MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem4OLD Structured version   Visualization version   GIF version

Theorem itg1addlem4OLD 25659
Description: Obsolete version of itg1addlem4 25658 as of 6-Oct-2024. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
i1fadd.1 (πœ‘ β†’ 𝐹 ∈ dom ∫1)
i1fadd.2 (πœ‘ β†’ 𝐺 ∈ dom ∫1)
itg1add.3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (volβ€˜((◑𝐹 β€œ {𝑖}) ∩ (◑𝐺 β€œ {𝑗})))))
itg1add.4 𝑃 = ( + β†Ύ (ran 𝐹 Γ— ran 𝐺))
Assertion
Ref Expression
itg1addlem4OLD (πœ‘ β†’ (∫1β€˜(𝐹 ∘f + 𝐺)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)))
Distinct variable groups:   𝑖,𝑗,𝑦,𝑧   𝑦,𝐼   𝑦,𝑃,𝑧   𝑖,𝐹,𝑗,𝑦,𝑧   𝑖,𝐺,𝑗,𝑦,𝑧   πœ‘,𝑖,𝑗,𝑦,𝑧
Allowed substitution hints:   𝑃(𝑖,𝑗)   𝐼(𝑧,𝑖,𝑗)

Proof of Theorem itg1addlem4OLD
Dummy variables 𝑀 𝑣 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . 5 (πœ‘ β†’ 𝐹 ∈ dom ∫1)
2 i1fadd.2 . . . . 5 (πœ‘ β†’ 𝐺 ∈ dom ∫1)
31, 2i1fadd 25654 . . . 4 (πœ‘ β†’ (𝐹 ∘f + 𝐺) ∈ dom ∫1)
4 i1frn 25636 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ ran 𝐹 ∈ Fin)
51, 4syl 17 . . . . . . 7 (πœ‘ β†’ ran 𝐹 ∈ Fin)
6 i1frn 25636 . . . . . . . 8 (𝐺 ∈ dom ∫1 β†’ ran 𝐺 ∈ Fin)
72, 6syl 17 . . . . . . 7 (πœ‘ β†’ ran 𝐺 ∈ Fin)
8 xpfi 9341 . . . . . . 7 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) β†’ (ran 𝐹 Γ— ran 𝐺) ∈ Fin)
95, 7, 8syl2anc 582 . . . . . 6 (πœ‘ β†’ (ran 𝐹 Γ— ran 𝐺) ∈ Fin)
10 ax-addf 11217 . . . . . . . . . 10 + :(β„‚ Γ— β„‚)βŸΆβ„‚
11 ffn 6721 . . . . . . . . . 10 ( + :(β„‚ Γ— β„‚)βŸΆβ„‚ β†’ + Fn (β„‚ Γ— β„‚))
1210, 11ax-mp 5 . . . . . . . . 9 + Fn (β„‚ Γ— β„‚)
13 i1ff 25635 . . . . . . . . . . . . 13 (𝐹 ∈ dom ∫1 β†’ 𝐹:β„βŸΆβ„)
141, 13syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐹:β„βŸΆβ„)
1514frnd 6729 . . . . . . . . . . 11 (πœ‘ β†’ ran 𝐹 βŠ† ℝ)
16 ax-resscn 11195 . . . . . . . . . . 11 ℝ βŠ† β„‚
1715, 16sstrdi 3990 . . . . . . . . . 10 (πœ‘ β†’ ran 𝐹 βŠ† β„‚)
18 i1ff 25635 . . . . . . . . . . . . 13 (𝐺 ∈ dom ∫1 β†’ 𝐺:β„βŸΆβ„)
192, 18syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐺:β„βŸΆβ„)
2019frnd 6729 . . . . . . . . . . 11 (πœ‘ β†’ ran 𝐺 βŠ† ℝ)
2120, 16sstrdi 3990 . . . . . . . . . 10 (πœ‘ β†’ ran 𝐺 βŠ† β„‚)
22 xpss12 5692 . . . . . . . . . 10 ((ran 𝐹 βŠ† β„‚ ∧ ran 𝐺 βŠ† β„‚) β†’ (ran 𝐹 Γ— ran 𝐺) βŠ† (β„‚ Γ— β„‚))
2317, 21, 22syl2anc 582 . . . . . . . . 9 (πœ‘ β†’ (ran 𝐹 Γ— ran 𝐺) βŠ† (β„‚ Γ— β„‚))
24 fnssres 6677 . . . . . . . . 9 (( + Fn (β„‚ Γ— β„‚) ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† (β„‚ Γ— β„‚)) β†’ ( + β†Ύ (ran 𝐹 Γ— ran 𝐺)) Fn (ran 𝐹 Γ— ran 𝐺))
2512, 23, 24sylancr 585 . . . . . . . 8 (πœ‘ β†’ ( + β†Ύ (ran 𝐹 Γ— ran 𝐺)) Fn (ran 𝐹 Γ— ran 𝐺))
26 itg1add.4 . . . . . . . . 9 𝑃 = ( + β†Ύ (ran 𝐹 Γ— ran 𝐺))
2726fneq1i 6650 . . . . . . . 8 (𝑃 Fn (ran 𝐹 Γ— ran 𝐺) ↔ ( + β†Ύ (ran 𝐹 Γ— ran 𝐺)) Fn (ran 𝐹 Γ— ran 𝐺))
2825, 27sylibr 233 . . . . . . 7 (πœ‘ β†’ 𝑃 Fn (ran 𝐹 Γ— ran 𝐺))
29 dffn4 6814 . . . . . . 7 (𝑃 Fn (ran 𝐹 Γ— ran 𝐺) ↔ 𝑃:(ran 𝐹 Γ— ran 𝐺)–ontoβ†’ran 𝑃)
3028, 29sylib 217 . . . . . 6 (πœ‘ β†’ 𝑃:(ran 𝐹 Γ— ran 𝐺)–ontoβ†’ran 𝑃)
31 fofi 9362 . . . . . 6 (((ran 𝐹 Γ— ran 𝐺) ∈ Fin ∧ 𝑃:(ran 𝐹 Γ— ran 𝐺)–ontoβ†’ran 𝑃) β†’ ran 𝑃 ∈ Fin)
329, 30, 31syl2anc 582 . . . . 5 (πœ‘ β†’ ran 𝑃 ∈ Fin)
33 difss 4129 . . . . 5 (ran 𝑃 βˆ– {0}) βŠ† ran 𝑃
34 ssfi 9196 . . . . 5 ((ran 𝑃 ∈ Fin ∧ (ran 𝑃 βˆ– {0}) βŠ† ran 𝑃) β†’ (ran 𝑃 βˆ– {0}) ∈ Fin)
3532, 33, 34sylancl 584 . . . 4 (πœ‘ β†’ (ran 𝑃 βˆ– {0}) ∈ Fin)
36 ffun 6724 . . . . . . . . . . 11 ( + :(β„‚ Γ— β„‚)βŸΆβ„‚ β†’ Fun + )
3710, 36ax-mp 5 . . . . . . . . . 10 Fun +
3810fdmi 6732 . . . . . . . . . . 11 dom + = (β„‚ Γ— β„‚)
3923, 38sseqtrrdi 4029 . . . . . . . . . 10 (πœ‘ β†’ (ran 𝐹 Γ— ran 𝐺) βŠ† dom + )
40 funfvima2 7241 . . . . . . . . . 10 ((Fun + ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† dom + ) β†’ (⟨π‘₯, π‘¦βŸ© ∈ (ran 𝐹 Γ— ran 𝐺) β†’ ( + β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ ( + β€œ (ran 𝐹 Γ— ran 𝐺))))
4137, 39, 40sylancr 585 . . . . . . . . 9 (πœ‘ β†’ (⟨π‘₯, π‘¦βŸ© ∈ (ran 𝐹 Γ— ran 𝐺) β†’ ( + β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ ( + β€œ (ran 𝐹 Γ— ran 𝐺))))
42 opelxpi 5714 . . . . . . . . 9 ((π‘₯ ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺) β†’ ⟨π‘₯, π‘¦βŸ© ∈ (ran 𝐹 Γ— ran 𝐺))
4341, 42impel 504 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺)) β†’ ( + β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ ( + β€œ (ran 𝐹 Γ— ran 𝐺)))
44 df-ov 7420 . . . . . . . 8 (π‘₯ + 𝑦) = ( + β€˜βŸ¨π‘₯, π‘¦βŸ©)
4526rneqi 5938 . . . . . . . . 9 ran 𝑃 = ran ( + β†Ύ (ran 𝐹 Γ— ran 𝐺))
46 df-ima 5690 . . . . . . . . 9 ( + β€œ (ran 𝐹 Γ— ran 𝐺)) = ran ( + β†Ύ (ran 𝐹 Γ— ran 𝐺))
4745, 46eqtr4i 2756 . . . . . . . 8 ran 𝑃 = ( + β€œ (ran 𝐹 Γ— ran 𝐺))
4843, 44, 473eltr4g 2842 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺)) β†’ (π‘₯ + 𝑦) ∈ ran 𝑃)
4914ffnd 6722 . . . . . . . 8 (πœ‘ β†’ 𝐹 Fn ℝ)
50 dffn3 6733 . . . . . . . 8 (𝐹 Fn ℝ ↔ 𝐹:β„βŸΆran 𝐹)
5149, 50sylib 217 . . . . . . 7 (πœ‘ β†’ 𝐹:β„βŸΆran 𝐹)
5219ffnd 6722 . . . . . . . 8 (πœ‘ β†’ 𝐺 Fn ℝ)
53 dffn3 6733 . . . . . . . 8 (𝐺 Fn ℝ ↔ 𝐺:β„βŸΆran 𝐺)
5452, 53sylib 217 . . . . . . 7 (πœ‘ β†’ 𝐺:β„βŸΆran 𝐺)
55 reex 11229 . . . . . . . 8 ℝ ∈ V
5655a1i 11 . . . . . . 7 (πœ‘ β†’ ℝ ∈ V)
57 inidm 4218 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
5848, 51, 54, 56, 56, 57off 7701 . . . . . 6 (πœ‘ β†’ (𝐹 ∘f + 𝐺):β„βŸΆran 𝑃)
5958frnd 6729 . . . . 5 (πœ‘ β†’ ran (𝐹 ∘f + 𝐺) βŠ† ran 𝑃)
6059ssdifd 4138 . . . 4 (πœ‘ β†’ (ran (𝐹 ∘f + 𝐺) βˆ– {0}) βŠ† (ran 𝑃 βˆ– {0}))
6115sselda 3977 . . . . . . . . . 10 ((πœ‘ ∧ 𝑦 ∈ ran 𝐹) β†’ 𝑦 ∈ ℝ)
6220sselda 3977 . . . . . . . . . 10 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ 𝑧 ∈ ℝ)
6361, 62anim12dan 617 . . . . . . . . 9 ((πœ‘ ∧ (𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐺)) β†’ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ))
64 readdcl 11221 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) β†’ (𝑦 + 𝑧) ∈ ℝ)
6563, 64syl 17 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐺)) β†’ (𝑦 + 𝑧) ∈ ℝ)
6665ralrimivva 3191 . . . . . . 7 (πœ‘ β†’ βˆ€π‘¦ ∈ ran πΉβˆ€π‘§ ∈ ran 𝐺(𝑦 + 𝑧) ∈ ℝ)
67 funimassov 7596 . . . . . . . 8 ((Fun + ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† dom + ) β†’ (( + β€œ (ran 𝐹 Γ— ran 𝐺)) βŠ† ℝ ↔ βˆ€π‘¦ ∈ ran πΉβˆ€π‘§ ∈ ran 𝐺(𝑦 + 𝑧) ∈ ℝ))
6837, 39, 67sylancr 585 . . . . . . 7 (πœ‘ β†’ (( + β€œ (ran 𝐹 Γ— ran 𝐺)) βŠ† ℝ ↔ βˆ€π‘¦ ∈ ran πΉβˆ€π‘§ ∈ ran 𝐺(𝑦 + 𝑧) ∈ ℝ))
6966, 68mpbird 256 . . . . . 6 (πœ‘ β†’ ( + β€œ (ran 𝐹 Γ— ran 𝐺)) βŠ† ℝ)
7047, 69eqsstrid 4026 . . . . 5 (πœ‘ β†’ ran 𝑃 βŠ† ℝ)
7170ssdifd 4138 . . . 4 (πœ‘ β†’ (ran 𝑃 βˆ– {0}) βŠ† (ℝ βˆ– {0}))
72 itg1val2 25643 . . . 4 (((𝐹 ∘f + 𝐺) ∈ dom ∫1 ∧ ((ran 𝑃 βˆ– {0}) ∈ Fin ∧ (ran (𝐹 ∘f + 𝐺) βˆ– {0}) βŠ† (ran 𝑃 βˆ– {0}) ∧ (ran 𝑃 βˆ– {0}) βŠ† (ℝ βˆ– {0}))) β†’ (∫1β€˜(𝐹 ∘f + 𝐺)) = Σ𝑀 ∈ (ran 𝑃 βˆ– {0})(𝑀 Β· (volβ€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑀}))))
733, 35, 60, 71, 72syl13anc 1369 . . 3 (πœ‘ β†’ (∫1β€˜(𝐹 ∘f + 𝐺)) = Σ𝑀 ∈ (ran 𝑃 βˆ– {0})(𝑀 Β· (volβ€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑀}))))
7419adantr 479 . . . . . . . 8 ((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ 𝐺:β„βŸΆβ„)
757adantr 479 . . . . . . . 8 ((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ ran 𝐺 ∈ Fin)
76 inss2 4229 . . . . . . . . 9 ((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧})) βŠ† (◑𝐺 β€œ {𝑧})
7776a1i 11 . . . . . . . 8 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ ((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧})) βŠ† (◑𝐺 β€œ {𝑧}))
78 i1fima 25637 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 β†’ (◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∈ dom vol)
791, 78syl 17 . . . . . . . . . 10 (πœ‘ β†’ (◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∈ dom vol)
80 i1fima 25637 . . . . . . . . . . 11 (𝐺 ∈ dom ∫1 β†’ (◑𝐺 β€œ {𝑧}) ∈ dom vol)
812, 80syl 17 . . . . . . . . . 10 (πœ‘ β†’ (◑𝐺 β€œ {𝑧}) ∈ dom vol)
82 inmbl 25501 . . . . . . . . . 10 (((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∈ dom vol ∧ (◑𝐺 β€œ {𝑧}) ∈ dom vol) β†’ ((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧})) ∈ dom vol)
8379, 81, 82syl2anc 582 . . . . . . . . 9 (πœ‘ β†’ ((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧})) ∈ dom vol)
8483ad2antrr 724 . . . . . . . 8 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ ((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧})) ∈ dom vol)
8533, 70sstrid 3989 . . . . . . . . . . . . 13 (πœ‘ β†’ (ran 𝑃 βˆ– {0}) βŠ† ℝ)
8685sselda 3977 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ 𝑀 ∈ ℝ)
8786adantr 479 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ 𝑀 ∈ ℝ)
8862adantlr 713 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ 𝑧 ∈ ℝ)
8987, 88resubcld 11672 . . . . . . . . . 10 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ (𝑀 βˆ’ 𝑧) ∈ ℝ)
9087recnd 11272 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ 𝑀 ∈ β„‚)
9188recnd 11272 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ 𝑧 ∈ β„‚)
9290, 91npcand 11605 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ ((𝑀 βˆ’ 𝑧) + 𝑧) = 𝑀)
93 eldifsni 4794 . . . . . . . . . . . . 13 (𝑀 ∈ (ran 𝑃 βˆ– {0}) β†’ 𝑀 β‰  0)
9493ad2antlr 725 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ 𝑀 β‰  0)
9592, 94eqnetrd 2998 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ ((𝑀 βˆ’ 𝑧) + 𝑧) β‰  0)
96 oveq12 7426 . . . . . . . . . . . . 13 (((𝑀 βˆ’ 𝑧) = 0 ∧ 𝑧 = 0) β†’ ((𝑀 βˆ’ 𝑧) + 𝑧) = (0 + 0))
97 00id 11419 . . . . . . . . . . . . 13 (0 + 0) = 0
9896, 97eqtrdi 2781 . . . . . . . . . . . 12 (((𝑀 βˆ’ 𝑧) = 0 ∧ 𝑧 = 0) β†’ ((𝑀 βˆ’ 𝑧) + 𝑧) = 0)
9998necon3ai 2955 . . . . . . . . . . 11 (((𝑀 βˆ’ 𝑧) + 𝑧) β‰  0 β†’ Β¬ ((𝑀 βˆ’ 𝑧) = 0 ∧ 𝑧 = 0))
10095, 99syl 17 . . . . . . . . . 10 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ Β¬ ((𝑀 βˆ’ 𝑧) = 0 ∧ 𝑧 = 0))
101 itg1add.3 . . . . . . . . . . 11 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (volβ€˜((◑𝐹 β€œ {𝑖}) ∩ (◑𝐺 β€œ {𝑗})))))
1021, 2, 101itg1addlem3 25657 . . . . . . . . . 10 ((((𝑀 βˆ’ 𝑧) ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ Β¬ ((𝑀 βˆ’ 𝑧) = 0 ∧ 𝑧 = 0)) β†’ ((𝑀 βˆ’ 𝑧)𝐼𝑧) = (volβ€˜((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧}))))
10389, 88, 100, 102syl21anc 836 . . . . . . . . 9 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ ((𝑀 βˆ’ 𝑧)𝐼𝑧) = (volβ€˜((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧}))))
1041, 2, 101itg1addlem2 25656 . . . . . . . . . . 11 (πœ‘ β†’ 𝐼:(ℝ Γ— ℝ)βŸΆβ„)
105104ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ 𝐼:(ℝ Γ— ℝ)βŸΆβ„)
106105, 89, 88fovcdmd 7591 . . . . . . . . 9 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ ((𝑀 βˆ’ 𝑧)𝐼𝑧) ∈ ℝ)
107103, 106eqeltrrd 2826 . . . . . . . 8 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ (volβ€˜((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧}))) ∈ ℝ)
10874, 75, 77, 84, 107itg1addlem1 25651 . . . . . . 7 ((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ (volβ€˜βˆͺ 𝑧 ∈ ran 𝐺((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧}))) = Σ𝑧 ∈ ran 𝐺(volβ€˜((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧}))))
10986recnd 11272 . . . . . . . . 9 ((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ 𝑀 ∈ β„‚)
1101, 2i1faddlem 25652 . . . . . . . . 9 ((πœ‘ ∧ 𝑀 ∈ β„‚) β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ {𝑀}) = βˆͺ 𝑧 ∈ ran 𝐺((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧})))
111109, 110syldan 589 . . . . . . . 8 ((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ {𝑀}) = βˆͺ 𝑧 ∈ ran 𝐺((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧})))
112111fveq2d 6898 . . . . . . 7 ((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ (volβ€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑀})) = (volβ€˜βˆͺ 𝑧 ∈ ran 𝐺((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧}))))
113103sumeq2dv 15681 . . . . . . 7 ((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ Σ𝑧 ∈ ran 𝐺((𝑀 βˆ’ 𝑧)𝐼𝑧) = Σ𝑧 ∈ ran 𝐺(volβ€˜((◑𝐹 β€œ {(𝑀 βˆ’ 𝑧)}) ∩ (◑𝐺 β€œ {𝑧}))))
114108, 112, 1133eqtr4d 2775 . . . . . 6 ((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ (volβ€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑀})) = Σ𝑧 ∈ ran 𝐺((𝑀 βˆ’ 𝑧)𝐼𝑧))
115114oveq2d 7433 . . . . 5 ((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ (𝑀 Β· (volβ€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑀}))) = (𝑀 Β· Σ𝑧 ∈ ran 𝐺((𝑀 βˆ’ 𝑧)𝐼𝑧)))
116106recnd 11272 . . . . . 6 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ ((𝑀 βˆ’ 𝑧)𝐼𝑧) ∈ β„‚)
11775, 109, 116fsummulc2 15762 . . . . 5 ((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ (𝑀 Β· Σ𝑧 ∈ ran 𝐺((𝑀 βˆ’ 𝑧)𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺(𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
118115, 117eqtrd 2765 . . . 4 ((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ (𝑀 Β· (volβ€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑀}))) = Σ𝑧 ∈ ran 𝐺(𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
119118sumeq2dv 15681 . . 3 (πœ‘ β†’ Σ𝑀 ∈ (ran 𝑃 βˆ– {0})(𝑀 Β· (volβ€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑀}))) = Σ𝑀 ∈ (ran 𝑃 βˆ– {0})Σ𝑧 ∈ ran 𝐺(𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
12090, 116mulcld 11264 . . . . 5 (((πœ‘ ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) ∧ 𝑧 ∈ ran 𝐺) β†’ (𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)) ∈ β„‚)
121120anasss 465 . . . 4 ((πœ‘ ∧ (𝑀 ∈ (ran 𝑃 βˆ– {0}) ∧ 𝑧 ∈ ran 𝐺)) β†’ (𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)) ∈ β„‚)
12235, 7, 121fsumcom 15753 . . 3 (πœ‘ β†’ Σ𝑀 ∈ (ran 𝑃 βˆ– {0})Σ𝑧 ∈ ran 𝐺(𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺Σ𝑀 ∈ (ran 𝑃 βˆ– {0})(𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
12373, 119, 1223eqtrd 2769 . 2 (πœ‘ β†’ (∫1β€˜(𝐹 ∘f + 𝐺)) = Σ𝑧 ∈ ran 𝐺Σ𝑀 ∈ (ran 𝑃 βˆ– {0})(𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
124 oveq1 7424 . . . . . . 7 (𝑦 = (𝑀 βˆ’ 𝑧) β†’ (𝑦 + 𝑧) = ((𝑀 βˆ’ 𝑧) + 𝑧))
125 oveq1 7424 . . . . . . 7 (𝑦 = (𝑀 βˆ’ 𝑧) β†’ (𝑦𝐼𝑧) = ((𝑀 βˆ’ 𝑧)𝐼𝑧))
126124, 125oveq12d 7435 . . . . . 6 (𝑦 = (𝑀 βˆ’ 𝑧) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = (((𝑀 βˆ’ 𝑧) + 𝑧) Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
12732adantr 479 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ ran 𝑃 ∈ Fin)
12870adantr 479 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ ran 𝑃 βŠ† ℝ)
129128sselda 3977 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑣 ∈ ran 𝑃) β†’ 𝑣 ∈ ℝ)
13062adantr 479 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑣 ∈ ran 𝑃) β†’ 𝑧 ∈ ℝ)
131129, 130resubcld 11672 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑣 ∈ ran 𝑃) β†’ (𝑣 βˆ’ 𝑧) ∈ ℝ)
132131ex 411 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ (𝑣 ∈ ran 𝑃 β†’ (𝑣 βˆ’ 𝑧) ∈ ℝ))
133129recnd 11272 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑣 ∈ ran 𝑃) β†’ 𝑣 ∈ β„‚)
134133adantrr 715 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃)) β†’ 𝑣 ∈ β„‚)
13570sselda 3977 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑦 ∈ ran 𝑃) β†’ 𝑦 ∈ ℝ)
136135ad2ant2rl 747 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃)) β†’ 𝑦 ∈ ℝ)
137136recnd 11272 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃)) β†’ 𝑦 ∈ β„‚)
13862recnd 11272 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ 𝑧 ∈ β„‚)
139138adantr 479 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃)) β†’ 𝑧 ∈ β„‚)
140134, 137, 139subcan2ad 11646 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃)) β†’ ((𝑣 βˆ’ 𝑧) = (𝑦 βˆ’ 𝑧) ↔ 𝑣 = 𝑦))
141140ex 411 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ ((𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃) β†’ ((𝑣 βˆ’ 𝑧) = (𝑦 βˆ’ 𝑧) ↔ 𝑣 = 𝑦)))
142132, 141dom2lem 9011 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)):ran 𝑃–1-1→ℝ)
143 f1f1orn 6847 . . . . . . 7 ((𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)):ran 𝑃–1-1→ℝ β†’ (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)):ran 𝑃–1-1-ontoβ†’ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)))
144142, 143syl 17 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)):ran 𝑃–1-1-ontoβ†’ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)))
145 oveq1 7424 . . . . . . . 8 (𝑣 = 𝑀 β†’ (𝑣 βˆ’ 𝑧) = (𝑀 βˆ’ 𝑧))
146 eqid 2725 . . . . . . . 8 (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)) = (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))
147 ovex 7450 . . . . . . . 8 (𝑀 βˆ’ 𝑧) ∈ V
148145, 146, 147fvmpt 7002 . . . . . . 7 (𝑀 ∈ ran 𝑃 β†’ ((𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))β€˜π‘€) = (𝑀 βˆ’ 𝑧))
149148adantl 480 . . . . . 6 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ ran 𝑃) β†’ ((𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))β€˜π‘€) = (𝑀 βˆ’ 𝑧))
150 f1f 6791 . . . . . . . . . . 11 ((𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)):ran 𝑃–1-1→ℝ β†’ (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)):ran π‘ƒβŸΆβ„)
151 frn 6728 . . . . . . . . . . 11 ((𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)):ran π‘ƒβŸΆβ„ β†’ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)) βŠ† ℝ)
152142, 150, 1513syl 18 . . . . . . . . . 10 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)) βŠ† ℝ)
153152sselda 3977 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))) β†’ 𝑦 ∈ ℝ)
15462adantr 479 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))) β†’ 𝑧 ∈ ℝ)
155153, 154readdcld 11273 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))) β†’ (𝑦 + 𝑧) ∈ ℝ)
156104ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))) β†’ 𝐼:(ℝ Γ— ℝ)βŸΆβ„)
157156, 153, 154fovcdmd 7591 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))) β†’ (𝑦𝐼𝑧) ∈ ℝ)
158155, 157remulcld 11274 . . . . . . 7 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) ∈ ℝ)
159158recnd 11272 . . . . . 6 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) ∈ β„‚)
160126, 127, 144, 149, 159fsumf1o 15701 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ Σ𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = Σ𝑀 ∈ ran 𝑃(((𝑀 βˆ’ 𝑧) + 𝑧) Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
161128sselda 3977 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ ran 𝑃) β†’ 𝑀 ∈ ℝ)
162161recnd 11272 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ ran 𝑃) β†’ 𝑀 ∈ β„‚)
163138adantr 479 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ ran 𝑃) β†’ 𝑧 ∈ β„‚)
164162, 163npcand 11605 . . . . . . 7 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ ran 𝑃) β†’ ((𝑀 βˆ’ 𝑧) + 𝑧) = 𝑀)
165164oveq1d 7432 . . . . . 6 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ ran 𝑃) β†’ (((𝑀 βˆ’ 𝑧) + 𝑧) Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)) = (𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
166165sumeq2dv 15681 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ Σ𝑀 ∈ ran 𝑃(((𝑀 βˆ’ 𝑧) + 𝑧) Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)) = Σ𝑀 ∈ ran 𝑃(𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
167160, 166eqtrd 2765 . . . 4 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ Σ𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = Σ𝑀 ∈ ran 𝑃(𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
16839ad2antrr 724 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ (ran 𝐹 Γ— ran 𝐺) βŠ† dom + )
169 simpr 483 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ 𝑦 ∈ ran 𝐹)
170 simplr 767 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ 𝑧 ∈ ran 𝐺)
171169, 170opelxpd 5716 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ βŸ¨π‘¦, π‘§βŸ© ∈ (ran 𝐹 Γ— ran 𝐺))
172 funfvima2 7241 . . . . . . . . . . . 12 ((Fun + ∧ (ran 𝐹 Γ— ran 𝐺) βŠ† dom + ) β†’ (βŸ¨π‘¦, π‘§βŸ© ∈ (ran 𝐹 Γ— ran 𝐺) β†’ ( + β€˜βŸ¨π‘¦, π‘§βŸ©) ∈ ( + β€œ (ran 𝐹 Γ— ran 𝐺))))
17337, 172mpan 688 . . . . . . . . . . 11 ((ran 𝐹 Γ— ran 𝐺) βŠ† dom + β†’ (βŸ¨π‘¦, π‘§βŸ© ∈ (ran 𝐹 Γ— ran 𝐺) β†’ ( + β€˜βŸ¨π‘¦, π‘§βŸ©) ∈ ( + β€œ (ran 𝐹 Γ— ran 𝐺))))
174168, 171, 173sylc 65 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ ( + β€˜βŸ¨π‘¦, π‘§βŸ©) ∈ ( + β€œ (ran 𝐹 Γ— ran 𝐺)))
175 df-ov 7420 . . . . . . . . . 10 (𝑦 + 𝑧) = ( + β€˜βŸ¨π‘¦, π‘§βŸ©)
176174, 175, 473eltr4g 2842 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ (𝑦 + 𝑧) ∈ ran 𝑃)
17761adantlr 713 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ 𝑦 ∈ ℝ)
178177recnd 11272 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ 𝑦 ∈ β„‚)
179138adantr 479 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ 𝑧 ∈ β„‚)
180178, 179pncand 11602 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ ((𝑦 + 𝑧) βˆ’ 𝑧) = 𝑦)
181180eqcomd 2731 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ 𝑦 = ((𝑦 + 𝑧) βˆ’ 𝑧))
182 oveq1 7424 . . . . . . . . . 10 (𝑣 = (𝑦 + 𝑧) β†’ (𝑣 βˆ’ 𝑧) = ((𝑦 + 𝑧) βˆ’ 𝑧))
183182rspceeqv 3629 . . . . . . . . 9 (((𝑦 + 𝑧) ∈ ran 𝑃 ∧ 𝑦 = ((𝑦 + 𝑧) βˆ’ 𝑧)) β†’ βˆƒπ‘£ ∈ ran 𝑃 𝑦 = (𝑣 βˆ’ 𝑧))
184176, 181, 183syl2anc 582 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ βˆƒπ‘£ ∈ ran 𝑃 𝑦 = (𝑣 βˆ’ 𝑧))
185184ralrimiva 3136 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ βˆ€π‘¦ ∈ ran πΉβˆƒπ‘£ ∈ ran 𝑃 𝑦 = (𝑣 βˆ’ 𝑧))
186 ssabral 4057 . . . . . . 7 (ran 𝐹 βŠ† {𝑦 ∣ βˆƒπ‘£ ∈ ran 𝑃 𝑦 = (𝑣 βˆ’ 𝑧)} ↔ βˆ€π‘¦ ∈ ran πΉβˆƒπ‘£ ∈ ran 𝑃 𝑦 = (𝑣 βˆ’ 𝑧))
187185, 186sylibr 233 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ ran 𝐹 βŠ† {𝑦 ∣ βˆƒπ‘£ ∈ ran 𝑃 𝑦 = (𝑣 βˆ’ 𝑧)})
188146rnmpt 5956 . . . . . 6 ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)) = {𝑦 ∣ βˆƒπ‘£ ∈ ran 𝑃 𝑦 = (𝑣 βˆ’ 𝑧)}
189187, 188sseqtrrdi 4029 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ ran 𝐹 βŠ† ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)))
19062adantr 479 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ 𝑧 ∈ ℝ)
191177, 190readdcld 11273 . . . . . . 7 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ (𝑦 + 𝑧) ∈ ℝ)
192104ad2antrr 724 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ 𝐼:(ℝ Γ— ℝ)βŸΆβ„)
193192, 177, 190fovcdmd 7591 . . . . . . 7 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ (𝑦𝐼𝑧) ∈ ℝ)
194191, 193remulcld 11274 . . . . . 6 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) ∈ ℝ)
195194recnd 11272 . . . . 5 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) ∈ β„‚)
196152ssdifd 4138 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ (ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)) βˆ– ran 𝐹) βŠ† (ℝ βˆ– ran 𝐹))
197196sselda 3977 . . . . . 6 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ (ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)) βˆ– ran 𝐹)) β†’ 𝑦 ∈ (ℝ βˆ– ran 𝐹))
198 eldifi 4124 . . . . . . . . . . . . 13 (𝑦 ∈ (ℝ βˆ– ran 𝐹) β†’ 𝑦 ∈ ℝ)
199198ad2antrl 726 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ 𝑦 ∈ ℝ)
20062adantr 479 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ 𝑧 ∈ ℝ)
201 simprr 771 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))
2021, 2, 101itg1addlem3 25657 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0)) β†’ (𝑦𝐼𝑧) = (volβ€˜((◑𝐹 β€œ {𝑦}) ∩ (◑𝐺 β€œ {𝑧}))))
203199, 200, 201, 202syl21anc 836 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ (𝑦𝐼𝑧) = (volβ€˜((◑𝐹 β€œ {𝑦}) ∩ (◑𝐺 β€œ {𝑧}))))
204 inss1 4228 . . . . . . . . . . . . . . 15 ((◑𝐹 β€œ {𝑦}) ∩ (◑𝐺 β€œ {𝑧})) βŠ† (◑𝐹 β€œ {𝑦})
205 eldifn 4125 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (ℝ βˆ– ran 𝐹) β†’ Β¬ 𝑦 ∈ ran 𝐹)
206205ad2antrl 726 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ Β¬ 𝑦 ∈ ran 𝐹)
207 vex 3467 . . . . . . . . . . . . . . . . . . . . 21 𝑣 ∈ V
208207eliniseg 6098 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ V β†’ (𝑣 ∈ (◑𝐹 β€œ {𝑦}) ↔ 𝑣𝐹𝑦))
209208elv 3469 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ (◑𝐹 β€œ {𝑦}) ↔ 𝑣𝐹𝑦)
210 vex 3467 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ V
211207, 210brelrn 5943 . . . . . . . . . . . . . . . . . . 19 (𝑣𝐹𝑦 β†’ 𝑦 ∈ ran 𝐹)
212209, 211sylbi 216 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ (◑𝐹 β€œ {𝑦}) β†’ 𝑦 ∈ ran 𝐹)
213206, 212nsyl 140 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ Β¬ 𝑣 ∈ (◑𝐹 β€œ {𝑦}))
214213pm2.21d 121 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ (𝑣 ∈ (◑𝐹 β€œ {𝑦}) β†’ 𝑣 ∈ βˆ…))
215214ssrdv 3983 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ (◑𝐹 β€œ {𝑦}) βŠ† βˆ…)
216204, 215sstrid 3989 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ ((◑𝐹 β€œ {𝑦}) ∩ (◑𝐺 β€œ {𝑧})) βŠ† βˆ…)
217 ss0 4399 . . . . . . . . . . . . . 14 (((◑𝐹 β€œ {𝑦}) ∩ (◑𝐺 β€œ {𝑧})) βŠ† βˆ… β†’ ((◑𝐹 β€œ {𝑦}) ∩ (◑𝐺 β€œ {𝑧})) = βˆ…)
218216, 217syl 17 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ ((◑𝐹 β€œ {𝑦}) ∩ (◑𝐺 β€œ {𝑧})) = βˆ…)
219218fveq2d 6898 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ (volβ€˜((◑𝐹 β€œ {𝑦}) ∩ (◑𝐺 β€œ {𝑧}))) = (volβ€˜βˆ…))
220 0mbl 25498 . . . . . . . . . . . . . 14 βˆ… ∈ dom vol
221 mblvol 25489 . . . . . . . . . . . . . 14 (βˆ… ∈ dom vol β†’ (volβ€˜βˆ…) = (vol*β€˜βˆ…))
222220, 221ax-mp 5 . . . . . . . . . . . . 13 (volβ€˜βˆ…) = (vol*β€˜βˆ…)
223 ovol0 25452 . . . . . . . . . . . . 13 (vol*β€˜βˆ…) = 0
224222, 223eqtri 2753 . . . . . . . . . . . 12 (volβ€˜βˆ…) = 0
225219, 224eqtrdi 2781 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ (volβ€˜((◑𝐹 β€œ {𝑦}) ∩ (◑𝐺 β€œ {𝑧}))) = 0)
226203, 225eqtrd 2765 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ (𝑦𝐼𝑧) = 0)
227226oveq2d 7433 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = ((𝑦 + 𝑧) Β· 0))
228199, 200readdcld 11273 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ (𝑦 + 𝑧) ∈ ℝ)
229228recnd 11272 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ (𝑦 + 𝑧) ∈ β„‚)
230229mul01d 11443 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ ((𝑦 + 𝑧) Β· 0) = 0)
231227, 230eqtrd 2765 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ βˆ– ran 𝐹) ∧ Β¬ (𝑦 = 0 ∧ 𝑧 = 0))) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = 0)
232231expr 455 . . . . . . 7 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ (ℝ βˆ– ran 𝐹)) β†’ (Β¬ (𝑦 = 0 ∧ 𝑧 = 0) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = 0))
233 oveq12 7426 . . . . . . . . . 10 ((𝑦 = 0 ∧ 𝑧 = 0) β†’ (𝑦 + 𝑧) = (0 + 0))
234233, 97eqtrdi 2781 . . . . . . . . 9 ((𝑦 = 0 ∧ 𝑧 = 0) β†’ (𝑦 + 𝑧) = 0)
235 oveq12 7426 . . . . . . . . . 10 ((𝑦 = 0 ∧ 𝑧 = 0) β†’ (𝑦𝐼𝑧) = (0𝐼0))
236 0re 11246 . . . . . . . . . . 11 0 ∈ ℝ
237 iftrue 4535 . . . . . . . . . . . 12 ((𝑖 = 0 ∧ 𝑗 = 0) β†’ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (volβ€˜((◑𝐹 β€œ {𝑖}) ∩ (◑𝐺 β€œ {𝑗})))) = 0)
238 c0ex 11238 . . . . . . . . . . . 12 0 ∈ V
239237, 101, 238ovmpoa 7574 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 ∈ ℝ) β†’ (0𝐼0) = 0)
240236, 236, 239mp2an 690 . . . . . . . . . 10 (0𝐼0) = 0
241235, 240eqtrdi 2781 . . . . . . . . 9 ((𝑦 = 0 ∧ 𝑧 = 0) β†’ (𝑦𝐼𝑧) = 0)
242234, 241oveq12d 7435 . . . . . . . 8 ((𝑦 = 0 ∧ 𝑧 = 0) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = (0 Β· 0))
243 0cn 11236 . . . . . . . . 9 0 ∈ β„‚
244243mul01i 11434 . . . . . . . 8 (0 Β· 0) = 0
245242, 244eqtrdi 2781 . . . . . . 7 ((𝑦 = 0 ∧ 𝑧 = 0) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = 0)
246232, 245pm2.61d2 181 . . . . . 6 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ (ℝ βˆ– ran 𝐹)) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = 0)
247197, 246syldan 589 . . . . 5 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ (ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)) βˆ– ran 𝐹)) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = 0)
248 f1ofo 6843 . . . . . . 7 ((𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)):ran 𝑃–1-1-ontoβ†’ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)) β†’ (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)):ran 𝑃–ontoβ†’ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)))
249144, 248syl 17 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)):ran 𝑃–ontoβ†’ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)))
250 fofi 9362 . . . . . 6 ((ran 𝑃 ∈ Fin ∧ (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)):ran 𝑃–ontoβ†’ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))) β†’ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)) ∈ Fin)
251127, 249, 250syl2anc 582 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧)) ∈ Fin)
252189, 195, 247, 251fsumss 15703 . . . 4 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ Σ𝑦 ∈ ran 𝐹((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 βˆ’ 𝑧))((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)))
25333a1i 11 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ (ran 𝑃 βˆ– {0}) βŠ† ran 𝑃)
254120an32s 650 . . . . 5 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ (ran 𝑃 βˆ– {0})) β†’ (𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)) ∈ β„‚)
255 dfin4 4267 . . . . . . . 8 (ran 𝑃 ∩ {0}) = (ran 𝑃 βˆ– (ran 𝑃 βˆ– {0}))
256 inss2 4229 . . . . . . . 8 (ran 𝑃 ∩ {0}) βŠ† {0}
257255, 256eqsstrri 4013 . . . . . . 7 (ran 𝑃 βˆ– (ran 𝑃 βˆ– {0})) βŠ† {0}
258257sseli 3973 . . . . . 6 (𝑀 ∈ (ran 𝑃 βˆ– (ran 𝑃 βˆ– {0})) β†’ 𝑀 ∈ {0})
259 elsni 4646 . . . . . . . . 9 (𝑀 ∈ {0} β†’ 𝑀 = 0)
260259adantl 480 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ {0}) β†’ 𝑀 = 0)
261260oveq1d 7432 . . . . . . 7 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ {0}) β†’ (𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)) = (0 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
262104ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ {0}) β†’ 𝐼:(ℝ Γ— ℝ)βŸΆβ„)
263260, 236eqeltrdi 2833 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ {0}) β†’ 𝑀 ∈ ℝ)
26462adantr 479 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ {0}) β†’ 𝑧 ∈ ℝ)
265263, 264resubcld 11672 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ {0}) β†’ (𝑀 βˆ’ 𝑧) ∈ ℝ)
266262, 265, 264fovcdmd 7591 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ {0}) β†’ ((𝑀 βˆ’ 𝑧)𝐼𝑧) ∈ ℝ)
267266recnd 11272 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ {0}) β†’ ((𝑀 βˆ’ 𝑧)𝐼𝑧) ∈ β„‚)
268267mul02d 11442 . . . . . . 7 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ {0}) β†’ (0 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)) = 0)
269261, 268eqtrd 2765 . . . . . 6 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ {0}) β†’ (𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)) = 0)
270258, 269sylan2 591 . . . . 5 (((πœ‘ ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑀 ∈ (ran 𝑃 βˆ– (ran 𝑃 βˆ– {0}))) β†’ (𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)) = 0)
271253, 254, 270, 127fsumss 15703 . . . 4 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ Σ𝑀 ∈ (ran 𝑃 βˆ– {0})(𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)) = Σ𝑀 ∈ ran 𝑃(𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
272167, 252, 2713eqtr4d 2775 . . 3 ((πœ‘ ∧ 𝑧 ∈ ran 𝐺) β†’ Σ𝑦 ∈ ran 𝐹((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = Σ𝑀 ∈ (ran 𝑃 βˆ– {0})(𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
273272sumeq2dv 15681 . 2 (πœ‘ β†’ Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺Σ𝑀 ∈ (ran 𝑃 βˆ– {0})(𝑀 Β· ((𝑀 βˆ’ 𝑧)𝐼𝑧)))
274195anasss 465 . . 3 ((πœ‘ ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐹)) β†’ ((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) ∈ β„‚)
2757, 5, 274fsumcom 15753 . 2 (πœ‘ β†’ Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)))
276123, 273, 2753eqtr2d 2771 1 (πœ‘ β†’ (∫1β€˜(𝐹 ∘f + 𝐺)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) Β· (𝑦𝐼𝑧)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  {cab 2702   β‰  wne 2930  βˆ€wral 3051  βˆƒwrex 3060  Vcvv 3463   βˆ– cdif 3942   ∩ cin 3944   βŠ† wss 3945  βˆ…c0 4323  ifcif 4529  {csn 4629  βŸ¨cop 4635  βˆͺ ciun 4996   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5675  β—‘ccnv 5676  dom cdm 5677  ran crn 5678   β†Ύ cres 5679   β€œ cima 5680  Fun wfun 6541   Fn wfn 6542  βŸΆwf 6543  β€“1-1β†’wf1 6544  β€“ontoβ†’wfo 6545  β€“1-1-ontoβ†’wf1o 6546  β€˜cfv 6547  (class class class)co 7417   ∈ cmpo 7419   ∘f cof 7681  Fincfn 8962  β„‚cc 11136  β„cr 11137  0cc0 11138   + caddc 11141   Β· cmul 11143   βˆ’ cmin 11474  Ξ£csu 15664  vol*covol 25421  volcvol 25422  βˆ«1citg1 25574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-sup 9465  df-inf 9466  df-oi 9533  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-q 12963  df-rp 13007  df-xadd 13125  df-ioo 13360  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-seq 13999  df-exp 14059  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464  df-sum 15665  df-xmet 21276  df-met 21277  df-ovol 25423  df-vol 25424  df-mbf 25578  df-itg1 25579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator