Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcn | Structured version Visualization version GIF version |
Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.) |
Ref | Expression |
---|---|
addcn.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
addcn | ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcn.j | . 2 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
2 | ax-addf 10655 | . 2 ⊢ + :(ℂ × ℂ)⟶ℂ | |
3 | addcn2 14999 | . 2 ⊢ ((𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝑏)) < 𝑦 ∧ (abs‘(𝑣 − 𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎)) | |
4 | 1, 2, 3 | addcnlem 23566 | 1 ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 ‘cfv 6336 (class class class)co 7151 + caddc 10579 TopOpenctopn 16754 ℂfldccnfld 20167 Cn ccn 21925 ×t ctx 22261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-pre-sup 10654 ax-addf 10655 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-er 8300 df-map 8419 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8868 df-fi 8909 df-sup 8940 df-inf 8941 df-oi 9008 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-z 12022 df-dec 12139 df-uz 12284 df-q 12390 df-rp 12432 df-xneg 12549 df-xadd 12550 df-xmul 12551 df-icc 12787 df-fz 12941 df-fzo 13084 df-seq 13420 df-exp 13481 df-hash 13742 df-cj 14507 df-re 14508 df-im 14509 df-sqrt 14643 df-abs 14644 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-mulr 16638 df-starv 16639 df-sca 16640 df-vsca 16641 df-ip 16642 df-tset 16643 df-ple 16644 df-ds 16646 df-unif 16647 df-hom 16648 df-cco 16649 df-rest 16755 df-topn 16756 df-0g 16774 df-gsum 16775 df-topgen 16776 df-pt 16777 df-prds 16780 df-xrs 16834 df-qtop 16839 df-imas 16840 df-xps 16842 df-mre 16916 df-mrc 16917 df-acs 16919 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-submnd 18024 df-mulg 18293 df-cntz 18515 df-cmn 18976 df-psmet 20159 df-xmet 20160 df-met 20161 df-bl 20162 df-mopn 20163 df-cnfld 20168 df-top 21595 df-topon 21612 df-topsp 21634 df-bases 21647 df-cn 21928 df-cnp 21929 df-tx 22263 df-hmeo 22456 df-xms 23023 df-tms 23025 |
This theorem is referenced by: fsumcn 23572 addccncf 23619 icchmeo 23643 cnrehmeo 23655 reparphti 23699 pcoass 23726 addcncf 24145 dvcnp2 24620 dvaddbr 24638 dvmulbr 24639 dvlipcn 24694 itgparts 24747 coscn 25140 logcn 25338 loglesqrt 25447 atansopn 25618 efrlim 25655 lgamgulmlem2 25715 raddcn 31401 logdivsqrle 32150 cvxpconn 32721 cvxsconn 32722 areacirclem4 35429 areaquad 40540 |
Copyright terms: Public domain | W3C validator |