MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncph Structured version   Visualization version   GIF version

Theorem cncph 29761
Description: The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
cncph.6 𝑈 = ⟨⟨ + , · ⟩, abs⟩
Assertion
Ref Expression
cncph 𝑈 ∈ CPreHilOLD

Proof of Theorem cncph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncph.6 . 2 𝑈 = ⟨⟨ + , · ⟩, abs⟩
2 eqid 2736 . . . 4 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
32cnnv 29619 . . 3 ⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec
4 mulm1 11596 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (-1 · 𝑦) = -𝑦)
54adantl 482 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-1 · 𝑦) = -𝑦)
65oveq2d 7373 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥 + -𝑦))
7 negsub 11449 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥𝑦))
86, 7eqtrd 2776 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥𝑦))
98fveq2d 6846 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + (-1 · 𝑦))) = (abs‘(𝑥𝑦)))
109oveq1d 7372 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 + (-1 · 𝑦)))↑2) = ((abs‘(𝑥𝑦))↑2))
1110oveq2d 7373 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)))
12 sqabsadd 15167 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥 + 𝑦))↑2) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))))
13 sqabssub 15168 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((abs‘(𝑥𝑦))↑2) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦))))))
1412, 13oveq12d 7375 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = (((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))) + ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦)))))))
15 abscl 15163 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
1615recnd 11183 . . . . . . . . . 10 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℂ)
1716sqcld 14049 . . . . . . . . 9 (𝑥 ∈ ℂ → ((abs‘𝑥)↑2) ∈ ℂ)
18 abscl 15163 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℝ)
1918recnd 11183 . . . . . . . . . 10 (𝑦 ∈ ℂ → (abs‘𝑦) ∈ ℂ)
2019sqcld 14049 . . . . . . . . 9 (𝑦 ∈ ℂ → ((abs‘𝑦)↑2) ∈ ℂ)
21 addcl 11133 . . . . . . . . 9 ((((abs‘𝑥)↑2) ∈ ℂ ∧ ((abs‘𝑦)↑2) ∈ ℂ) → (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ)
2217, 20, 21syl2an 596 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ)
23 2cn 12228 . . . . . . . . 9 2 ∈ ℂ
24 cjcl 14990 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (∗‘𝑦) ∈ ℂ)
25 mulcl 11135 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (∗‘𝑦) ∈ ℂ) → (𝑥 · (∗‘𝑦)) ∈ ℂ)
2624, 25sylan2 593 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · (∗‘𝑦)) ∈ ℂ)
27 recl 14995 . . . . . . . . . . 11 ((𝑥 · (∗‘𝑦)) ∈ ℂ → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℝ)
2827recnd 11183 . . . . . . . . . 10 ((𝑥 · (∗‘𝑦)) ∈ ℂ → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ)
2926, 28syl 17 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ)
30 mulcl 11135 . . . . . . . . 9 ((2 ∈ ℂ ∧ (ℜ‘(𝑥 · (∗‘𝑦))) ∈ ℂ) → (2 · (ℜ‘(𝑥 · (∗‘𝑦)))) ∈ ℂ)
3123, 29, 30sylancr 587 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (2 · (ℜ‘(𝑥 · (∗‘𝑦)))) ∈ ℂ)
3222, 31, 22ppncand 11552 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (2 · (ℜ‘(𝑥 · (∗‘𝑦))))) + ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) − (2 · (ℜ‘(𝑥 · (∗‘𝑦)))))) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3314, 32eqtrd 2776 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
34 2times 12289 . . . . . . . 8 ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ → (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3534eqcomd 2742 . . . . . . 7 ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) ∈ ℂ → ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3622, 35syl 17 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)) + (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3733, 36eqtrd 2776 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥𝑦))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3811, 37eqtrd 2776 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))
3938rgen2 3194 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)))
40 addex 12913 . . . 4 + ∈ V
41 mulex 12914 . . . 4 · ∈ V
42 absf 15222 . . . . 5 abs:ℂ⟶ℝ
43 cnex 11132 . . . . 5 ℂ ∈ V
44 fex 7176 . . . . 5 ((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈ V)
4542, 43, 44mp2an 690 . . . 4 abs ∈ V
46 cnaddabloOLD 29523 . . . . . . 7 + ∈ AbelOp
47 ablogrpo 29489 . . . . . . 7 ( + ∈ AbelOp → + ∈ GrpOp)
4846, 47ax-mp 5 . . . . . 6 + ∈ GrpOp
49 ax-addf 11130 . . . . . . 7 + :(ℂ × ℂ)⟶ℂ
5049fdmi 6680 . . . . . 6 dom + = (ℂ × ℂ)
5148, 50grporn 29463 . . . . 5 ℂ = ran +
5251isphg 29759 . . . 4 (( + ∈ V ∧ · ∈ V ∧ abs ∈ V) → (⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2))))))
5340, 41, 45, 52mp3an 1461 . . 3 (⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, abs⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘(𝑥 + 𝑦))↑2) + ((abs‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((abs‘𝑥)↑2) + ((abs‘𝑦)↑2)))))
543, 39, 53mpbir2an 709 . 2 ⟨⟨ + , · ⟩, abs⟩ ∈ CPreHilOLD
551, 54eqeltri 2834 1 𝑈 ∈ CPreHilOLD
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cop 4592   × cxp 5631  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386  2c2 12208  cexp 13967  ccj 14981  cre 14982  abscabs 15119  GrpOpcgr 29431  AbelOpcablo 29486  NrmCVeccnv 29526  CPreHilOLDccphlo 29754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-grpo 29435  df-gid 29436  df-ablo 29487  df-vc 29501  df-nv 29534  df-ph 29755
This theorem is referenced by:  elimphu  29763  cnchl  29858
  Copyright terms: Public domain W3C validator