MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncph Structured version   Visualization version   GIF version

Theorem cncph 28581
Description: The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
cncph.6 𝑈 = ⟨⟨ + , · ⟩, abs⟩
Assertion
Ref Expression
cncph 𝑈 ∈ CPreHilOLD

Proof of Theorem cncph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncph.6 . 2 𝑈 = ⟨⟨ + , · ⟩, abs⟩
2 eqid 2820 . . . 4 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
32cnnv 28439 . . 3 ⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec
4 mulm1 11059 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (-1 · 𝑦) = -𝑦)
54adantl 484 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-1 · 𝑦) = -𝑦)
65oveq2d 7149 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥 + -𝑦))
7 negsub 10912 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥𝑦))
86, 7eqtrd 2855 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥𝑦))
98fveq2d 6650 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + (-1 · 𝑦))) = (abs‘(𝑥𝑦)))
109oveq1d 7148 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 + (-1 · 𝑦)))↑2) = ((abs‘(𝑥𝑦))↑2))
1110oveq2d 7149 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)))
12 sqabsadd 14622 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 + 𝑦))↑2) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))))
13 sqabssub 14623 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥𝑦))↑2) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦))))))
1412, 13oveq12d 7151 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = (((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))) + ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦)))))))
15 abscl 14618 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
1615recnd 10647 . . . . . . . . . 10 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℂ)
1716sqcld 13493 . . . . . . . . 9 (𝑥 ∈ ℂ → ((abs‘𝑥)↑2) ∈ ℂ)
18 abscl 14618 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℝ)
1918recnd 10647 . . . . . . . . . 10 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℂ)
2019sqcld 13493 . . . . . . . . 9 (𝑦 ∈ ℂ → ((abs‘𝑦)↑2) ∈ ℂ)
21 addcl 10597 . . . . . . . . 9 ((((abs‘𝑥)↑2) ∈ ℂ ∧ ((abs‘𝑦)↑2) ∈ ℂ) → (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ)
2217, 20, 21syl2an 597 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ)
23 2cn 11691 . . . . . . . . 9 2 ∈ ℂ
24 cjcl 14444 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (∗‘𝑦) ∈ ℂ)
25 mulcl 10599 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (∗‘𝑦) ∈ ℂ) → (𝑥 · (∗‘𝑦)) ∈ ℂ)
2624, 25sylan2 594 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · (∗‘𝑦)) ∈ ℂ)
27 recl 14449 . . . . . . . . . . 11 ((𝑥 · (∗‘𝑦)) ∈ ℂ → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℝ)
2827recnd 10647 . . . . . . . . . 10 ((𝑥 · (∗‘𝑦)) ∈ ℂ → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ)
2926, 28syl 17 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ)
30 mulcl 10599 . . . . . . . . 9 ((2 ∈ ℂ ∧ (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ) → (2 · (ℜ‘(𝑥 · (∗‘𝑦)))) ∈ ℂ)
3123, 29, 30sylancr 589 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (2 · (ℜ‘(𝑥 · (∗‘𝑦)))) ∈ ℂ)
3222, 31, 22ppncand 11015 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))) + ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦)))))) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3314, 32eqtrd 2855 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
34 2times 11752 . . . . . . . 8 ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ → (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3534eqcomd 2826 . . . . . . 7 ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ → ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3622, 35syl 17 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3733, 36eqtrd 2855 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3811, 37eqtrd 2855 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3938rgen2 3190 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)))
40 addex 12366 . . . 4 + ∈ V
41 mulex 12367 . . . 4 · ∈ V
42 absf 14677 . . . . 5 abs:ℂ⟶ℝ
43 cnex 10596 . . . . 5 ℂ ∈ V
44 fex 6965 . . . . 5 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4542, 43, 44mp2an 690 . . . 4 abs ∈ V
46 cnaddabloOLD 28343 . . . . . . 7 + ∈ AbelOp
47 ablogrpo 28309 . . . . . . 7 ( + ∈ AbelOp → + ∈ GrpOp)
4846, 47ax-mp 5 . . . . . 6 + ∈ GrpOp
49 ax-addf 10594 . . . . . . 7 + :(ℂ × ℂ)⟶ℂ
5049fdmi 6500 . . . . . 6 dom + = (ℂ × ℂ)
5148, 50grporn 28283 . . . . 5 ℂ = ran +
5251isphg 28579 . . . 4 (( + ∈ V ∧ · ∈ V ∧ abs ∈ V) → (⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))))
5340, 41, 45, 52mp3an 1457 . . 3 (⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)))))
543, 39, 53mpbir2an 709 . 2 ⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD
551, 54eqeltri 2907 1 𝑈 ∈ CPreHilOLD
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3125  Vcvv 3473  cop 4549   × cxp 5529  wf 6327  cfv 6331  (class class class)co 7133  cc 10513  cr 10514  1c1 10516   + caddc 10518   · cmul 10520  cmin 10848  -cneg 10849  2c2 11671  cexp 13414  ccj 14435  cre 14436  abscabs 14573  GrpOpcgr 28251  AbelOpcablo 28306  NrmCVeccnv 28346  CPreHilOLDccphlo 28574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593  ax-addf 10594  ax-mulf 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-z 11961  df-uz 12223  df-rp 12369  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-grpo 28255  df-gid 28256  df-ablo 28307  df-vc 28321  df-nv 28354  df-ph 28575
This theorem is referenced by:  elimphu  28583  cnchl  28678
  Copyright terms: Public domain W3C validator