Step | Hyp | Ref
| Expression |
1 | | i1fadd.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
2 | | i1fadd.2 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
3 | 1, 2 | i1fadd 24868 |
. . . 4
⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ dom
∫1) |
4 | | i1frn 24850 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
5 | 1, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
6 | | i1frn 24850 |
. . . . . . . 8
⊢ (𝐺 ∈ dom ∫1
→ ran 𝐺 ∈
Fin) |
7 | 2, 6 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ran 𝐺 ∈ Fin) |
8 | | xpfi 9094 |
. . . . . . 7
⊢ ((ran
𝐹 ∈ Fin ∧ ran
𝐺 ∈ Fin) → (ran
𝐹 × ran 𝐺) ∈ Fin) |
9 | 5, 7, 8 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin) |
10 | | ax-addf 10959 |
. . . . . . . . . 10
⊢ +
:(ℂ × ℂ)⟶ℂ |
11 | | ffn 6609 |
. . . . . . . . . 10
⊢ ( +
:(ℂ × ℂ)⟶ℂ → + Fn (ℂ ×
ℂ)) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . . 9
⊢ + Fn
(ℂ × ℂ) |
13 | | i1ff 24849 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
14 | 1, 13 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
15 | 14 | frnd 6617 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
16 | | ax-resscn 10937 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
17 | 15, 16 | sstrdi 3934 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝐹 ⊆ ℂ) |
18 | | i1ff 24849 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
19 | 2, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
20 | 19 | frnd 6617 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝐺 ⊆ ℝ) |
21 | 20, 16 | sstrdi 3934 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝐺 ⊆ ℂ) |
22 | | xpss12 5605 |
. . . . . . . . . 10
⊢ ((ran
𝐹 ⊆ ℂ ∧ ran
𝐺 ⊆ ℂ) →
(ran 𝐹 × ran 𝐺) ⊆ (ℂ ×
ℂ)) |
23 | 17, 21, 22 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ⊆ (ℂ ×
ℂ)) |
24 | | fnssres 6564 |
. . . . . . . . 9
⊢ (( + Fn
(ℂ × ℂ) ∧ (ran 𝐹 × ran 𝐺) ⊆ (ℂ × ℂ)) →
( + ↾ (ran 𝐹 ×
ran 𝐺)) Fn (ran 𝐹 × ran 𝐺)) |
25 | 12, 23, 24 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → ( + ↾ (ran 𝐹 × ran 𝐺)) Fn (ran 𝐹 × ran 𝐺)) |
26 | | itg1add.4 |
. . . . . . . . 9
⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) |
27 | 26 | fneq1i 6539 |
. . . . . . . 8
⊢ (𝑃 Fn (ran 𝐹 × ran 𝐺) ↔ ( + ↾ (ran 𝐹 × ran 𝐺)) Fn (ran 𝐹 × ran 𝐺)) |
28 | 25, 27 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 → 𝑃 Fn (ran 𝐹 × ran 𝐺)) |
29 | | dffn4 6703 |
. . . . . . 7
⊢ (𝑃 Fn (ran 𝐹 × ran 𝐺) ↔ 𝑃:(ran 𝐹 × ran 𝐺)–onto→ran 𝑃) |
30 | 28, 29 | sylib 217 |
. . . . . 6
⊢ (𝜑 → 𝑃:(ran 𝐹 × ran 𝐺)–onto→ran 𝑃) |
31 | | fofi 9114 |
. . . . . 6
⊢ (((ran
𝐹 × ran 𝐺) ∈ Fin ∧ 𝑃:(ran 𝐹 × ran 𝐺)–onto→ran 𝑃) → ran 𝑃 ∈ Fin) |
32 | 9, 30, 31 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ran 𝑃 ∈ Fin) |
33 | | difss 4067 |
. . . . 5
⊢ (ran
𝑃 ∖ {0}) ⊆ ran
𝑃 |
34 | | ssfi 8965 |
. . . . 5
⊢ ((ran
𝑃 ∈ Fin ∧ (ran
𝑃 ∖ {0}) ⊆ ran
𝑃) → (ran 𝑃 ∖ {0}) ∈
Fin) |
35 | 32, 33, 34 | sylancl 586 |
. . . 4
⊢ (𝜑 → (ran 𝑃 ∖ {0}) ∈ Fin) |
36 | | ffun 6612 |
. . . . . . . . . . 11
⊢ ( +
:(ℂ × ℂ)⟶ℂ → Fun + ) |
37 | 10, 36 | ax-mp 5 |
. . . . . . . . . 10
⊢ Fun
+ |
38 | 10 | fdmi 6621 |
. . . . . . . . . . 11
⊢ dom + =
(ℂ × ℂ) |
39 | 23, 38 | sseqtrrdi 3973 |
. . . . . . . . . 10
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ⊆ dom + ) |
40 | | funfvima2 7116 |
. . . . . . . . . 10
⊢ ((Fun +
∧ (ran 𝐹 × ran
𝐺) ⊆ dom + ) →
(〈𝑥, 𝑦〉 ∈ (ran 𝐹 × ran 𝐺) → ( + ‘〈𝑥, 𝑦〉) ∈ ( + “ (ran 𝐹 × ran 𝐺)))) |
41 | 37, 39, 40 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ (ran 𝐹 × ran 𝐺) → ( + ‘〈𝑥, 𝑦〉) ∈ ( + “ (ran 𝐹 × ran 𝐺)))) |
42 | | opelxpi 5627 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺) → 〈𝑥, 𝑦〉 ∈ (ran 𝐹 × ran 𝐺)) |
43 | 41, 42 | impel 506 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺)) → ( + ‘〈𝑥, 𝑦〉) ∈ ( + “ (ran 𝐹 × ran 𝐺))) |
44 | | df-ov 7287 |
. . . . . . . 8
⊢ (𝑥 + 𝑦) = ( + ‘〈𝑥, 𝑦〉) |
45 | 26 | rneqi 5849 |
. . . . . . . . 9
⊢ ran 𝑃 = ran ( + ↾ (ran 𝐹 × ran 𝐺)) |
46 | | df-ima 5603 |
. . . . . . . . 9
⊢ ( +
“ (ran 𝐹 × ran
𝐺)) = ran ( + ↾ (ran
𝐹 × ran 𝐺)) |
47 | 45, 46 | eqtr4i 2770 |
. . . . . . . 8
⊢ ran 𝑃 = ( + “ (ran 𝐹 × ran 𝐺)) |
48 | 43, 44, 47 | 3eltr4g 2857 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺)) → (𝑥 + 𝑦) ∈ ran 𝑃) |
49 | 14 | ffnd 6610 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 Fn ℝ) |
50 | | dffn3 6622 |
. . . . . . . 8
⊢ (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹) |
51 | 49, 50 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℝ⟶ran 𝐹) |
52 | 19 | ffnd 6610 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 Fn ℝ) |
53 | | dffn3 6622 |
. . . . . . . 8
⊢ (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺) |
54 | 52, 53 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → 𝐺:ℝ⟶ran 𝐺) |
55 | | reex 10971 |
. . . . . . . 8
⊢ ℝ
∈ V |
56 | 55 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈
V) |
57 | | inidm 4153 |
. . . . . . 7
⊢ (ℝ
∩ ℝ) = ℝ |
58 | 48, 51, 54, 56, 56, 57 | off 7560 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘f + 𝐺):ℝ⟶ran 𝑃) |
59 | 58 | frnd 6617 |
. . . . 5
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ⊆ ran 𝑃) |
60 | 59 | ssdifd 4076 |
. . . 4
⊢ (𝜑 → (ran (𝐹 ∘f + 𝐺) ∖ {0}) ⊆ (ran 𝑃 ∖ {0})) |
61 | 15 | sselda 3922 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
62 | 20 | sselda 3922 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
63 | 61, 62 | anim12dan 619 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐺)) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) |
64 | | readdcl 10963 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 + 𝑧) ∈ ℝ) |
65 | 63, 64 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ran 𝐹 ∧ 𝑧 ∈ ran 𝐺)) → (𝑦 + 𝑧) ∈ ℝ) |
66 | 65 | ralrimivva 3124 |
. . . . . . 7
⊢ (𝜑 → ∀𝑦 ∈ ran 𝐹∀𝑧 ∈ ran 𝐺(𝑦 + 𝑧) ∈ ℝ) |
67 | | funimassov 7458 |
. . . . . . . 8
⊢ ((Fun +
∧ (ran 𝐹 × ran
𝐺) ⊆ dom + ) →
(( + “ (ran 𝐹 ×
ran 𝐺)) ⊆ ℝ
↔ ∀𝑦 ∈ ran
𝐹∀𝑧 ∈ ran 𝐺(𝑦 + 𝑧) ∈ ℝ)) |
68 | 37, 39, 67 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (( + “ (ran 𝐹 × ran 𝐺)) ⊆ ℝ ↔ ∀𝑦 ∈ ran 𝐹∀𝑧 ∈ ran 𝐺(𝑦 + 𝑧) ∈ ℝ)) |
69 | 66, 68 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) ⊆ ℝ) |
70 | 47, 69 | eqsstrid 3970 |
. . . . 5
⊢ (𝜑 → ran 𝑃 ⊆ ℝ) |
71 | 70 | ssdifd 4076 |
. . . 4
⊢ (𝜑 → (ran 𝑃 ∖ {0}) ⊆ (ℝ ∖
{0})) |
72 | | itg1val2 24857 |
. . . 4
⊢ (((𝐹 ∘f + 𝐺) ∈ dom ∫1
∧ ((ran 𝑃 ∖ {0})
∈ Fin ∧ (ran (𝐹
∘f + 𝐺)
∖ {0}) ⊆ (ran 𝑃
∖ {0}) ∧ (ran 𝑃
∖ {0}) ⊆ (ℝ ∖ {0}))) →
(∫1‘(𝐹
∘f + 𝐺)) =
Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · (vol‘(◡(𝐹 ∘f + 𝐺) “ {𝑤})))) |
73 | 3, 35, 60, 71, 72 | syl13anc 1371 |
. . 3
⊢ (𝜑 →
(∫1‘(𝐹
∘f + 𝐺)) =
Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · (vol‘(◡(𝐹 ∘f + 𝐺) “ {𝑤})))) |
74 | 19 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → 𝐺:ℝ⟶ℝ) |
75 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → ran 𝐺 ∈ Fin) |
76 | | inss2 4164 |
. . . . . . . . 9
⊢ ((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧}) |
77 | 76 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧})) |
78 | | i1fima 24851 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ {(𝑤 − 𝑧)}) ∈ dom vol) |
79 | 1, 78 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ {(𝑤 − 𝑧)}) ∈ dom vol) |
80 | | i1fima 24851 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ dom ∫1
→ (◡𝐺 “ {𝑧}) ∈ dom vol) |
81 | 2, 80 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐺 “ {𝑧}) ∈ dom vol) |
82 | | inmbl 24715 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ {(𝑤 − 𝑧)}) ∈ dom vol ∧ (◡𝐺 “ {𝑧}) ∈ dom vol) → ((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
83 | 79, 81, 82 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
84 | 83 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
85 | 33, 70 | sstrid 3933 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ran 𝑃 ∖ {0}) ⊆
ℝ) |
86 | 85 | sselda 3922 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → 𝑤 ∈ ℝ) |
87 | 86 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑤 ∈ ℝ) |
88 | 62 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
89 | 87, 88 | resubcld 11412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑤 − 𝑧) ∈ ℝ) |
90 | 87 | recnd 11012 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑤 ∈ ℂ) |
91 | 88 | recnd 11012 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℂ) |
92 | 90, 91 | npcand 11345 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝑤 − 𝑧) + 𝑧) = 𝑤) |
93 | | eldifsni 4724 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ (ran 𝑃 ∖ {0}) → 𝑤 ≠ 0) |
94 | 93 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑤 ≠ 0) |
95 | 92, 94 | eqnetrd 3012 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝑤 − 𝑧) + 𝑧) ≠ 0) |
96 | | oveq12 7293 |
. . . . . . . . . . . . 13
⊢ (((𝑤 − 𝑧) = 0 ∧ 𝑧 = 0) → ((𝑤 − 𝑧) + 𝑧) = (0 + 0)) |
97 | | 00id 11159 |
. . . . . . . . . . . . 13
⊢ (0 + 0) =
0 |
98 | 96, 97 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (((𝑤 − 𝑧) = 0 ∧ 𝑧 = 0) → ((𝑤 − 𝑧) + 𝑧) = 0) |
99 | 98 | necon3ai 2969 |
. . . . . . . . . . 11
⊢ (((𝑤 − 𝑧) + 𝑧) ≠ 0 → ¬ ((𝑤 − 𝑧) = 0 ∧ 𝑧 = 0)) |
100 | 95, 99 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ¬ ((𝑤 − 𝑧) = 0 ∧ 𝑧 = 0)) |
101 | | itg1add.3 |
. . . . . . . . . . 11
⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) |
102 | 1, 2, 101 | itg1addlem3 24871 |
. . . . . . . . . 10
⊢ ((((𝑤 − 𝑧) ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ¬ ((𝑤 − 𝑧) = 0 ∧ 𝑧 = 0)) → ((𝑤 − 𝑧)𝐼𝑧) = (vol‘((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
103 | 89, 88, 100, 102 | syl21anc 835 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝑤 − 𝑧)𝐼𝑧) = (vol‘((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
104 | 1, 2, 101 | itg1addlem2 24870 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
105 | 104 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
106 | 105, 89, 88 | fovrnd 7453 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝑤 − 𝑧)𝐼𝑧) ∈ ℝ) |
107 | 103, 106 | eqeltrrd 2841 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (vol‘((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
108 | 74, 75, 77, 84, 107 | itg1addlem1 24865 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → (vol‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) = Σ𝑧 ∈ ran 𝐺(vol‘((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
109 | 86 | recnd 11012 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → 𝑤 ∈ ℂ) |
110 | 1, 2 | i1faddlem 24866 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ ℂ) → (◡(𝐹 ∘f + 𝐺) “ {𝑤}) = ∪
𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) |
111 | 109, 110 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → (◡(𝐹 ∘f + 𝐺) “ {𝑤}) = ∪
𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧}))) |
112 | 111 | fveq2d 6787 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → (vol‘(◡(𝐹 ∘f + 𝐺) “ {𝑤})) = (vol‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
113 | 103 | sumeq2dv 15424 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → Σ𝑧 ∈ ran 𝐺((𝑤 − 𝑧)𝐼𝑧) = Σ𝑧 ∈ ran 𝐺(vol‘((◡𝐹 “ {(𝑤 − 𝑧)}) ∩ (◡𝐺 “ {𝑧})))) |
114 | 108, 112,
113 | 3eqtr4d 2789 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → (vol‘(◡(𝐹 ∘f + 𝐺) “ {𝑤})) = Σ𝑧 ∈ ran 𝐺((𝑤 − 𝑧)𝐼𝑧)) |
115 | 114 | oveq2d 7300 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → (𝑤 · (vol‘(◡(𝐹 ∘f + 𝐺) “ {𝑤}))) = (𝑤 · Σ𝑧 ∈ ran 𝐺((𝑤 − 𝑧)𝐼𝑧))) |
116 | 106 | recnd 11012 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝑤 − 𝑧)𝐼𝑧) ∈ ℂ) |
117 | 75, 109, 116 | fsummulc2 15505 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → (𝑤 · Σ𝑧 ∈ ran 𝐺((𝑤 − 𝑧)𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺(𝑤 · ((𝑤 − 𝑧)𝐼𝑧))) |
118 | 115, 117 | eqtrd 2779 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → (𝑤 · (vol‘(◡(𝐹 ∘f + 𝐺) “ {𝑤}))) = Σ𝑧 ∈ ran 𝐺(𝑤 · ((𝑤 − 𝑧)𝐼𝑧))) |
119 | 118 | sumeq2dv 15424 |
. . 3
⊢ (𝜑 → Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · (vol‘(◡(𝐹 ∘f + 𝐺) “ {𝑤}))) = Σ𝑤 ∈ (ran 𝑃 ∖ {0})Σ𝑧 ∈ ran 𝐺(𝑤 · ((𝑤 − 𝑧)𝐼𝑧))) |
120 | 90, 116 | mulcld 11004 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑤 · ((𝑤 − 𝑧)𝐼𝑧)) ∈ ℂ) |
121 | 120 | anasss 467 |
. . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ (ran 𝑃 ∖ {0}) ∧ 𝑧 ∈ ran 𝐺)) → (𝑤 · ((𝑤 − 𝑧)𝐼𝑧)) ∈ ℂ) |
122 | 35, 7, 121 | fsumcom 15496 |
. . 3
⊢ (𝜑 → Σ𝑤 ∈ (ran 𝑃 ∖ {0})Σ𝑧 ∈ ran 𝐺(𝑤 · ((𝑤 − 𝑧)𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · ((𝑤 − 𝑧)𝐼𝑧))) |
123 | 73, 119, 122 | 3eqtrd 2783 |
. 2
⊢ (𝜑 →
(∫1‘(𝐹
∘f + 𝐺)) =
Σ𝑧 ∈ ran 𝐺Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · ((𝑤 − 𝑧)𝐼𝑧))) |
124 | | oveq1 7291 |
. . . . . . 7
⊢ (𝑦 = (𝑤 − 𝑧) → (𝑦 + 𝑧) = ((𝑤 − 𝑧) + 𝑧)) |
125 | | oveq1 7291 |
. . . . . . 7
⊢ (𝑦 = (𝑤 − 𝑧) → (𝑦𝐼𝑧) = ((𝑤 − 𝑧)𝐼𝑧)) |
126 | 124, 125 | oveq12d 7302 |
. . . . . 6
⊢ (𝑦 = (𝑤 − 𝑧) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = (((𝑤 − 𝑧) + 𝑧) · ((𝑤 − 𝑧)𝐼𝑧))) |
127 | 32 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ran 𝑃 ∈ Fin) |
128 | 70 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ran 𝑃 ⊆ ℝ) |
129 | 128 | sselda 3922 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑣 ∈ ran 𝑃) → 𝑣 ∈ ℝ) |
130 | 62 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑣 ∈ ran 𝑃) → 𝑧 ∈ ℝ) |
131 | 129, 130 | resubcld 11412 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑣 ∈ ran 𝑃) → (𝑣 − 𝑧) ∈ ℝ) |
132 | 131 | ex 413 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → (𝑣 ∈ ran 𝑃 → (𝑣 − 𝑧) ∈ ℝ)) |
133 | 129 | recnd 11012 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑣 ∈ ran 𝑃) → 𝑣 ∈ ℂ) |
134 | 133 | adantrr 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃)) → 𝑣 ∈ ℂ) |
135 | 70 | sselda 3922 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑃) → 𝑦 ∈ ℝ) |
136 | 135 | ad2ant2rl 746 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃)) → 𝑦 ∈ ℝ) |
137 | 136 | recnd 11012 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃)) → 𝑦 ∈ ℂ) |
138 | 62 | recnd 11012 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℂ) |
139 | 138 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃)) → 𝑧 ∈ ℂ) |
140 | 134, 137,
139 | subcan2ad 11386 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃)) → ((𝑣 − 𝑧) = (𝑦 − 𝑧) ↔ 𝑣 = 𝑦)) |
141 | 140 | ex 413 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ((𝑣 ∈ ran 𝑃 ∧ 𝑦 ∈ ran 𝑃) → ((𝑣 − 𝑧) = (𝑦 − 𝑧) ↔ 𝑣 = 𝑦))) |
142 | 132, 141 | dom2lem 8789 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)):ran 𝑃–1-1→ℝ) |
143 | | f1f1orn 6736 |
. . . . . . 7
⊢ ((𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)):ran 𝑃–1-1→ℝ → (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)):ran 𝑃–1-1-onto→ran
(𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) |
144 | 142, 143 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)):ran 𝑃–1-1-onto→ran
(𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) |
145 | | oveq1 7291 |
. . . . . . . 8
⊢ (𝑣 = 𝑤 → (𝑣 − 𝑧) = (𝑤 − 𝑧)) |
146 | | eqid 2739 |
. . . . . . . 8
⊢ (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)) = (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)) |
147 | | ovex 7317 |
. . . . . . . 8
⊢ (𝑤 − 𝑧) ∈ V |
148 | 145, 146,
147 | fvmpt 6884 |
. . . . . . 7
⊢ (𝑤 ∈ ran 𝑃 → ((𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))‘𝑤) = (𝑤 − 𝑧)) |
149 | 148 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ ran 𝑃) → ((𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))‘𝑤) = (𝑤 − 𝑧)) |
150 | | f1f 6679 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)):ran 𝑃–1-1→ℝ → (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)):ran 𝑃⟶ℝ) |
151 | | frn 6616 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)):ran 𝑃⟶ℝ → ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)) ⊆ ℝ) |
152 | 142, 150,
151 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)) ⊆ ℝ) |
153 | 152 | sselda 3922 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) → 𝑦 ∈ ℝ) |
154 | 62 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) → 𝑧 ∈ ℝ) |
155 | 153, 154 | readdcld 11013 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) → (𝑦 + 𝑧) ∈ ℝ) |
156 | 104 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
157 | 156, 153,
154 | fovrnd 7453 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) → (𝑦𝐼𝑧) ∈ ℝ) |
158 | 155, 157 | remulcld 11014 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) ∈ ℝ) |
159 | 158 | recnd 11012 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) ∈ ℂ) |
160 | 126, 127,
144, 149, 159 | fsumf1o 15444 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → Σ𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑤 ∈ ran 𝑃(((𝑤 − 𝑧) + 𝑧) · ((𝑤 − 𝑧)𝐼𝑧))) |
161 | 128 | sselda 3922 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ ran 𝑃) → 𝑤 ∈ ℝ) |
162 | 161 | recnd 11012 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ ran 𝑃) → 𝑤 ∈ ℂ) |
163 | 138 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ ran 𝑃) → 𝑧 ∈ ℂ) |
164 | 162, 163 | npcand 11345 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ ran 𝑃) → ((𝑤 − 𝑧) + 𝑧) = 𝑤) |
165 | 164 | oveq1d 7299 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ ran 𝑃) → (((𝑤 − 𝑧) + 𝑧) · ((𝑤 − 𝑧)𝐼𝑧)) = (𝑤 · ((𝑤 − 𝑧)𝐼𝑧))) |
166 | 165 | sumeq2dv 15424 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → Σ𝑤 ∈ ran 𝑃(((𝑤 − 𝑧) + 𝑧) · ((𝑤 − 𝑧)𝐼𝑧)) = Σ𝑤 ∈ ran 𝑃(𝑤 · ((𝑤 − 𝑧)𝐼𝑧))) |
167 | 160, 166 | eqtrd 2779 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → Σ𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑤 ∈ ran 𝑃(𝑤 · ((𝑤 − 𝑧)𝐼𝑧))) |
168 | 39 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (ran 𝐹 × ran 𝐺) ⊆ dom + ) |
169 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹) |
170 | | simplr 766 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ran 𝐺) |
171 | 169, 170 | opelxpd 5628 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 〈𝑦, 𝑧〉 ∈ (ran 𝐹 × ran 𝐺)) |
172 | | funfvima2 7116 |
. . . . . . . . . . . 12
⊢ ((Fun +
∧ (ran 𝐹 × ran
𝐺) ⊆ dom + ) →
(〈𝑦, 𝑧〉 ∈ (ran 𝐹 × ran 𝐺) → ( + ‘〈𝑦, 𝑧〉) ∈ ( + “ (ran 𝐹 × ran 𝐺)))) |
173 | 37, 172 | mpan 687 |
. . . . . . . . . . 11
⊢ ((ran
𝐹 × ran 𝐺) ⊆ dom + →
(〈𝑦, 𝑧〉 ∈ (ran 𝐹 × ran 𝐺) → ( + ‘〈𝑦, 𝑧〉) ∈ ( + “ (ran 𝐹 × ran 𝐺)))) |
174 | 168, 171,
173 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → ( + ‘〈𝑦, 𝑧〉) ∈ ( + “ (ran 𝐹 × ran 𝐺))) |
175 | | df-ov 7287 |
. . . . . . . . . 10
⊢ (𝑦 + 𝑧) = ( + ‘〈𝑦, 𝑧〉) |
176 | 174, 175,
47 | 3eltr4g 2857 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦 + 𝑧) ∈ ran 𝑃) |
177 | 61 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
178 | 177 | recnd 11012 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℂ) |
179 | 138 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℂ) |
180 | 178, 179 | pncand 11342 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → ((𝑦 + 𝑧) − 𝑧) = 𝑦) |
181 | 180 | eqcomd 2745 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 = ((𝑦 + 𝑧) − 𝑧)) |
182 | | oveq1 7291 |
. . . . . . . . . 10
⊢ (𝑣 = (𝑦 + 𝑧) → (𝑣 − 𝑧) = ((𝑦 + 𝑧) − 𝑧)) |
183 | 182 | rspceeqv 3576 |
. . . . . . . . 9
⊢ (((𝑦 + 𝑧) ∈ ran 𝑃 ∧ 𝑦 = ((𝑦 + 𝑧) − 𝑧)) → ∃𝑣 ∈ ran 𝑃 𝑦 = (𝑣 − 𝑧)) |
184 | 176, 181,
183 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑣 ∈ ran 𝑃 𝑦 = (𝑣 − 𝑧)) |
185 | 184 | ralrimiva 3104 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ∀𝑦 ∈ ran 𝐹∃𝑣 ∈ ran 𝑃 𝑦 = (𝑣 − 𝑧)) |
186 | | ssabral 3997 |
. . . . . . 7
⊢ (ran
𝐹 ⊆ {𝑦 ∣ ∃𝑣 ∈ ran 𝑃 𝑦 = (𝑣 − 𝑧)} ↔ ∀𝑦 ∈ ran 𝐹∃𝑣 ∈ ran 𝑃 𝑦 = (𝑣 − 𝑧)) |
187 | 185, 186 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ran 𝐹 ⊆ {𝑦 ∣ ∃𝑣 ∈ ran 𝑃 𝑦 = (𝑣 − 𝑧)}) |
188 | 146 | rnmpt 5867 |
. . . . . 6
⊢ ran
(𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)) = {𝑦 ∣ ∃𝑣 ∈ ran 𝑃 𝑦 = (𝑣 − 𝑧)} |
189 | 187, 188 | sseqtrrdi 3973 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ran 𝐹 ⊆ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) |
190 | 62 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
191 | 177, 190 | readdcld 11013 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦 + 𝑧) ∈ ℝ) |
192 | 104 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
193 | 192, 177,
190 | fovrnd 7453 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
194 | 191, 193 | remulcld 11014 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) ∈ ℝ) |
195 | 194 | recnd 11012 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) ∈ ℂ) |
196 | 152 | ssdifd 4076 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → (ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)) ∖ ran 𝐹) ⊆ (ℝ ∖ ran 𝐹)) |
197 | 196 | sselda 3922 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ (ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)) ∖ ran 𝐹)) → 𝑦 ∈ (ℝ ∖ ran 𝐹)) |
198 | | eldifi 4062 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (ℝ ∖ ran
𝐹) → 𝑦 ∈
ℝ) |
199 | 198 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → 𝑦 ∈ ℝ) |
200 | 62 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → 𝑧 ∈ ℝ) |
201 | | simprr 770 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
202 | 1, 2, 101 | itg1addlem3 24871 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ¬
(𝑦 = 0 ∧ 𝑧 = 0)) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
203 | 199, 200,
201, 202 | syl21anc 835 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
204 | | inss1 4163 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {𝑦}) |
205 | | eldifn 4063 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (ℝ ∖ ran
𝐹) → ¬ 𝑦 ∈ ran 𝐹) |
206 | 205 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ¬ 𝑦 ∈ ran 𝐹) |
207 | | vex 3437 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑣 ∈ V |
208 | 207 | eliniseg 6005 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ V → (𝑣 ∈ (◡𝐹 “ {𝑦}) ↔ 𝑣𝐹𝑦)) |
209 | 208 | elv 3439 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ (◡𝐹 “ {𝑦}) ↔ 𝑣𝐹𝑦) |
210 | | vex 3437 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ∈ V |
211 | 207, 210 | brelrn 5854 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣𝐹𝑦 → 𝑦 ∈ ran 𝐹) |
212 | 209, 211 | sylbi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ (◡𝐹 “ {𝑦}) → 𝑦 ∈ ran 𝐹) |
213 | 206, 212 | nsyl 140 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ¬ 𝑣 ∈ (◡𝐹 “ {𝑦})) |
214 | 213 | pm2.21d 121 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (𝑣 ∈ (◡𝐹 “ {𝑦}) → 𝑣 ∈ ∅)) |
215 | 214 | ssrdv 3928 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (◡𝐹 “ {𝑦}) ⊆ ∅) |
216 | 204, 215 | sstrid 3933 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ ∅) |
217 | | ss0 4333 |
. . . . . . . . . . . . . 14
⊢ (((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ ∅ → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ∅) |
218 | 216, 217 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ∅) |
219 | 218 | fveq2d 6787 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) = (vol‘∅)) |
220 | | 0mbl 24712 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ dom vol |
221 | | mblvol 24703 |
. . . . . . . . . . . . . 14
⊢ (∅
∈ dom vol → (vol‘∅) =
(vol*‘∅)) |
222 | 220, 221 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(vol‘∅) = (vol*‘∅) |
223 | | ovol0 24666 |
. . . . . . . . . . . . 13
⊢
(vol*‘∅) = 0 |
224 | 222, 223 | eqtri 2767 |
. . . . . . . . . . . 12
⊢
(vol‘∅) = 0 |
225 | 219, 224 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) = 0) |
226 | 203, 225 | eqtrd 2779 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (𝑦𝐼𝑧) = 0) |
227 | 226 | oveq2d 7300 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = ((𝑦 + 𝑧) · 0)) |
228 | 199, 200 | readdcld 11013 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (𝑦 + 𝑧) ∈ ℝ) |
229 | 228 | recnd 11012 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (𝑦 + 𝑧) ∈ ℂ) |
230 | 229 | mul01d 11183 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ((𝑦 + 𝑧) · 0) = 0) |
231 | 227, 230 | eqtrd 2779 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = 0) |
232 | 231 | expr 457 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ (ℝ ∖ ran 𝐹)) → (¬ (𝑦 = 0 ∧ 𝑧 = 0) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = 0)) |
233 | | oveq12 7293 |
. . . . . . . . . 10
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → (𝑦 + 𝑧) = (0 + 0)) |
234 | 233, 97 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → (𝑦 + 𝑧) = 0) |
235 | | oveq12 7293 |
. . . . . . . . . 10
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → (𝑦𝐼𝑧) = (0𝐼0)) |
236 | | 0re 10986 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
237 | | iftrue 4466 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) = 0) |
238 | | c0ex 10978 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
239 | 237, 101,
238 | ovmpoa 7437 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 0 ∈ ℝ) → (0𝐼0) = 0) |
240 | 236, 236,
239 | mp2an 689 |
. . . . . . . . . 10
⊢ (0𝐼0) = 0 |
241 | 235, 240 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → (𝑦𝐼𝑧) = 0) |
242 | 234, 241 | oveq12d 7302 |
. . . . . . . 8
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = (0 · 0)) |
243 | | 0cn 10976 |
. . . . . . . . 9
⊢ 0 ∈
ℂ |
244 | 243 | mul01i 11174 |
. . . . . . . 8
⊢ (0
· 0) = 0 |
245 | 242, 244 | eqtrdi 2795 |
. . . . . . 7
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = 0) |
246 | 232, 245 | pm2.61d2 181 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ (ℝ ∖ ran 𝐹)) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = 0) |
247 | 197, 246 | syldan 591 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ (ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)) ∖ ran 𝐹)) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = 0) |
248 | | f1ofo 6732 |
. . . . . . 7
⊢ ((𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)):ran 𝑃–1-1-onto→ran
(𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)) → (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)):ran 𝑃–onto→ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) |
249 | 144, 248 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)):ran 𝑃–onto→ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) |
250 | | fofi 9114 |
. . . . . 6
⊢ ((ran
𝑃 ∈ Fin ∧ (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)):ran 𝑃–onto→ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))) → ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)) ∈ Fin) |
251 | 127, 249,
250 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧)) ∈ Fin) |
252 | 189, 195,
247, 251 | fsumss 15446 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → Σ𝑦 ∈ ran 𝐹((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣 − 𝑧))((𝑦 + 𝑧) · (𝑦𝐼𝑧))) |
253 | 33 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → (ran 𝑃 ∖ {0}) ⊆ ran 𝑃) |
254 | 120 | an32s 649 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → (𝑤 · ((𝑤 − 𝑧)𝐼𝑧)) ∈ ℂ) |
255 | | dfin4 4202 |
. . . . . . . 8
⊢ (ran
𝑃 ∩ {0}) = (ran 𝑃 ∖ (ran 𝑃 ∖ {0})) |
256 | | inss2 4164 |
. . . . . . . 8
⊢ (ran
𝑃 ∩ {0}) ⊆
{0} |
257 | 255, 256 | eqsstrri 3957 |
. . . . . . 7
⊢ (ran
𝑃 ∖ (ran 𝑃 ∖ {0})) ⊆
{0} |
258 | 257 | sseli 3918 |
. . . . . 6
⊢ (𝑤 ∈ (ran 𝑃 ∖ (ran 𝑃 ∖ {0})) → 𝑤 ∈ {0}) |
259 | | elsni 4579 |
. . . . . . . . 9
⊢ (𝑤 ∈ {0} → 𝑤 = 0) |
260 | 259 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → 𝑤 = 0) |
261 | 260 | oveq1d 7299 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → (𝑤 · ((𝑤 − 𝑧)𝐼𝑧)) = (0 · ((𝑤 − 𝑧)𝐼𝑧))) |
262 | 104 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
263 | 260, 236 | eqeltrdi 2848 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → 𝑤 ∈ ℝ) |
264 | 62 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → 𝑧 ∈ ℝ) |
265 | 263, 264 | resubcld 11412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → (𝑤 − 𝑧) ∈ ℝ) |
266 | 262, 265,
264 | fovrnd 7453 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → ((𝑤 − 𝑧)𝐼𝑧) ∈ ℝ) |
267 | 266 | recnd 11012 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → ((𝑤 − 𝑧)𝐼𝑧) ∈ ℂ) |
268 | 267 | mul02d 11182 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → (0 · ((𝑤 − 𝑧)𝐼𝑧)) = 0) |
269 | 261, 268 | eqtrd 2779 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → (𝑤 · ((𝑤 − 𝑧)𝐼𝑧)) = 0) |
270 | 258, 269 | sylan2 593 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ (ran 𝑃 ∖ (ran 𝑃 ∖ {0}))) → (𝑤 · ((𝑤 − 𝑧)𝐼𝑧)) = 0) |
271 | 253, 254,
270, 127 | fsumss 15446 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · ((𝑤 − 𝑧)𝐼𝑧)) = Σ𝑤 ∈ ran 𝑃(𝑤 · ((𝑤 − 𝑧)𝐼𝑧))) |
272 | 167, 252,
271 | 3eqtr4d 2789 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → Σ𝑦 ∈ ran 𝐹((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · ((𝑤 − 𝑧)𝐼𝑧))) |
273 | 272 | sumeq2dv 15424 |
. 2
⊢ (𝜑 → Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · ((𝑤 − 𝑧)𝐼𝑧))) |
274 | 195 | anasss 467 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐹)) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) ∈ ℂ) |
275 | 7, 5, 274 | fsumcom 15496 |
. 2
⊢ (𝜑 → Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧))) |
276 | 123, 273,
275 | 3eqtr2d 2785 |
1
⊢ (𝜑 →
(∫1‘(𝐹
∘f + 𝐺)) =
Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧))) |