MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncph Structured version   Visualization version   GIF version

Theorem cncph 28225
Description: The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
cncph.6 𝑈 = ⟨⟨ + , · ⟩, abs⟩
Assertion
Ref Expression
cncph 𝑈 ∈ CPreHilOLD

Proof of Theorem cncph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncph.6 . 2 𝑈 = ⟨⟨ + , · ⟩, abs⟩
2 eqid 2825 . . . 4 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
32cnnv 28083 . . 3 ⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec
4 mulm1 10802 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (-1 · 𝑦) = -𝑦)
54adantl 475 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-1 · 𝑦) = -𝑦)
65oveq2d 6926 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥 + -𝑦))
7 negsub 10657 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥𝑦))
86, 7eqtrd 2861 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥𝑦))
98fveq2d 6441 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + (-1 · 𝑦))) = (abs‘(𝑥𝑦)))
109oveq1d 6925 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 + (-1 · 𝑦)))↑2) = ((abs‘(𝑥𝑦))↑2))
1110oveq2d 6926 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)))
12 sqabsadd 14406 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 + 𝑦))↑2) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))))
13 sqabssub 14407 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥𝑦))↑2) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦))))))
1412, 13oveq12d 6928 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = (((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))) + ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦)))))))
15 abscl 14402 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
1615recnd 10392 . . . . . . . . . 10 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℂ)
1716sqcld 13307 . . . . . . . . 9 (𝑥 ∈ ℂ → ((abs‘𝑥)↑2) ∈ ℂ)
18 abscl 14402 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℝ)
1918recnd 10392 . . . . . . . . . 10 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℂ)
2019sqcld 13307 . . . . . . . . 9 (𝑦 ∈ ℂ → ((abs‘𝑦)↑2) ∈ ℂ)
21 addcl 10341 . . . . . . . . 9 ((((abs‘𝑥)↑2) ∈ ℂ ∧ ((abs‘𝑦)↑2) ∈ ℂ) → (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ)
2217, 20, 21syl2an 589 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ)
23 2cn 11433 . . . . . . . . 9 2 ∈ ℂ
24 cjcl 14229 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (∗‘𝑦) ∈ ℂ)
25 mulcl 10343 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (∗‘𝑦) ∈ ℂ) → (𝑥 · (∗‘𝑦)) ∈ ℂ)
2624, 25sylan2 586 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · (∗‘𝑦)) ∈ ℂ)
27 recl 14234 . . . . . . . . . . 11 ((𝑥 · (∗‘𝑦)) ∈ ℂ → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℝ)
2827recnd 10392 . . . . . . . . . 10 ((𝑥 · (∗‘𝑦)) ∈ ℂ → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ)
2926, 28syl 17 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ)
30 mulcl 10343 . . . . . . . . 9 ((2 ∈ ℂ ∧ (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ) → (2 · (ℜ‘(𝑥 · (∗‘𝑦)))) ∈ ℂ)
3123, 29, 30sylancr 581 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (2 · (ℜ‘(𝑥 · (∗‘𝑦)))) ∈ ℂ)
3222, 31, 22ppncand 10760 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))) + ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦)))))) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3314, 32eqtrd 2861 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
34 2times 11501 . . . . . . . 8 ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ → (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3534eqcomd 2831 . . . . . . 7 ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ → ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3622, 35syl 17 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3733, 36eqtrd 2861 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3811, 37eqtrd 2861 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3938rgen2a 3186 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)))
40 addex 12117 . . . 4 + ∈ V
41 mulex 12118 . . . 4 · ∈ V
42 absf 14461 . . . . 5 abs:ℂ⟶ℝ
43 cnex 10340 . . . . 5 ℂ ∈ V
44 fex 6750 . . . . 5 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4542, 43, 44mp2an 683 . . . 4 abs ∈ V
46 cnaddabloOLD 27987 . . . . . . 7 + ∈ AbelOp
47 ablogrpo 27953 . . . . . . 7 ( + ∈ AbelOp → + ∈ GrpOp)
4846, 47ax-mp 5 . . . . . 6 + ∈ GrpOp
49 ax-addf 10338 . . . . . . 7 + :(ℂ × ℂ)⟶ℂ
5049fdmi 6292 . . . . . 6 dom + = (ℂ × ℂ)
5148, 50grporn 27927 . . . . 5 ℂ = ran +
5251isphg 28223 . . . 4 (( + ∈ V ∧ · ∈ V ∧ abs ∈ V) → (⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))))
5340, 41, 45, 52mp3an 1589 . . 3 (⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)))))
543, 39, 53mpbir2an 702 . 2 ⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD
551, 54eqeltri 2902 1 𝑈 ∈ CPreHilOLD
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  cop 4405   × cxp 5344  wf 6123  cfv 6127  (class class class)co 6910  cc 10257  cr 10258  1c1 10260   + caddc 10262   · cmul 10264  cmin 10592  -cneg 10593  2c2 11413  cexp 13161  ccj 14220  cre 14221  abscabs 14358  GrpOpcgr 27895  AbelOpcablo 27950  NrmCVeccnv 27990  CPreHilOLDccphlo 28218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-grpo 27899  df-gid 27900  df-ablo 27951  df-vc 27965  df-nv 27998  df-ph 28219
This theorem is referenced by:  elimphu  28227  cnchl  28323
  Copyright terms: Public domain W3C validator