MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncph Structured version   Visualization version   GIF version

Theorem cncph 29082
Description: The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
cncph.6 𝑈 = ⟨⟨ + , · ⟩, abs⟩
Assertion
Ref Expression
cncph 𝑈 ∈ CPreHilOLD

Proof of Theorem cncph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncph.6 . 2 𝑈 = ⟨⟨ + , · ⟩, abs⟩
2 eqid 2738 . . . 4 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
32cnnv 28940 . . 3 ⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec
4 mulm1 11346 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (-1 · 𝑦) = -𝑦)
54adantl 481 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-1 · 𝑦) = -𝑦)
65oveq2d 7271 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥 + -𝑦))
7 negsub 11199 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥𝑦))
86, 7eqtrd 2778 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥𝑦))
98fveq2d 6760 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + (-1 · 𝑦))) = (abs‘(𝑥𝑦)))
109oveq1d 7270 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 + (-1 · 𝑦)))↑2) = ((abs‘(𝑥𝑦))↑2))
1110oveq2d 7271 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)))
12 sqabsadd 14922 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 + 𝑦))↑2) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))))
13 sqabssub 14923 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥𝑦))↑2) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦))))))
1412, 13oveq12d 7273 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = (((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))) + ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦)))))))
15 abscl 14918 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
1615recnd 10934 . . . . . . . . . 10 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℂ)
1716sqcld 13790 . . . . . . . . 9 (𝑥 ∈ ℂ → ((abs‘𝑥)↑2) ∈ ℂ)
18 abscl 14918 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℝ)
1918recnd 10934 . . . . . . . . . 10 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℂ)
2019sqcld 13790 . . . . . . . . 9 (𝑦 ∈ ℂ → ((abs‘𝑦)↑2) ∈ ℂ)
21 addcl 10884 . . . . . . . . 9 ((((abs‘𝑥)↑2) ∈ ℂ ∧ ((abs‘𝑦)↑2) ∈ ℂ) → (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ)
2217, 20, 21syl2an 595 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ)
23 2cn 11978 . . . . . . . . 9 2 ∈ ℂ
24 cjcl 14744 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (∗‘𝑦) ∈ ℂ)
25 mulcl 10886 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (∗‘𝑦) ∈ ℂ) → (𝑥 · (∗‘𝑦)) ∈ ℂ)
2624, 25sylan2 592 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · (∗‘𝑦)) ∈ ℂ)
27 recl 14749 . . . . . . . . . . 11 ((𝑥 · (∗‘𝑦)) ∈ ℂ → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℝ)
2827recnd 10934 . . . . . . . . . 10 ((𝑥 · (∗‘𝑦)) ∈ ℂ → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ)
2926, 28syl 17 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ)
30 mulcl 10886 . . . . . . . . 9 ((2 ∈ ℂ ∧ (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ) → (2 · (ℜ‘(𝑥 · (∗‘𝑦)))) ∈ ℂ)
3123, 29, 30sylancr 586 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (2 · (ℜ‘(𝑥 · (∗‘𝑦)))) ∈ ℂ)
3222, 31, 22ppncand 11302 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))) + ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦)))))) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3314, 32eqtrd 2778 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
34 2times 12039 . . . . . . . 8 ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ → (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3534eqcomd 2744 . . . . . . 7 ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ → ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3622, 35syl 17 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3733, 36eqtrd 2778 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3811, 37eqtrd 2778 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3938rgen2 3126 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)))
40 addex 12657 . . . 4 + ∈ V
41 mulex 12658 . . . 4 · ∈ V
42 absf 14977 . . . . 5 abs:ℂ⟶ℝ
43 cnex 10883 . . . . 5 ℂ ∈ V
44 fex 7084 . . . . 5 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4542, 43, 44mp2an 688 . . . 4 abs ∈ V
46 cnaddabloOLD 28844 . . . . . . 7 + ∈ AbelOp
47 ablogrpo 28810 . . . . . . 7 ( + ∈ AbelOp → + ∈ GrpOp)
4846, 47ax-mp 5 . . . . . 6 + ∈ GrpOp
49 ax-addf 10881 . . . . . . 7 + :(ℂ × ℂ)⟶ℂ
5049fdmi 6596 . . . . . 6 dom + = (ℂ × ℂ)
5148, 50grporn 28784 . . . . 5 ℂ = ran +
5251isphg 29080 . . . 4 (( + ∈ V ∧ · ∈ V ∧ abs ∈ V) → (⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))))
5340, 41, 45, 52mp3an 1459 . . 3 (⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)))))
543, 39, 53mpbir2an 707 . 2 ⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD
551, 54eqeltri 2835 1 𝑈 ∈ CPreHilOLD
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cop 4564   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136  2c2 11958  cexp 13710  ccj 14735  cre 14736  abscabs 14873  GrpOpcgr 28752  AbelOpcablo 28807  NrmCVeccnv 28847  CPreHilOLDccphlo 29075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-grpo 28756  df-gid 28757  df-ablo 28808  df-vc 28822  df-nv 28855  df-ph 29076
This theorem is referenced by:  elimphu  29084  cnchl  29179
  Copyright terms: Public domain W3C validator