
266, 25imbi12d 346 . . . . 5 (𝑦 = 1 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))))
2726imbi2d 342 . . . 4 (𝑦 = 1 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))))
28 eleq1 2897 . . . . . 6 (𝑦 = 𝑛 → (𝑦 ∈ (1...𝑁) ↔ 𝑛 ∈ (1...𝑁)))
29 oveq2 7153 . . . . . . . . 9 (𝑦 = 𝑛 → (1...𝑦) = (1...𝑛))
3029iuneq1d 4937 . . . . . . . 8 (𝑦 = 𝑛 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
31 oveq1 7152 . . . . . . . . . . 11 (𝑦 = 𝑛 → (𝑦 / 𝑁) = (𝑛 / 𝑁))
3231oveq2d 7161 . . . . . . . . . 10 (𝑦 = 𝑛 → (0[,](𝑦 / 𝑁)) = (0[,](𝑛 / 𝑁)))
3332oveq2d 7161 . . . . . . . . 9 (𝑦 = 𝑛 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
3433oveq1d 7160 . . . . . . . 8 (𝑦 = 𝑛 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
3530, 34eleq12d 2904 . . . . . . 7 (𝑦 = 𝑛 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶)))
3630coeq2d 5726 . . . . . . . 8 (𝑦 = 𝑛 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)))
3732reseq2d 5846 . . . . . . . 8 (𝑦 = 𝑛 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))
3836, 37eqeq12d 2834 . . . . . . 7 (𝑦 = 𝑛 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
3935, 38anbi12d 630 . . . . . 6 (𝑦 = 𝑛 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
4028, 39imbi12d 346 . . . . 5 (𝑦 = 𝑛 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))))
4140imbi2d 342 . . . 4 (𝑦 = 𝑛 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))))
42 eleq1 2897 . . . . . 6 (𝑦 = (𝑛 + 1) → (𝑦 ∈ (1...𝑁) ↔ (𝑛 + 1) ∈ (1...𝑁)))
43 oveq2 7153 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (1...𝑦) = (1...(𝑛 + 1)))
4443iuneq1d 4937 . . . . . . . 8 (𝑦 = (𝑛 + 1) → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘))
45 oveq1 7152 . . . . . . . . . . 11 (𝑦 = (𝑛 + 1) → (𝑦 / 𝑁) = ((𝑛 + 1) / 𝑁))
4645oveq2d 7161 . . . . . . . . . 10 (𝑦 = (𝑛 + 1) → (0[,](𝑦 / 𝑁)) = (0[,]((𝑛 + 1) / 𝑁)))
4746oveq2d 7161 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
4847oveq1d 7160 . . . . . . . 8 (𝑦 = (𝑛 + 1) → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
4944, 48eleq12d 2904 . . . . . . 7 (𝑦 = (𝑛 + 1) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶)))
5044coeq2d 5726 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)))
5146reseq2d 5846 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))
5250, 51eqeq12d 2834 . . . . . . 7 (𝑦 = (𝑛 + 1) → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
5349, 52anbi12d 630 . . . . . 6 (𝑦 = (𝑛 + 1) → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))
5442, 53imbi12d 346 . . . . 5 (𝑦 = (𝑛 + 1) → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))))
5554imbi2d 342 . . . 4 (𝑦 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))))
56 eleq1 2897 . . . . . 6 (𝑦 = 𝑁 → (𝑦 ∈ (1...𝑁) ↔ 𝑁 ∈ (1...𝑁)))
57 oveq2 7153 . . . . . . . . . 10 (𝑦 = 𝑁 → (1...𝑦) = (1...𝑁))
5857iuneq1d 4937 . . . . . . . . 9 (𝑦 = 𝑁 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...𝑁)(𝑄𝑘))
59 cvmliftlem.k . . . . . . . . 9 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
6058, 59syl6eqr 2871 . . . . . . . 8 (𝑦 = 𝑁 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝐾)
61 oveq1 7152 . . . . . . . . . . 11 (𝑦 = 𝑁 → (𝑦 / 𝑁) = (𝑁 / 𝑁))
6261oveq2d 7161 . . . . . . . . . 10 (𝑦 = 𝑁 → (0[,](𝑦 / 𝑁)) = (0[,](𝑁 / 𝑁)))
6362oveq2d 7161 . . . . . . . . 9 (𝑦 = 𝑁 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](𝑁 / 𝑁))))
6463oveq1d 7160 . . . . . . . 8 (𝑦 = 𝑁 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶))
6560, 64eleq12d 2904 . . . . . . 7 (𝑦 = 𝑁 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶)))
6660coeq2d 5726 . . . . . . . 8 (𝑦 = 𝑁 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹𝐾))
6762reseq2d 5846 . . . . . . . 8 (𝑦 = 𝑁 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))
6866, 67eqeq12d 2834 . . . . . . 7 (𝑦 = 𝑁 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
6965, 68anbi12d 630 . . . . . 6 (𝑦 = 𝑁 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))
7056, 69imbi12d 346 . . . . 5 (𝑦 = 𝑁 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))))
7170imbi2d 342 . . . 4 (𝑦 = 𝑁 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))))
72 eluzfz1 12902 . . . . . . . . 9 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
733, 72syl 17 . . . . . . . 8 (𝜑 → 1 ∈ (1...𝑁))
74 cvmliftlem.1 . . . . . . . . 9 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
75 cvmliftlem.b . . . . . . . . 9 𝐵 = 𝐶
76 cvmliftlem.x . . . . . . . . 9 𝑋 = 𝐽
77 cvmliftlem.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
78 cvmliftlem.g . . . . . . . . 9 (𝜑𝐺 ∈ (II Cn 𝐽))
79 cvmliftlem.p . . . . . . . . 9 (𝜑𝑃𝐵)
80 cvmliftlem.e . . . . . . . . 9 (𝜑 → (𝐹𝑃) = (𝐺‘0))
81 cvmliftlem.t . . . . . . . . 9 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
82 cvmliftlem.a . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
83 cvmliftlem.l . . . . . . . . 9 𝐿 = (topGen‘ran (,))
84 cvmliftlem.q . . . . . . . . 9 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
85 eqid 2818 . . . . . . . . 9 (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (((1 − 1) / 𝑁)[,](1 / 𝑁))
8674, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85cvmliftlem8 32436 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → (𝑄‘1) ∈ ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶))
8773, 86mpdan 683 . . . . . . 7 (𝜑 → (𝑄‘1) ∈ ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶))
88 1m1e0 11697 . . . . . . . . . . . 12 (1 − 1) = 0
8988oveq1i 7155 . . . . . . . . . . 11 ((1 − 1) / 𝑁) = (0 / 𝑁)
901nncnd 11642 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
911nnne0d 11675 . . . . . . . . . . . 12 (𝜑𝑁 ≠ 0)
9290, 91div0d 11403 . . . . . . . . . . 11 (𝜑 → (0 / 𝑁) = 0)
9389, 92syl5eq 2865 . . . . . . . . . 10 (𝜑 → ((1 − 1) / 𝑁) = 0)
9493oveq1d 7160 . . . . . . . . 9 (𝜑 → (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (0[,](1 / 𝑁)))
9594oveq2d 7161 . . . . . . . 8 (𝜑 → (𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) = (𝐿t (0[,](1 / 𝑁))))
9695oveq1d 7160 . . . . . . 7 (𝜑 → ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
9787, 96eleqtrd 2912 . . . . . 6 (𝜑 → (𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
98 simpr 485 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ (1...𝑁)) → 1 ∈ (1...𝑁))
9974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85cvmliftlem7 32435 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((1 − 1) / 𝑁))}))
10074, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85, 98, 99cvmliftlem6 32434 . . . . . . . . 9 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
10173, 100mpdan 683 . . . . . . . 8 (𝜑 → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
102101simprd 496 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁))))
10394reseq2d 5846 . . . . . . 7 (𝜑 → (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁))) = (𝐺 ↾ (0[,](1 / 𝑁))))
104102, 103eqtrd 2853 . . . . . 6 (𝜑 → (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))
10597, 104jca 512 . . . . 5 (𝜑 → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))
106105a1d 25 . . . 4 (𝜑 → (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))
107 elnnuz 12270 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
108107biimpi 217 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
109108adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
110 peano2fzr 12908 . . . . . . . 8 ((𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑁)) → 𝑛 ∈ (1...𝑁))
111110ex 413 . . . . . . 7 (𝑛 ∈ (ℤ‘1) → ((𝑛 + 1) ∈ (1...𝑁) → 𝑛 ∈ (1...𝑁)))
112109, 111syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) ∈ (1...𝑁) → 𝑛 ∈ (1...𝑁)))
113112imim1d 82 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))) → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))))
114 cvmliftlem10.1 . . . . . . 7 (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
115 eqid 2818 . . . . . . . . 9 (𝐿t (0[,]((𝑛 + 1) / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁)))
116 0re 10631 . . . . . . . . . . 11 0 ∈ ℝ
117114simplbi 498 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)))
118117adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)))
119118simprd 496 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (𝑛 + 1) ∈ (1...𝑁))
120 elfznn 12924 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (1...𝑁) → (𝑛 + 1) ∈ ℕ)
121119, 120syl 17 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑛 + 1) ∈ ℕ)
122121nnred 11641 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 + 1) ∈ ℝ)
1231adantr 481 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝑁 ∈ ℕ)
124122, 123nndivred 11679 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝑛 + 1) / 𝑁) ∈ ℝ)
125 iccssre 12806 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ)
126116, 124, 125sylancr 587 . . . . . . . . . 10 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ)
127117simpld 495 . . . . . . . . . . . . . . 15 (𝜒𝑛 ∈ ℕ)
128127adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑛 ∈ ℕ)
129128nnred 11641 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑛 ∈ ℝ)
130129, 123nndivred 11679 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ℝ)
131 icccld 23302 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (𝑛 / 𝑁) ∈ ℝ) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
132116, 130, 131sylancr 587 . . . . . . . . . . 11 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
13383fveq2i 6666 . . . . . . . . . . 11 (Clsd‘𝐿) = (Clsd‘(topGen‘ran (,)))
134132, 133eleqtrrdi 2921 . . . . . . . . . 10 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘𝐿))
135 ssun1 4145 . . . . . . . . . . 11 (0[,](𝑛 / 𝑁)) ⊆ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
136116a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → 0 ∈ ℝ)
137128nnnn0d 11943 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑛 ∈ ℕ0)
138137nn0ge0d 11946 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 0 ≤ 𝑛)
139123nnred 11641 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑁 ∈ ℝ)
140123nngt0d 11674 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 0 < 𝑁)
141 divge0 11497 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑛 / 𝑁))
142129, 138, 139, 140, 141syl22anc 834 . . . . . . . . . . . . 13 ((𝜑𝜒) → 0 ≤ (𝑛 / 𝑁))
143129ltp1d 11558 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑛 < (𝑛 + 1))
144 ltdiv1 11492 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
145129, 122, 139, 140, 144syl112anc 1366 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
146143, 145mpbid 233 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁))
147130, 124, 146ltled 10776 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))
148 elicc2 12789 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → ((𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)) ↔ ((𝑛 / 𝑁) ∈ ℝ ∧ 0 ≤ (𝑛 / 𝑁) ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))))
149116, 124, 148sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)) ↔ ((𝑛 / 𝑁) ∈ ℝ ∧ 0 ≤ (𝑛 / 𝑁) ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))))
150130, 142, 147, 149mpbir3and 1334 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)))
151 iccsplit 12859 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ ∧ (𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁))) → (0[,]((𝑛 + 1) / 𝑁)) = ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
152136, 124, 150, 151syl3anc 1363 . . . . . . . . . . 11 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) = ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
153135, 152sseqtrrid 4017 . . . . . . . . . 10 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)))
154 uniretop 23298 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
15583unieqi 4839 . . . . . . . . . . . 12 𝐿 = (topGen‘ran (,))
156154, 155eqtr4i 2844 . . . . . . . . . . 11 ℝ = 𝐿
157156restcldi 21709 . . . . . . . . . 10 (((0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ ∧ (0[,](𝑛 / 𝑁)) ∈ (Clsd‘𝐿) ∧ (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁))) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
158126, 134, 153, 157syl3anc 1363 . . . . . . . . 9 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
159 icccld 23302 . . . . . . . . . . . 12 (((𝑛 / 𝑁) ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
160130, 124, 159syl2anc 584 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
161160, 133eleqtrrdi 2921 . . . . . . . . . 10 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘𝐿))
162 ssun2 4146 . . . . . . . . . . 11 ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
163162, 152sseqtrrid 4017 . . . . . . . . . 10 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)))
164156restcldi 21709 . . . . . . . . . 10 (((0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘𝐿) ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁))) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
165126, 161, 163, 164syl3anc 1363 . . . . . . . . 9 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
166 retop 23297 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ Top
16783, 166eqeltri 2906 . . . . . . . . . . 11 𝐿 ∈ Top
168156restuni 21698 . . . . . . . . . . 11 ((𝐿 ∈ Top ∧ (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ) → (0[,]((𝑛 + 1) / 𝑁)) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
169167, 126, 168sylancr 587 . . . . . . . . . 10 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
170152, 169eqtr3d 2855 . . . . . . . . 9 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
171114simprbi 497 . . . . . . . . . . . . . . . 16 (𝜒 → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
172171adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
173172simpld 495 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
174 eqid 2818 . . . . . . . . . . . . . . 15 (𝐿t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁)))
175174, 75cnf 21782 . . . . . . . . . . . . . 14 ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) → 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵)
176173, 175syl 17 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵)
177 iccssre 12806 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (𝑛 / 𝑁) ∈ ℝ) → (0[,](𝑛 / 𝑁)) ⊆ ℝ)
178116, 130, 177sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ⊆ ℝ)
179156restuni 21698 . . . . . . . . . . . . . . 15 ((𝐿 ∈ Top ∧ (0[,](𝑛 / 𝑁)) ⊆ ℝ) → (0[,](𝑛 / 𝑁)) = (𝐿t (0[,](𝑛 / 𝑁))))
180167, 178, 179sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) = (𝐿t (0[,](𝑛 / 𝑁))))
181180feq2d 6493 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵))
182176, 181mpbird 258 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵)
183 eqid 2818 . . . . . . . . . . . . . . . 16 ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))
184 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → (𝑛 + 1) ∈ (1...𝑁))
18574, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183cvmliftlem7 32435 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}))
18674, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183, 184, 185cvmliftlem6 32434 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
187119, 186syldan 591 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
188187simpld 495 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
189128nncnd 11642 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → 𝑛 ∈ ℂ)
190 ax-1cn 10583 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
191 pncan 10880 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
192189, 190, 191sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ((𝑛 + 1) − 1) = 𝑛)
193192oveq1d 7160 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (((𝑛 + 1) − 1) / 𝑁) = (𝑛 / 𝑁))
194193oveq1d 7160 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
195194feq2d 6493 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ↔ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵))
196188, 195mpbid 233 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
197176ffund 6511 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → Fun 𝑘 ∈ (1...𝑛)(𝑄𝑘))
198128, 108syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → 𝑛 ∈ (ℤ‘1))
199 eluzfz2 12903 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ (1...𝑛))
200198, 199syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → 𝑛 ∈ (1...𝑛))
201 fveq2 6663 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (𝑄𝑘) = (𝑄𝑛))
202201ssiun2s 4963 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑛) → (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘))
203200, 202syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘))
204 peano2rem 10941 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
205129, 204syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → (𝑛 − 1) ∈ ℝ)
206205, 123nndivred 11679 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ∈ ℝ)
207206rexrd 10679 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ∈ ℝ*)
208130rexrd 10679 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ℝ*)
209129ltm1d 11560 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → (𝑛 − 1) < 𝑛)
210 ltdiv1 11492 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑛 − 1) < 𝑛 ↔ ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁)))
211205, 129, 139, 140, 210syl112anc 1366 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → ((𝑛 − 1) < 𝑛 ↔ ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁)))
212209, 211mpbid 233 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁))
213206, 130, 212ltled 10776 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ≤ (𝑛 / 𝑁))
214 ubicc2 12841 . . . . . . . . . . . . . . . . . . . 20 ((((𝑛 − 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 − 1) / 𝑁) ≤ (𝑛 / 𝑁)) → (𝑛 / 𝑁) ∈ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
215207, 208, 213, 214syl3anc 1363 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
216198, 119, 110syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → 𝑛 ∈ (1...𝑁))
217 eqid 2818 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)) = (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))
218 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ (1...𝑁))
21974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 217cvmliftlem7 32435 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑄‘(𝑛 − 1))‘((𝑛 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 − 1) / 𝑁))}))
22074, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 217, 218, 219cvmliftlem6 32434 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄𝑛)) = (𝐺 ↾ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))))
221216, 220syldan 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄𝑛)) = (𝐺 ↾ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))))
222221simpld 495 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → (𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵)
223222fdmd 6516 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → dom (𝑄𝑛) = (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
224215, 223eleqtrrd 2913 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ dom (𝑄𝑛))
225 funssfv 6684 . . . . . . . . . . . . . . . . . 18 ((Fun 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∧ (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∧ (𝑛 / 𝑁) ∈ dom (𝑄𝑛)) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
226197, 203, 224, 225syl3anc 1363 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
227192fveq2d 6667 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑄‘((𝑛 + 1) − 1)) = (𝑄𝑛))
228227, 193fveq12d 6670 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
22974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84cvmliftlem9 32437 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)))
230119, 229syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)))
231193fveq2d 6667 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
232230, 231eqtr3d 2855 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
233226, 228, 2323eqtr2d 2859 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
234233opeq2d 4802 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩ = ⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩)
235234sneqd 4569 . . . . . . . . . . . . . 14 ((𝜑𝜒) → {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩} = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
236182ffnd 6508 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘) Fn (0[,](𝑛 / 𝑁)))
237 0xr 10676 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
238237a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → 0 ∈ ℝ*)
239 ubicc2 12841 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ 0 ≤ (𝑛 / 𝑁)) → (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁)))
240238, 208, 142, 239syl3anc 1363 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁)))
241 fnressn 6912 . . . . . . . . . . . . . . 15 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) Fn (0[,](𝑛 / 𝑁)) ∧ (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁))) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩})
242236, 240, 241syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩})
243196ffnd 6508 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) Fn ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
244124rexrd 10679 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ((𝑛 + 1) / 𝑁) ∈ ℝ*)
245 lbicc2 12840 . . . . . . . . . . . . . . . 16 (((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁)) → (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
246208, 244, 147, 245syl3anc 1363 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
247 fnressn 6912 . . . . . . . . . . . . . . 15 (((𝑄‘(𝑛 + 1)) Fn ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∧ (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) → ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
248243, 246, 247syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
249235, 242, 2483eqtr4d 2863 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}))
250 df-icc 12733 . . . . . . . . . . . . . . . . 17 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
251 xrmaxle 12564 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ*𝑧 ∈ ℝ*) → (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0) ≤ 𝑧 ↔ (0 ≤ 𝑧 ∧ (𝑛 / 𝑁) ≤ 𝑧)))
252 xrlemin 12565 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ*) → (𝑧 ≤ if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁)) ↔ (𝑧 ≤ (𝑛 / 𝑁) ∧ 𝑧 ≤ ((𝑛 + 1) / 𝑁))))
253250, 251, 252ixxin 12743 . . . . . . . . . . . . . . . 16 (((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ*) ∧ ((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ*)) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))))
254238, 208, 208, 244, 253syl22anc 834 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))))
255142iftrued 4471 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0) = (𝑛 / 𝑁))
256147iftrued 4471 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁)) = (𝑛 / 𝑁))
257255, 256oveq12d 7163 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))) = ((𝑛 / 𝑁)[,](𝑛 / 𝑁)))
258 iccid 12771 . . . . . . . . . . . . . . . 16 ((𝑛 / 𝑁) ∈ ℝ* → ((𝑛 / 𝑁)[,](𝑛 / 𝑁)) = {(𝑛 / 𝑁)})
259208, 258syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ((𝑛 / 𝑁)[,](𝑛 / 𝑁)) = {(𝑛 / 𝑁)})
260254, 257, 2593eqtrd 2857 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = {(𝑛 / 𝑁)})
261260reseq2d 5846 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}))
262260reseq2d 5846 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}))
263249, 261, 2623eqtr4d 2863 . . . . . . . . . . . 12 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
264 fresaun 6542 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
265182, 196, 263, 264syl3anc 1363 . . . . . . . . . . 11 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
266 fzsuc 12942 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
267198, 266syl 17 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
268267iuneq1d 4937 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) = 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘))
269 iunxun 5007 . . . . . . . . . . . . . 14 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘))
270 ovex 7178 . . . . . . . . . . . . . . . 16 (𝑛 + 1) ∈ V
271 fveq2 6663 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝑄𝑘) = (𝑄‘(𝑛 + 1)))
272270, 271iunxsn 5004 . . . . . . . . . . . . . . 15 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘) = (𝑄‘(𝑛 + 1))
273272uneq2i 4133 . . . . . . . . . . . . . 14 ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘)) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))
274269, 273eqtri 2841 . . . . . . . . . . . . 13 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))
275268, 274syl6req 2870 . . . . . . . . . . . 12 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) = 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘))
276275feq1d 6492 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵))
277265, 276mpbid 233 . . . . . . . . . 10 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
278170feq2d 6493 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘): (𝐿t (0[,]((𝑛 + 1) / 𝑁)))⟶𝐵))
279277, 278mpbid 233 . . . . . . . . 9 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘): (𝐿t (0[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
280275reseq1d 5845 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))))
281 fresaunres1 6544 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
282182, 196, 263, 281syl3anc 1363 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
283280, 282eqtr3d 2855 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
284167a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝐿 ∈ Top)
285 ovex 7178 . . . . . . . . . . . . 13 (0[,]((𝑛 + 1) / 𝑁)) ∈ V
286285a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) ∈ V)
287 restabs 21701 . . . . . . . . . . . 12 ((𝐿 ∈ Top ∧ (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)) ∧ (0[,]((𝑛 + 1) / 𝑁)) ∈ V) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
288284, 153, 286, 287syl3anc 1363 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
289288oveq1d 7160 . . . . . . . . . 10 ((𝜑𝜒) → (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
290173, 283, 2893eltr4d 2925 . . . . . . . . 9 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))) ∈ (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶))
29174, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183cvmliftlem8 32436 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
292119, 291syldan 591 . . . . . . . . . . 11 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
293194oveq2d 7161 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
294293oveq1d 7160 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) = ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
295292, 294eleqtrd 2912 . . . . . . . . . 10 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
296275reseq1d 5845 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
297 fresaunres2 6543 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
298182, 196, 263, 297syl3anc 1363 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
299296, 298eqtr3d 2855 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
300 restabs 21701 . . . . . . . . . . . 12 ((𝐿 ∈ Top ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)) ∧ (0[,]((𝑛 + 1) / 𝑁)) ∈ V) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
301284, 163, 286, 300syl3anc 1363 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
302301oveq1d 7160 . . . . . . . . . 10 ((𝜑𝜒) → (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) = ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
303295, 299, 3023eltr4d 2925 . . . . . . . . 9 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) ∈ (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
304115, 75, 158, 165, 170, 279, 290, 303paste 21830 . . . . . . . 8 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
305152reseq2d 5846 . . . . . . . . 9 ((𝜑𝜒) → (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
306172simprd 496 . . . . . . . . . . 11 ((𝜑𝜒) → (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))
307187simprd 496 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))))
308194reseq2d 5846 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
309307, 308eqtrd 2853 . . . . . . . . . . 11 ((𝜑𝜒) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
310306, 309uneq12d 4137 . . . . . . . . . 10 ((𝜑𝜒) → ((𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) ∪ (𝐹 ∘ (𝑄‘(𝑛 + 1)))) = ((𝐺 ↾ (0[,](𝑛 / 𝑁))) ∪ (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
311 coundi 6093 . . . . . . . . . 10 (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = ((𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) ∪ (𝐹 ∘ (𝑄‘(𝑛 + 1))))
312 resundi 5860 . . . . . . . . . 10 (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝐺 ↾ (0[,](𝑛 / 𝑁))) ∪ (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
313310, 311, 3123eqtr4g 2878 . . . . . . . . 9 ((𝜑𝜒) → (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
314275coeq2d 5726 . . . . . . . . 9 ((𝜑𝜒) → (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)))
315305, 313, 3143eqtr2rd 2860 . . . . . . . 8 ((𝜑𝜒) → (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))
316304, 315jca 512 . . . . . . 7 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
317114, 316sylan2br 594 . . . . . 6 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
318317expr 457 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))
319113, 318animpimp2impd 840 . . . 4 (𝑛 ∈ ℕ → ((𝜑 → (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) → (𝜑 → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))))
32027, 41, 55, 71, 106, 319nnind 11644 . . 3 (𝑁 ∈ ℕ → (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))))
3211, 320mpcom 38 . 2 (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))
3225, 321mpd 15 1 (𝜑 → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  {crab 3139  Vcvv 3492  cdif 3930  cun 3931  cin 3932  wss 3933  c0 4288  ifcif 4463  𝒫 cpw 4535  {csn 4557  cop 4563   cuni 4830   ciun 4910   class class class wbr 5057  cmpt 5137   I cid 5452   × cxp 5546  ccnv 5547  dom cdm 5548  ran crn 5549  cres 5550  cima 5551  ccom 5552  Fun wfun 6342   Fn wfn 6343  wf 6344  cfv 6348  crio 7102  (class class class)co 7145  cmpo 7147  1st c1st 7676  2nd c2nd 7677  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528  *cxr 10662   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  cz 11969  cuz 12231  (,)cioo 12726  [,]cicc 12729  ...cfz 12880  seqcseq 13357  t crest 16682  topGenctg 16699  Topctop 21429  Clsdccld 21552   Cn ccn 21760  Homeochmeo 22289  IIcii 23410   CovMap ccvm 32399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fi 8863  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12881  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-rest 16684  df-topgen 16705  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-top 21430  df-topon 21447  df-bases 21482  df-cld 21555  df-cn 21763  df-hmeo 22291  df-ii 23412  df-cvm 32400
This theorem is referenced by:  cvmliftlem11  32439
  Copyright terms: Public domain W3C validator