Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem10 Structured version   Visualization version   GIF version

Theorem cvmliftlem10 35262
Description: Lemma for cvmlift 35267. The function 𝐾 is going to be our complete lifted path, formed by unioning together all the 𝑄 functions (each of which is defined on one segment [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] of the interval). Here we prove by induction that 𝐾 is a continuous function and a lift of 𝐺 by applying cvmliftlem6 35258, cvmliftlem7 35259 (to show it is a function and a lift), cvmliftlem8 35260 (to show it is continuous), and cvmliftlem9 35261 (to show that different 𝑄 functions agree on the intersection of their domains, so that the pasting lemma paste 23323 gives that 𝐾 is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem.k 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
cvmliftlem10.1 (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
Assertion
Ref Expression
cvmliftlem10 (𝜑 → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑛,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑛,𝐿,𝑧   𝑃,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑛,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑛,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝜒(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝑇(𝑛)   𝐽(𝑚)   𝐾(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑛,𝑠,𝑏)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑛,𝑠,𝑏)

Proof of Theorem cvmliftlem10
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cvmliftlem.n . . . 4 (𝜑𝑁 ∈ ℕ)
2 nnuz 12946 . . . 4 ℕ = (ℤ‘1)
31, 2eleqtrdi 2854 . . 3 (𝜑𝑁 ∈ (ℤ‘1))
4 eluzfz2 13592 . . 3 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
53, 4syl 17 . 2 (𝜑𝑁 ∈ (1...𝑁))
6 eleq1 2832 . . . . . 6 (𝑦 = 1 → (𝑦 ∈ (1...𝑁) ↔ 1 ∈ (1...𝑁)))
7 oveq2 7456 . . . . . . . . . . 11 (𝑦 = 1 → (1...𝑦) = (1...1))
8 1z 12673 . . . . . . . . . . . 12 1 ∈ ℤ
9 fzsn 13626 . . . . . . . . . . . 12 (1 ∈ ℤ → (1...1) = {1})
108, 9ax-mp 5 . . . . . . . . . . 11 (1...1) = {1}
117, 10eqtrdi 2796 . . . . . . . . . 10 (𝑦 = 1 → (1...𝑦) = {1})
1211iuneq1d 5042 . . . . . . . . 9 (𝑦 = 1 → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ {1} (𝑄𝑘))
13 1ex 11286 . . . . . . . . . 10 1 ∈ V
14 fveq2 6920 . . . . . . . . . 10 (𝑘 = 1 → (𝑄𝑘) = (𝑄‘1))
1513, 14iunxsn 5114 . . . . . . . . 9 𝑘 ∈ {1} (𝑄𝑘) = (𝑄‘1)
1612, 15eqtrdi 2796 . . . . . . . 8 (𝑦 = 1 → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = (𝑄‘1))
17 oveq1 7455 . . . . . . . . . . 11 (𝑦 = 1 → (𝑦 / 𝑁) = (1 / 𝑁))
1817oveq2d 7464 . . . . . . . . . 10 (𝑦 = 1 → (0[,](𝑦 / 𝑁)) = (0[,](1 / 𝑁)))
1918oveq2d 7464 . . . . . . . . 9 (𝑦 = 1 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](1 / 𝑁))))
2019oveq1d 7463 . . . . . . . 8 (𝑦 = 1 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
2116, 20eleq12d 2838 . . . . . . 7 (𝑦 = 1 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ (𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶)))
2216coeq2d 5887 . . . . . . . 8 (𝑦 = 1 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 ∘ (𝑄‘1)))
2318reseq2d 6009 . . . . . . . 8 (𝑦 = 1 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](1 / 𝑁))))
2422, 23eqeq12d 2756 . . . . . . 7 (𝑦 = 1 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))
2521, 24anbi12d 631 . . . . . 6 (𝑦 = 1 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))
266, 25imbi12d 344 . . . . 5 (𝑦 = 1 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))))
2726imbi2d 340 . . . 4 (𝑦 = 1 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))))
28 eleq1 2832 . . . . . 6 (𝑦 = 𝑛 → (𝑦 ∈ (1...𝑁) ↔ 𝑛 ∈ (1...𝑁)))
29 oveq2 7456 . . . . . . . . 9 (𝑦 = 𝑛 → (1...𝑦) = (1...𝑛))
3029iuneq1d 5042 . . . . . . . 8 (𝑦 = 𝑛 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
31 oveq1 7455 . . . . . . . . . . 11 (𝑦 = 𝑛 → (𝑦 / 𝑁) = (𝑛 / 𝑁))
3231oveq2d 7464 . . . . . . . . . 10 (𝑦 = 𝑛 → (0[,](𝑦 / 𝑁)) = (0[,](𝑛 / 𝑁)))
3332oveq2d 7464 . . . . . . . . 9 (𝑦 = 𝑛 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
3433oveq1d 7463 . . . . . . . 8 (𝑦 = 𝑛 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
3530, 34eleq12d 2838 . . . . . . 7 (𝑦 = 𝑛 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶)))
3630coeq2d 5887 . . . . . . . 8 (𝑦 = 𝑛 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)))
3732reseq2d 6009 . . . . . . . 8 (𝑦 = 𝑛 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))
3836, 37eqeq12d 2756 . . . . . . 7 (𝑦 = 𝑛 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
3935, 38anbi12d 631 . . . . . 6 (𝑦 = 𝑛 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
4028, 39imbi12d 344 . . . . 5 (𝑦 = 𝑛 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))))
4140imbi2d 340 . . . 4 (𝑦 = 𝑛 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))))
42 eleq1 2832 . . . . . 6 (𝑦 = (𝑛 + 1) → (𝑦 ∈ (1...𝑁) ↔ (𝑛 + 1) ∈ (1...𝑁)))
43 oveq2 7456 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (1...𝑦) = (1...(𝑛 + 1)))
4443iuneq1d 5042 . . . . . . . 8 (𝑦 = (𝑛 + 1) → 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘))
45 oveq1 7455 . . . . . . . . . . 11 (𝑦 = (𝑛 + 1) → (𝑦 / 𝑁) = ((𝑛 + 1) / 𝑁))
4645oveq2d 7464 . . . . . . . . . 10 (𝑦 = (𝑛 + 1) → (0[,](𝑦 / 𝑁)) = (0[,]((𝑛 + 1) / 𝑁)))
4746oveq2d 7464 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
4847oveq1d 7463 . . . . . . . 8 (𝑦 = (𝑛 + 1) → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
4944, 48eleq12d 2838 . . . . . . 7 (𝑦 = (𝑛 + 1) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶)))
5044coeq2d 5887 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)))
5146reseq2d 6009 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))
5250, 51eqeq12d 2756 . . . . . . 7 (𝑦 = (𝑛 + 1) → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
5349, 52anbi12d 631 . . . . . 6 (𝑦 = (𝑛 + 1) → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))
5442, 53imbi12d 344 . . . . 5 (𝑦 = (𝑛 + 1) → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))))
5554imbi2d 340 . . . 4 (𝑦 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))))
56 eleq1 2832 . . . . . 6 (𝑦 = 𝑁 → (𝑦 ∈ (1...𝑁) ↔ 𝑁 ∈ (1...𝑁)))
57 oveq2 7456 . . . . . . . . . 10 (𝑦 = 𝑁 → (1...𝑦) = (1...𝑁))
5857iuneq1d 5042 . . . . . . . . 9 (𝑦 = 𝑁 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝑘 ∈ (1...𝑁)(𝑄𝑘))
59 cvmliftlem.k . . . . . . . . 9 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
6058, 59eqtr4di 2798 . . . . . . . 8 (𝑦 = 𝑁 𝑘 ∈ (1...𝑦)(𝑄𝑘) = 𝐾)
61 oveq1 7455 . . . . . . . . . . 11 (𝑦 = 𝑁 → (𝑦 / 𝑁) = (𝑁 / 𝑁))
6261oveq2d 7464 . . . . . . . . . 10 (𝑦 = 𝑁 → (0[,](𝑦 / 𝑁)) = (0[,](𝑁 / 𝑁)))
6362oveq2d 7464 . . . . . . . . 9 (𝑦 = 𝑁 → (𝐿t (0[,](𝑦 / 𝑁))) = (𝐿t (0[,](𝑁 / 𝑁))))
6463oveq1d 7463 . . . . . . . 8 (𝑦 = 𝑁 → ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶))
6560, 64eleq12d 2838 . . . . . . 7 (𝑦 = 𝑁 → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ↔ 𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶)))
6660coeq2d 5887 . . . . . . . 8 (𝑦 = 𝑁 → (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐹𝐾))
6762reseq2d 6009 . . . . . . . 8 (𝑦 = 𝑁 → (𝐺 ↾ (0[,](𝑦 / 𝑁))) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))
6866, 67eqeq12d 2756 . . . . . . 7 (𝑦 = 𝑁 → ((𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))) ↔ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
6965, 68anbi12d 631 . . . . . 6 (𝑦 = 𝑁 → (( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))) ↔ (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))
7056, 69imbi12d 344 . . . . 5 (𝑦 = 𝑁 → ((𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁))))) ↔ (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))))
7170imbi2d 340 . . . 4 (𝑦 = 𝑁 → ((𝜑 → (𝑦 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑦)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑦 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑦)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑦 / 𝑁)))))) ↔ (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))))
72 eluzfz1 13591 . . . . . . . . 9 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
733, 72syl 17 . . . . . . . 8 (𝜑 → 1 ∈ (1...𝑁))
74 cvmliftlem.1 . . . . . . . . 9 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
75 cvmliftlem.b . . . . . . . . 9 𝐵 = 𝐶
76 cvmliftlem.x . . . . . . . . 9 𝑋 = 𝐽
77 cvmliftlem.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
78 cvmliftlem.g . . . . . . . . 9 (𝜑𝐺 ∈ (II Cn 𝐽))
79 cvmliftlem.p . . . . . . . . 9 (𝜑𝑃𝐵)
80 cvmliftlem.e . . . . . . . . 9 (𝜑 → (𝐹𝑃) = (𝐺‘0))
81 cvmliftlem.t . . . . . . . . 9 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
82 cvmliftlem.a . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
83 cvmliftlem.l . . . . . . . . 9 𝐿 = (topGen‘ran (,))
84 cvmliftlem.q . . . . . . . . 9 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
85 eqid 2740 . . . . . . . . 9 (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (((1 − 1) / 𝑁)[,](1 / 𝑁))
8674, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85cvmliftlem8 35260 . . . . . . . 8 ((𝜑 ∧ 1 ∈ (1...𝑁)) → (𝑄‘1) ∈ ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶))
8773, 86mpdan 686 . . . . . . 7 (𝜑 → (𝑄‘1) ∈ ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶))
88 1m1e0 12365 . . . . . . . . . . . 12 (1 − 1) = 0
8988oveq1i 7458 . . . . . . . . . . 11 ((1 − 1) / 𝑁) = (0 / 𝑁)
901nncnd 12309 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
911nnne0d 12343 . . . . . . . . . . . 12 (𝜑𝑁 ≠ 0)
9290, 91div0d 12069 . . . . . . . . . . 11 (𝜑 → (0 / 𝑁) = 0)
9389, 92eqtrid 2792 . . . . . . . . . 10 (𝜑 → ((1 − 1) / 𝑁) = 0)
9493oveq1d 7463 . . . . . . . . 9 (𝜑 → (((1 − 1) / 𝑁)[,](1 / 𝑁)) = (0[,](1 / 𝑁)))
9594oveq2d 7464 . . . . . . . 8 (𝜑 → (𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) = (𝐿t (0[,](1 / 𝑁))))
9695oveq1d 7463 . . . . . . 7 (𝜑 → ((𝐿t (((1 − 1) / 𝑁)[,](1 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
9787, 96eleqtrd 2846 . . . . . 6 (𝜑 → (𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶))
98 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ (1...𝑁)) → 1 ∈ (1...𝑁))
9974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85cvmliftlem7 35259 . . . . . . . . . 10 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘(1 − 1))‘((1 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((1 − 1) / 𝑁))}))
10074, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 85, 98, 99cvmliftlem6 35258 . . . . . . . . 9 ((𝜑 ∧ 1 ∈ (1...𝑁)) → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
10173, 100mpdan 686 . . . . . . . 8 (𝜑 → ((𝑄‘1):(((1 − 1) / 𝑁)[,](1 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁)))))
102101simprd 495 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁))))
10394reseq2d 6009 . . . . . . 7 (𝜑 → (𝐺 ↾ (((1 − 1) / 𝑁)[,](1 / 𝑁))) = (𝐺 ↾ (0[,](1 / 𝑁))))
104102, 103eqtrd 2780 . . . . . 6 (𝜑 → (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))
10597, 104jca 511 . . . . 5 (𝜑 → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁)))))
106105a1d 25 . . . 4 (𝜑 → (1 ∈ (1...𝑁) → ((𝑄‘1) ∈ ((𝐿t (0[,](1 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ (𝑄‘1)) = (𝐺 ↾ (0[,](1 / 𝑁))))))
107 elnnuz 12947 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
108107biimpi 216 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
109108adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
110 peano2fzr 13597 . . . . . . . 8 ((𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑁)) → 𝑛 ∈ (1...𝑁))
111110ex 412 . . . . . . 7 (𝑛 ∈ (ℤ‘1) → ((𝑛 + 1) ∈ (1...𝑁) → 𝑛 ∈ (1...𝑁)))
112109, 111syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 + 1) ∈ (1...𝑁) → 𝑛 ∈ (1...𝑁)))
113112imim1d 82 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))) → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))))
114 cvmliftlem10.1 . . . . . . 7 (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))))
115 eqid 2740 . . . . . . . . 9 (𝐿t (0[,]((𝑛 + 1) / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁)))
116 0re 11292 . . . . . . . . . . 11 0 ∈ ℝ
117114simplbi 497 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)))
118117adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)))
119118simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (𝑛 + 1) ∈ (1...𝑁))
120 elfznn 13613 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (1...𝑁) → (𝑛 + 1) ∈ ℕ)
121119, 120syl 17 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑛 + 1) ∈ ℕ)
122121nnred 12308 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 + 1) ∈ ℝ)
1231adantr 480 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝑁 ∈ ℕ)
124122, 123nndivred 12347 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝑛 + 1) / 𝑁) ∈ ℝ)
125 iccssre 13489 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ)
126116, 124, 125sylancr 586 . . . . . . . . . 10 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ)
127117simpld 494 . . . . . . . . . . . . . . 15 (𝜒𝑛 ∈ ℕ)
128127adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑛 ∈ ℕ)
129128nnred 12308 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑛 ∈ ℝ)
130129, 123nndivred 12347 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ℝ)
131 icccld 24808 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (𝑛 / 𝑁) ∈ ℝ) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
132116, 130, 131sylancr 586 . . . . . . . . . . 11 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
13383fveq2i 6923 . . . . . . . . . . 11 (Clsd‘𝐿) = (Clsd‘(topGen‘ran (,)))
134132, 133eleqtrrdi 2855 . . . . . . . . . 10 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘𝐿))
135 ssun1 4201 . . . . . . . . . . 11 (0[,](𝑛 / 𝑁)) ⊆ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
136116a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → 0 ∈ ℝ)
137128nnnn0d 12613 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑛 ∈ ℕ0)
138137nn0ge0d 12616 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 0 ≤ 𝑛)
139123nnred 12308 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑁 ∈ ℝ)
140123nngt0d 12342 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 0 < 𝑁)
141 divge0 12164 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑛 / 𝑁))
142129, 138, 139, 140, 141syl22anc 838 . . . . . . . . . . . . 13 ((𝜑𝜒) → 0 ≤ (𝑛 / 𝑁))
143129ltp1d 12225 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑛 < (𝑛 + 1))
144 ltdiv1 12159 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
145129, 122, 139, 140, 144syl112anc 1374 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
146143, 145mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁))
147130, 124, 146ltled 11438 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))
148 elicc2 13472 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → ((𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)) ↔ ((𝑛 / 𝑁) ∈ ℝ ∧ 0 ≤ (𝑛 / 𝑁) ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))))
149116, 124, 148sylancr 586 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)) ↔ ((𝑛 / 𝑁) ∈ ℝ ∧ 0 ≤ (𝑛 / 𝑁) ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))))
150130, 142, 147, 149mpbir3and 1342 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁)))
151 iccsplit 13545 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ ∧ (𝑛 / 𝑁) ∈ (0[,]((𝑛 + 1) / 𝑁))) → (0[,]((𝑛 + 1) / 𝑁)) = ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
152136, 124, 150, 151syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) = ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
153135, 152sseqtrrid 4062 . . . . . . . . . 10 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)))
154 uniretop 24804 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
15583unieqi 4943 . . . . . . . . . . . 12 𝐿 = (topGen‘ran (,))
156154, 155eqtr4i 2771 . . . . . . . . . . 11 ℝ = 𝐿
157156restcldi 23202 . . . . . . . . . 10 (((0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ ∧ (0[,](𝑛 / 𝑁)) ∈ (Clsd‘𝐿) ∧ (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁))) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
158126, 134, 153, 157syl3anc 1371 . . . . . . . . 9 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
159 icccld 24808 . . . . . . . . . . . 12 (((𝑛 / 𝑁) ∈ ℝ ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
160130, 124, 159syl2anc 583 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(topGen‘ran (,))))
161160, 133eleqtrrdi 2855 . . . . . . . . . 10 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘𝐿))
162 ssun2 4202 . . . . . . . . . . 11 ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
163162, 152sseqtrrid 4062 . . . . . . . . . 10 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)))
164156restcldi 23202 . . . . . . . . . 10 (((0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘𝐿) ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁))) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
165126, 161, 163, 164syl3anc 1371 . . . . . . . . 9 ((𝜑𝜒) → ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∈ (Clsd‘(𝐿t (0[,]((𝑛 + 1) / 𝑁)))))
166 retop 24803 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ Top
16783, 166eqeltri 2840 . . . . . . . . . . 11 𝐿 ∈ Top
168156restuni 23191 . . . . . . . . . . 11 ((𝐿 ∈ Top ∧ (0[,]((𝑛 + 1) / 𝑁)) ⊆ ℝ) → (0[,]((𝑛 + 1) / 𝑁)) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
169167, 126, 168sylancr 586 . . . . . . . . . 10 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
170152, 169eqtr3d 2782 . . . . . . . . 9 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t (0[,]((𝑛 + 1) / 𝑁))))
171114simprbi 496 . . . . . . . . . . . . . . . 16 (𝜒 → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
172171adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))
173172simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
174 eqid 2740 . . . . . . . . . . . . . . 15 (𝐿t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁)))
175174, 75cnf 23275 . . . . . . . . . . . . . 14 ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) → 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵)
176173, 175syl 17 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵)
177 iccssre 13489 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (𝑛 / 𝑁) ∈ ℝ) → (0[,](𝑛 / 𝑁)) ⊆ ℝ)
178116, 130, 177sylancr 586 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) ⊆ ℝ)
179156restuni 23191 . . . . . . . . . . . . . . 15 ((𝐿 ∈ Top ∧ (0[,](𝑛 / 𝑁)) ⊆ ℝ) → (0[,](𝑛 / 𝑁)) = (𝐿t (0[,](𝑛 / 𝑁))))
180167, 178, 179sylancr 586 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (0[,](𝑛 / 𝑁)) = (𝐿t (0[,](𝑛 / 𝑁))))
181180feq2d 6733 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 𝑘 ∈ (1...𝑛)(𝑄𝑘): (𝐿t (0[,](𝑛 / 𝑁)))⟶𝐵))
182176, 181mpbird 257 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵)
183 eqid 2740 . . . . . . . . . . . . . . . 16 ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))
184 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → (𝑛 + 1) ∈ (1...𝑁))
18574, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183cvmliftlem7 35259 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}))
18674, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183, 184, 185cvmliftlem6 35258 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
187119, 186syldan 590 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
188187simpld 494 . . . . . . . . . . . . 13 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
189128nncnd 12309 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → 𝑛 ∈ ℂ)
190 ax-1cn 11242 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
191 pncan 11542 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
192189, 190, 191sylancl 585 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ((𝑛 + 1) − 1) = 𝑛)
193192oveq1d 7463 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (((𝑛 + 1) − 1) / 𝑁) = (𝑛 / 𝑁))
194193oveq1d 7463 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
195194feq2d 6733 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ↔ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵))
196188, 195mpbid 232 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
197176ffund 6751 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → Fun 𝑘 ∈ (1...𝑛)(𝑄𝑘))
198128, 108syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → 𝑛 ∈ (ℤ‘1))
199 eluzfz2 13592 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ (1...𝑛))
200198, 199syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → 𝑛 ∈ (1...𝑛))
201 fveq2 6920 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (𝑄𝑘) = (𝑄𝑛))
202201ssiun2s 5071 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑛) → (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘))
203200, 202syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘))
204 peano2rem 11603 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
205129, 204syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → (𝑛 − 1) ∈ ℝ)
206205, 123nndivred 12347 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ∈ ℝ)
207206rexrd 11340 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ∈ ℝ*)
208130rexrd 11340 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ℝ*)
209129ltm1d 12227 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → (𝑛 − 1) < 𝑛)
210 ltdiv1 12159 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑛 − 1) < 𝑛 ↔ ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁)))
211205, 129, 139, 140, 210syl112anc 1374 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → ((𝑛 − 1) < 𝑛 ↔ ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁)))
212209, 211mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) < (𝑛 / 𝑁))
213206, 130, 212ltled 11438 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → ((𝑛 − 1) / 𝑁) ≤ (𝑛 / 𝑁))
214 ubicc2 13525 . . . . . . . . . . . . . . . . . . . 20 ((((𝑛 − 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 − 1) / 𝑁) ≤ (𝑛 / 𝑁)) → (𝑛 / 𝑁) ∈ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
215207, 208, 213, 214syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
216198, 119, 110syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝜒) → 𝑛 ∈ (1...𝑁))
217 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)) = (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))
218 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑛 ∈ (1...𝑁))
21974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 217cvmliftlem7 35259 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑄‘(𝑛 − 1))‘((𝑛 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 − 1) / 𝑁))}))
22074, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 217, 218, 219cvmliftlem6 35258 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄𝑛)) = (𝐺 ↾ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))))
221216, 220syldan 590 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝜒) → ((𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄𝑛)) = (𝐺 ↾ (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))))
222221simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜒) → (𝑄𝑛):(((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁))⟶𝐵)
223222fdmd 6757 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜒) → dom (𝑄𝑛) = (((𝑛 − 1) / 𝑁)[,](𝑛 / 𝑁)))
224215, 223eleqtrrd 2847 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ dom (𝑄𝑛))
225 funssfv 6941 . . . . . . . . . . . . . . . . . 18 ((Fun 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∧ (𝑄𝑛) ⊆ 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∧ (𝑛 / 𝑁) ∈ dom (𝑄𝑛)) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
226197, 203, 224, 225syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
227192fveq2d 6924 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → (𝑄‘((𝑛 + 1) − 1)) = (𝑄𝑛))
228227, 193fveq12d 6927 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
22974, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84cvmliftlem9 35261 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)))
230119, 229syldan 590 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)))
231193fveq2d 6924 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
232230, 231eqtr3d 2782 . . . . . . . . . . . . . . . . 17 ((𝜑𝜒) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
233226, 228, 2323eqtr2d 2786 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁)) = ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁)))
234233opeq2d 4904 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩ = ⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩)
235234sneqd 4660 . . . . . . . . . . . . . 14 ((𝜑𝜒) → {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩} = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
236182ffnd 6748 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → 𝑘 ∈ (1...𝑛)(𝑄𝑘) Fn (0[,](𝑛 / 𝑁)))
237 0xr 11337 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
238237a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → 0 ∈ ℝ*)
239 ubicc2 13525 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ 0 ≤ (𝑛 / 𝑁)) → (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁)))
240238, 208, 142, 239syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁)))
241 fnressn 7192 . . . . . . . . . . . . . . 15 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) Fn (0[,](𝑛 / 𝑁)) ∧ (𝑛 / 𝑁) ∈ (0[,](𝑛 / 𝑁))) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩})
242236, 240, 241syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ( 𝑘 ∈ (1...𝑛)(𝑄𝑘)‘(𝑛 / 𝑁))⟩})
243196ffnd 6748 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) Fn ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
244124rexrd 11340 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → ((𝑛 + 1) / 𝑁) ∈ ℝ*)
245 lbicc2 13524 . . . . . . . . . . . . . . . 16 (((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁)) → (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
246208, 244, 147, 245syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
247 fnressn 7192 . . . . . . . . . . . . . . 15 (((𝑄‘(𝑛 + 1)) Fn ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ∧ (𝑛 / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) → ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
248243, 246, 247syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}) = {⟨(𝑛 / 𝑁), ((𝑄‘(𝑛 + 1))‘(𝑛 / 𝑁))⟩})
249235, 242, 2483eqtr4d 2790 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}) = ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}))
250 df-icc 13414 . . . . . . . . . . . . . . . . 17 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
251 xrmaxle 13245 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ*𝑧 ∈ ℝ*) → (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0) ≤ 𝑧 ↔ (0 ≤ 𝑧 ∧ (𝑛 / 𝑁) ≤ 𝑧)))
252 xrlemin 13246 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ*) → (𝑧 ≤ if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁)) ↔ (𝑧 ≤ (𝑛 / 𝑁) ∧ 𝑧 ≤ ((𝑛 + 1) / 𝑁))))
253250, 251, 252ixxin 13424 . . . . . . . . . . . . . . . 16 (((0 ∈ ℝ* ∧ (𝑛 / 𝑁) ∈ ℝ*) ∧ ((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ*)) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))))
254238, 208, 208, 244, 253syl22anc 838 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))))
255142iftrued 4556 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0) = (𝑛 / 𝑁))
256147iftrued 4556 . . . . . . . . . . . . . . . 16 ((𝜑𝜒) → if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁)) = (𝑛 / 𝑁))
257255, 256oveq12d 7466 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → (if(0 ≤ (𝑛 / 𝑁), (𝑛 / 𝑁), 0)[,]if((𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁), (𝑛 / 𝑁), ((𝑛 + 1) / 𝑁))) = ((𝑛 / 𝑁)[,](𝑛 / 𝑁)))
258 iccid 13452 . . . . . . . . . . . . . . . 16 ((𝑛 / 𝑁) ∈ ℝ* → ((𝑛 / 𝑁)[,](𝑛 / 𝑁)) = {(𝑛 / 𝑁)})
259208, 258syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝜒) → ((𝑛 / 𝑁)[,](𝑛 / 𝑁)) = {(𝑛 / 𝑁)})
260254, 257, 2593eqtrd 2784 . . . . . . . . . . . . . 14 ((𝜑𝜒) → ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = {(𝑛 / 𝑁)})
261260reseq2d 6009 . . . . . . . . . . . . 13 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ {(𝑛 / 𝑁)}))
262260reseq2d 6009 . . . . . . . . . . . . 13 ((𝜑𝜒) → ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ {(𝑛 / 𝑁)}))
263249, 261, 2623eqtr4d 2790 . . . . . . . . . . . 12 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
264 fresaun 6792 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
265182, 196, 263, 264syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
266 fzsuc 13631 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
267198, 266syl 17 . . . . . . . . . . . . . 14 ((𝜑𝜒) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
268267iuneq1d 5042 . . . . . . . . . . . . 13 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) = 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘))
269 iunxun 5117 . . . . . . . . . . . . . 14 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘))
270 ovex 7481 . . . . . . . . . . . . . . . 16 (𝑛 + 1) ∈ V
271 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝑄𝑘) = (𝑄‘(𝑛 + 1)))
272270, 271iunxsn 5114 . . . . . . . . . . . . . . 15 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘) = (𝑄‘(𝑛 + 1))
273272uneq2i 4188 . . . . . . . . . . . . . 14 ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ 𝑘 ∈ {(𝑛 + 1)} (𝑄𝑘)) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))
274269, 273eqtri 2768 . . . . . . . . . . . . 13 𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝑄𝑘) = ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))
275268, 274eqtr2di 2797 . . . . . . . . . . . 12 ((𝜑𝜒) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) = 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘))
276275feq1d 6732 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵))
277265, 276mpbid 232 . . . . . . . . . 10 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
278170feq2d 6733 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘):((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))⟶𝐵 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘): (𝐿t (0[,]((𝑛 + 1) / 𝑁)))⟶𝐵))
279277, 278mpbid 232 . . . . . . . . 9 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘): (𝐿t (0[,]((𝑛 + 1) / 𝑁)))⟶𝐵)
280275reseq1d 6008 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))))
281 fresaunres1 6794 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
282182, 196, 263, 281syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
283280, 282eqtr3d 2782 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))) = 𝑘 ∈ (1...𝑛)(𝑄𝑘))
284167a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → 𝐿 ∈ Top)
285 ovex 7481 . . . . . . . . . . . . 13 (0[,]((𝑛 + 1) / 𝑁)) ∈ V
286285a1i 11 . . . . . . . . . . . 12 ((𝜑𝜒) → (0[,]((𝑛 + 1) / 𝑁)) ∈ V)
287 restabs 23194 . . . . . . . . . . . 12 ((𝐿 ∈ Top ∧ (0[,](𝑛 / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)) ∧ (0[,]((𝑛 + 1) / 𝑁)) ∈ V) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
288284, 153, 286, 287syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) = (𝐿t (0[,](𝑛 / 𝑁))))
289288oveq1d 7463 . . . . . . . . . 10 ((𝜑𝜒) → (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶) = ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶))
290173, 283, 2893eltr4d 2859 . . . . . . . . 9 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ (0[,](𝑛 / 𝑁))) ∈ (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶))
29174, 75, 76, 77, 78, 79, 80, 1, 81, 82, 83, 84, 183cvmliftlem8 35260 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 + 1) ∈ (1...𝑁)) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
292119, 291syldan 590 . . . . . . . . . . 11 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
293194oveq2d 7464 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
294293oveq1d 7463 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) = ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
295292, 294eleqtrd 2846 . . . . . . . . . 10 ((𝜑𝜒) → (𝑄‘(𝑛 + 1)) ∈ ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
296275reseq1d 6008 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
297 fresaunres2 6793 . . . . . . . . . . . 12 (( 𝑘 ∈ (1...𝑛)(𝑄𝑘):(0[,](𝑛 / 𝑁))⟶𝐵 ∧ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝑄‘(𝑛 + 1)) ↾ ((0[,](𝑛 / 𝑁)) ∩ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
298182, 196, 263, 297syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝜒) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1))) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
299296, 298eqtr3d 2782 . . . . . . . . . 10 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝑄‘(𝑛 + 1)))
300 restabs 23194 . . . . . . . . . . . 12 ((𝐿 ∈ Top ∧ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) ⊆ (0[,]((𝑛 + 1) / 𝑁)) ∧ (0[,]((𝑛 + 1) / 𝑁)) ∈ V) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
301284, 163, 286, 300syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝜒) → ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
302301oveq1d 7463 . . . . . . . . . 10 ((𝜑𝜒) → (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) = ((𝐿t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
303295, 299, 3023eltr4d 2859 . . . . . . . . 9 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) ∈ (((𝐿t (0[,]((𝑛 + 1) / 𝑁))) ↾t ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
304115, 75, 158, 165, 170, 279, 290, 303paste 23323 . . . . . . . 8 ((𝜑𝜒) → 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶))
305152reseq2d 6009 . . . . . . . . 9 ((𝜑𝜒) → (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
306172simprd 495 . . . . . . . . . . 11 ((𝜑𝜒) → (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁))))
307187simprd 495 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))))
308194reseq2d 6009 . . . . . . . . . . . 12 ((𝜑𝜒) → (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
309307, 308eqtrd 2780 . . . . . . . . . . 11 ((𝜑𝜒) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
310306, 309uneq12d 4192 . . . . . . . . . 10 ((𝜑𝜒) → ((𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) ∪ (𝐹 ∘ (𝑄‘(𝑛 + 1)))) = ((𝐺 ↾ (0[,](𝑛 / 𝑁))) ∪ (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
311 coundi 6278 . . . . . . . . . 10 (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = ((𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) ∪ (𝐹 ∘ (𝑄‘(𝑛 + 1))))
312 resundi 6023 . . . . . . . . . 10 (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))) = ((𝐺 ↾ (0[,](𝑛 / 𝑁))) ∪ (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
313310, 311, 3123eqtr4g 2805 . . . . . . . . 9 ((𝜑𝜒) → (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = (𝐺 ↾ ((0[,](𝑛 / 𝑁)) ∪ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
314275coeq2d 5887 . . . . . . . . 9 ((𝜑𝜒) → (𝐹 ∘ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∪ (𝑄‘(𝑛 + 1)))) = (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)))
315305, 313, 3143eqtr2rd 2787 . . . . . . . 8 ((𝜑𝜒) → (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))
316304, 315jca 511 . . . . . . 7 ((𝜑𝜒) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
317114, 316sylan2br 594 . . . . . 6 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁)))))
318317expr 456 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁))) → (( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))
319113, 318animpimp2impd 845 . . . 4 (𝑛 ∈ ℕ → ((𝜑 → (𝑛 ∈ (1...𝑁) → ( 𝑘 ∈ (1...𝑛)(𝑄𝑘) ∈ ((𝐿t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...𝑛)(𝑄𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) → (𝜑 → ((𝑛 + 1) ∈ (1...𝑁) → ( 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘) ∈ ((𝐿t (0[,]((𝑛 + 1) / 𝑁))) Cn 𝐶) ∧ (𝐹 𝑘 ∈ (1...(𝑛 + 1))(𝑄𝑘)) = (𝐺 ↾ (0[,]((𝑛 + 1) / 𝑁))))))))
32027, 41, 55, 71, 106, 319nnind 12311 . . 3 (𝑁 ∈ ℕ → (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))))
3211, 320mpcom 38 . 2 (𝜑 → (𝑁 ∈ (1...𝑁) → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))))
3225, 321mpd 15 1 (𝜑 → (𝐾 ∈ ((𝐿t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  ifcif 4548  𝒫 cpw 4622  {csn 4648  cop 4654   cuni 4931   ciun 5015   class class class wbr 5166  cmpt 5249   I cid 5592   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  ccom 5704  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  crio 7403  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  cz 12639  cuz 12903  (,)cioo 13407  [,]cicc 13410  ...cfz 13567  seqcseq 14052  t crest 17480  topGenctg 17497  Topctop 22920  Clsdccld 23045   Cn ccn 23253  Homeochmeo 23782  IIcii 24920   CovMap ccvm 35223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-cn 23256  df-hmeo 23784  df-ii 24922  df-cvm 35224
This theorem is referenced by:  cvmliftlem11  35263
  Copyright terms: Public domain W3C validator