MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem4OLD Structured version   Visualization version   GIF version

Theorem itg1addlem4OLD 24551
Description: Obsolete version of itg1addlem4 24550. (Contributed by Mario Carneiro, 28-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
itg1add.3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
itg1add.4 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺))
Assertion
Ref Expression
itg1addlem4OLD (𝜑 → (∫1‘(𝐹f + 𝐺)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)))
Distinct variable groups:   𝑖,𝑗,𝑦,𝑧   𝑦,𝐼   𝑦,𝑃,𝑧   𝑖,𝐹,𝑗,𝑦,𝑧   𝑖,𝐺,𝑗,𝑦,𝑧   𝜑,𝑖,𝑗,𝑦,𝑧
Allowed substitution hints:   𝑃(𝑖,𝑗)   𝐼(𝑧,𝑖,𝑗)

Proof of Theorem itg1addlem4OLD
Dummy variables 𝑤 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . 5 (𝜑𝐹 ∈ dom ∫1)
2 i1fadd.2 . . . . 5 (𝜑𝐺 ∈ dom ∫1)
31, 2i1fadd 24546 . . . 4 (𝜑 → (𝐹f + 𝐺) ∈ dom ∫1)
4 i1frn 24528 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
51, 4syl 17 . . . . . . 7 (𝜑 → ran 𝐹 ∈ Fin)
6 i1frn 24528 . . . . . . . 8 (𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin)
72, 6syl 17 . . . . . . 7 (𝜑 → ran 𝐺 ∈ Fin)
8 xpfi 8920 . . . . . . 7 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
95, 7, 8syl2anc 587 . . . . . 6 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
10 ax-addf 10773 . . . . . . . . . 10 + :(ℂ × ℂ)⟶ℂ
11 ffn 6523 . . . . . . . . . 10 ( + :(ℂ × ℂ)⟶ℂ → + Fn (ℂ × ℂ))
1210, 11ax-mp 5 . . . . . . . . 9 + Fn (ℂ × ℂ)
13 i1ff 24527 . . . . . . . . . . . . 13 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
141, 13syl 17 . . . . . . . . . . . 12 (𝜑𝐹:ℝ⟶ℝ)
1514frnd 6531 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ⊆ ℝ)
16 ax-resscn 10751 . . . . . . . . . . 11 ℝ ⊆ ℂ
1715, 16sstrdi 3899 . . . . . . . . . 10 (𝜑 → ran 𝐹 ⊆ ℂ)
18 i1ff 24527 . . . . . . . . . . . . 13 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
192, 18syl 17 . . . . . . . . . . . 12 (𝜑𝐺:ℝ⟶ℝ)
2019frnd 6531 . . . . . . . . . . 11 (𝜑 → ran 𝐺 ⊆ ℝ)
2120, 16sstrdi 3899 . . . . . . . . . 10 (𝜑 → ran 𝐺 ⊆ ℂ)
22 xpss12 5551 . . . . . . . . . 10 ((ran 𝐹 ⊆ ℂ ∧ ran 𝐺 ⊆ ℂ) → (ran 𝐹 × ran 𝐺) ⊆ (ℂ × ℂ))
2317, 21, 22syl2anc 587 . . . . . . . . 9 (𝜑 → (ran 𝐹 × ran 𝐺) ⊆ (ℂ × ℂ))
24 fnssres 6478 . . . . . . . . 9 (( + Fn (ℂ × ℂ) ∧ (ran 𝐹 × ran 𝐺) ⊆ (ℂ × ℂ)) → ( + ↾ (ran 𝐹 × ran 𝐺)) Fn (ran 𝐹 × ran 𝐺))
2512, 23, 24sylancr 590 . . . . . . . 8 (𝜑 → ( + ↾ (ran 𝐹 × ran 𝐺)) Fn (ran 𝐹 × ran 𝐺))
26 itg1add.4 . . . . . . . . 9 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺))
2726fneq1i 6454 . . . . . . . 8 (𝑃 Fn (ran 𝐹 × ran 𝐺) ↔ ( + ↾ (ran 𝐹 × ran 𝐺)) Fn (ran 𝐹 × ran 𝐺))
2825, 27sylibr 237 . . . . . . 7 (𝜑𝑃 Fn (ran 𝐹 × ran 𝐺))
29 dffn4 6617 . . . . . . 7 (𝑃 Fn (ran 𝐹 × ran 𝐺) ↔ 𝑃:(ran 𝐹 × ran 𝐺)–onto→ran 𝑃)
3028, 29sylib 221 . . . . . 6 (𝜑𝑃:(ran 𝐹 × ran 𝐺)–onto→ran 𝑃)
31 fofi 8940 . . . . . 6 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ 𝑃:(ran 𝐹 × ran 𝐺)–onto→ran 𝑃) → ran 𝑃 ∈ Fin)
329, 30, 31syl2anc 587 . . . . 5 (𝜑 → ran 𝑃 ∈ Fin)
33 difss 4032 . . . . 5 (ran 𝑃 ∖ {0}) ⊆ ran 𝑃
34 ssfi 8829 . . . . 5 ((ran 𝑃 ∈ Fin ∧ (ran 𝑃 ∖ {0}) ⊆ ran 𝑃) → (ran 𝑃 ∖ {0}) ∈ Fin)
3532, 33, 34sylancl 589 . . . 4 (𝜑 → (ran 𝑃 ∖ {0}) ∈ Fin)
36 ffun 6526 . . . . . . . . . . 11 ( + :(ℂ × ℂ)⟶ℂ → Fun + )
3710, 36ax-mp 5 . . . . . . . . . 10 Fun +
3810fdmi 6535 . . . . . . . . . . 11 dom + = (ℂ × ℂ)
3923, 38sseqtrrdi 3938 . . . . . . . . . 10 (𝜑 → (ran 𝐹 × ran 𝐺) ⊆ dom + )
40 funfvima2 7025 . . . . . . . . . 10 ((Fun + ∧ (ran 𝐹 × ran 𝐺) ⊆ dom + ) → (⟨𝑥, 𝑦⟩ ∈ (ran 𝐹 × ran 𝐺) → ( + ‘⟨𝑥, 𝑦⟩) ∈ ( + “ (ran 𝐹 × ran 𝐺))))
4137, 39, 40sylancr 590 . . . . . . . . 9 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ (ran 𝐹 × ran 𝐺) → ( + ‘⟨𝑥, 𝑦⟩) ∈ ( + “ (ran 𝐹 × ran 𝐺))))
42 opelxpi 5573 . . . . . . . . 9 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → ⟨𝑥, 𝑦⟩ ∈ (ran 𝐹 × ran 𝐺))
4341, 42impel 509 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺)) → ( + ‘⟨𝑥, 𝑦⟩) ∈ ( + “ (ran 𝐹 × ran 𝐺)))
44 df-ov 7194 . . . . . . . 8 (𝑥 + 𝑦) = ( + ‘⟨𝑥, 𝑦⟩)
4526rneqi 5791 . . . . . . . . 9 ran 𝑃 = ran ( + ↾ (ran 𝐹 × ran 𝐺))
46 df-ima 5549 . . . . . . . . 9 ( + “ (ran 𝐹 × ran 𝐺)) = ran ( + ↾ (ran 𝐹 × ran 𝐺))
4745, 46eqtr4i 2762 . . . . . . . 8 ran 𝑃 = ( + “ (ran 𝐹 × ran 𝐺))
4843, 44, 473eltr4g 2848 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺)) → (𝑥 + 𝑦) ∈ ran 𝑃)
4914ffnd 6524 . . . . . . . 8 (𝜑𝐹 Fn ℝ)
50 dffn3 6536 . . . . . . . 8 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
5149, 50sylib 221 . . . . . . 7 (𝜑𝐹:ℝ⟶ran 𝐹)
5219ffnd 6524 . . . . . . . 8 (𝜑𝐺 Fn ℝ)
53 dffn3 6536 . . . . . . . 8 (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺)
5452, 53sylib 221 . . . . . . 7 (𝜑𝐺:ℝ⟶ran 𝐺)
55 reex 10785 . . . . . . . 8 ℝ ∈ V
5655a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
57 inidm 4119 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
5848, 51, 54, 56, 56, 57off 7464 . . . . . 6 (𝜑 → (𝐹f + 𝐺):ℝ⟶ran 𝑃)
5958frnd 6531 . . . . 5 (𝜑 → ran (𝐹f + 𝐺) ⊆ ran 𝑃)
6059ssdifd 4041 . . . 4 (𝜑 → (ran (𝐹f + 𝐺) ∖ {0}) ⊆ (ran 𝑃 ∖ {0}))
6115sselda 3887 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ)
6220sselda 3887 . . . . . . . . . 10 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ)
6361, 62anim12dan 622 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐺)) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ))
64 readdcl 10777 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 + 𝑧) ∈ ℝ)
6563, 64syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐺)) → (𝑦 + 𝑧) ∈ ℝ)
6665ralrimivva 3102 . . . . . . 7 (𝜑 → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐺(𝑦 + 𝑧) ∈ ℝ)
67 funimassov 7363 . . . . . . . 8 ((Fun + ∧ (ran 𝐹 × ran 𝐺) ⊆ dom + ) → (( + “ (ran 𝐹 × ran 𝐺)) ⊆ ℝ ↔ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐺(𝑦 + 𝑧) ∈ ℝ))
6837, 39, 67sylancr 590 . . . . . . 7 (𝜑 → (( + “ (ran 𝐹 × ran 𝐺)) ⊆ ℝ ↔ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐺(𝑦 + 𝑧) ∈ ℝ))
6966, 68mpbird 260 . . . . . 6 (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) ⊆ ℝ)
7047, 69eqsstrid 3935 . . . . 5 (𝜑 → ran 𝑃 ⊆ ℝ)
7170ssdifd 4041 . . . 4 (𝜑 → (ran 𝑃 ∖ {0}) ⊆ (ℝ ∖ {0}))
72 itg1val2 24535 . . . 4 (((𝐹f + 𝐺) ∈ dom ∫1 ∧ ((ran 𝑃 ∖ {0}) ∈ Fin ∧ (ran (𝐹f + 𝐺) ∖ {0}) ⊆ (ran 𝑃 ∖ {0}) ∧ (ran 𝑃 ∖ {0}) ⊆ (ℝ ∖ {0}))) → (∫1‘(𝐹f + 𝐺)) = Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · (vol‘((𝐹f + 𝐺) “ {𝑤}))))
733, 35, 60, 71, 72syl13anc 1374 . . 3 (𝜑 → (∫1‘(𝐹f + 𝐺)) = Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · (vol‘((𝐹f + 𝐺) “ {𝑤}))))
7419adantr 484 . . . . . . . 8 ((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) → 𝐺:ℝ⟶ℝ)
757adantr 484 . . . . . . . 8 ((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) → ran 𝐺 ∈ Fin)
76 inss2 4130 . . . . . . . . 9 ((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧})
7776a1i 11 . . . . . . . 8 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}))
78 i1fima 24529 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹 “ {(𝑤𝑧)}) ∈ dom vol)
791, 78syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ {(𝑤𝑧)}) ∈ dom vol)
80 i1fima 24529 . . . . . . . . . . 11 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑧}) ∈ dom vol)
812, 80syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 “ {𝑧}) ∈ dom vol)
82 inmbl 24393 . . . . . . . . . 10 (((𝐹 “ {(𝑤𝑧)}) ∈ dom vol ∧ (𝐺 “ {𝑧}) ∈ dom vol) → ((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
8379, 81, 82syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
8483ad2antrr 726 . . . . . . . 8 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
8533, 70sstrid 3898 . . . . . . . . . . . . 13 (𝜑 → (ran 𝑃 ∖ {0}) ⊆ ℝ)
8685sselda 3887 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) → 𝑤 ∈ ℝ)
8786adantr 484 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑤 ∈ ℝ)
8862adantlr 715 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ)
8987, 88resubcld 11225 . . . . . . . . . 10 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑤𝑧) ∈ ℝ)
9087recnd 10826 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑤 ∈ ℂ)
9188recnd 10826 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℂ)
9290, 91npcand 11158 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝑤𝑧) + 𝑧) = 𝑤)
93 eldifsni 4689 . . . . . . . . . . . . 13 (𝑤 ∈ (ran 𝑃 ∖ {0}) → 𝑤 ≠ 0)
9493ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑤 ≠ 0)
9592, 94eqnetrd 2999 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝑤𝑧) + 𝑧) ≠ 0)
96 oveq12 7200 . . . . . . . . . . . . 13 (((𝑤𝑧) = 0 ∧ 𝑧 = 0) → ((𝑤𝑧) + 𝑧) = (0 + 0))
97 00id 10972 . . . . . . . . . . . . 13 (0 + 0) = 0
9896, 97eqtrdi 2787 . . . . . . . . . . . 12 (((𝑤𝑧) = 0 ∧ 𝑧 = 0) → ((𝑤𝑧) + 𝑧) = 0)
9998necon3ai 2957 . . . . . . . . . . 11 (((𝑤𝑧) + 𝑧) ≠ 0 → ¬ ((𝑤𝑧) = 0 ∧ 𝑧 = 0))
10095, 99syl 17 . . . . . . . . . 10 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ¬ ((𝑤𝑧) = 0 ∧ 𝑧 = 0))
101 itg1add.3 . . . . . . . . . . 11 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
1021, 2, 101itg1addlem3 24549 . . . . . . . . . 10 ((((𝑤𝑧) ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ¬ ((𝑤𝑧) = 0 ∧ 𝑧 = 0)) → ((𝑤𝑧)𝐼𝑧) = (vol‘((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧}))))
10389, 88, 100, 102syl21anc 838 . . . . . . . . 9 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝑤𝑧)𝐼𝑧) = (vol‘((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧}))))
1041, 2, 101itg1addlem2 24548 . . . . . . . . . . 11 (𝜑𝐼:(ℝ × ℝ)⟶ℝ)
105104ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ × ℝ)⟶ℝ)
106105, 89, 88fovrnd 7358 . . . . . . . . 9 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝑤𝑧)𝐼𝑧) ∈ ℝ)
107103, 106eqeltrrd 2832 . . . . . . . 8 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (vol‘((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
10874, 75, 77, 84, 107itg1addlem1 24543 . . . . . . 7 ((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) → (vol‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧}))) = Σ𝑧 ∈ ran 𝐺(vol‘((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧}))))
10986recnd 10826 . . . . . . . . 9 ((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) → 𝑤 ∈ ℂ)
1101, 2i1faddlem 24544 . . . . . . . . 9 ((𝜑𝑤 ∈ ℂ) → ((𝐹f + 𝐺) “ {𝑤}) = 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧})))
111109, 110syldan 594 . . . . . . . 8 ((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) → ((𝐹f + 𝐺) “ {𝑤}) = 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧})))
112111fveq2d 6699 . . . . . . 7 ((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) → (vol‘((𝐹f + 𝐺) “ {𝑤})) = (vol‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧}))))
113103sumeq2dv 15232 . . . . . . 7 ((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) → Σ𝑧 ∈ ran 𝐺((𝑤𝑧)𝐼𝑧) = Σ𝑧 ∈ ran 𝐺(vol‘((𝐹 “ {(𝑤𝑧)}) ∩ (𝐺 “ {𝑧}))))
114108, 112, 1133eqtr4d 2781 . . . . . 6 ((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) → (vol‘((𝐹f + 𝐺) “ {𝑤})) = Σ𝑧 ∈ ran 𝐺((𝑤𝑧)𝐼𝑧))
115114oveq2d 7207 . . . . 5 ((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) → (𝑤 · (vol‘((𝐹f + 𝐺) “ {𝑤}))) = (𝑤 · Σ𝑧 ∈ ran 𝐺((𝑤𝑧)𝐼𝑧)))
116106recnd 10826 . . . . . 6 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝑤𝑧)𝐼𝑧) ∈ ℂ)
11775, 109, 116fsummulc2 15311 . . . . 5 ((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) → (𝑤 · Σ𝑧 ∈ ran 𝐺((𝑤𝑧)𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺(𝑤 · ((𝑤𝑧)𝐼𝑧)))
118115, 117eqtrd 2771 . . . 4 ((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) → (𝑤 · (vol‘((𝐹f + 𝐺) “ {𝑤}))) = Σ𝑧 ∈ ran 𝐺(𝑤 · ((𝑤𝑧)𝐼𝑧)))
119118sumeq2dv 15232 . . 3 (𝜑 → Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · (vol‘((𝐹f + 𝐺) “ {𝑤}))) = Σ𝑤 ∈ (ran 𝑃 ∖ {0})Σ𝑧 ∈ ran 𝐺(𝑤 · ((𝑤𝑧)𝐼𝑧)))
12090, 116mulcld 10818 . . . . 5 (((𝜑𝑤 ∈ (ran 𝑃 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑤 · ((𝑤𝑧)𝐼𝑧)) ∈ ℂ)
121120anasss 470 . . . 4 ((𝜑 ∧ (𝑤 ∈ (ran 𝑃 ∖ {0}) ∧ 𝑧 ∈ ran 𝐺)) → (𝑤 · ((𝑤𝑧)𝐼𝑧)) ∈ ℂ)
12235, 7, 121fsumcom 15302 . . 3 (𝜑 → Σ𝑤 ∈ (ran 𝑃 ∖ {0})Σ𝑧 ∈ ran 𝐺(𝑤 · ((𝑤𝑧)𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · ((𝑤𝑧)𝐼𝑧)))
12373, 119, 1223eqtrd 2775 . 2 (𝜑 → (∫1‘(𝐹f + 𝐺)) = Σ𝑧 ∈ ran 𝐺Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · ((𝑤𝑧)𝐼𝑧)))
124 oveq1 7198 . . . . . . 7 (𝑦 = (𝑤𝑧) → (𝑦 + 𝑧) = ((𝑤𝑧) + 𝑧))
125 oveq1 7198 . . . . . . 7 (𝑦 = (𝑤𝑧) → (𝑦𝐼𝑧) = ((𝑤𝑧)𝐼𝑧))
126124, 125oveq12d 7209 . . . . . 6 (𝑦 = (𝑤𝑧) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = (((𝑤𝑧) + 𝑧) · ((𝑤𝑧)𝐼𝑧)))
12732adantr 484 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → ran 𝑃 ∈ Fin)
12870adantr 484 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ran 𝐺) → ran 𝑃 ⊆ ℝ)
129128sselda 3887 . . . . . . . . . 10 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑣 ∈ ran 𝑃) → 𝑣 ∈ ℝ)
13062adantr 484 . . . . . . . . . 10 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑣 ∈ ran 𝑃) → 𝑧 ∈ ℝ)
131129, 130resubcld 11225 . . . . . . . . 9 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑣 ∈ ran 𝑃) → (𝑣𝑧) ∈ ℝ)
132131ex 416 . . . . . . . 8 ((𝜑𝑧 ∈ ran 𝐺) → (𝑣 ∈ ran 𝑃 → (𝑣𝑧) ∈ ℝ))
133129recnd 10826 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑣 ∈ ran 𝑃) → 𝑣 ∈ ℂ)
134133adantrr 717 . . . . . . . . . 10 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃𝑦 ∈ ran 𝑃)) → 𝑣 ∈ ℂ)
13570sselda 3887 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ran 𝑃) → 𝑦 ∈ ℝ)
136135ad2ant2rl 749 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃𝑦 ∈ ran 𝑃)) → 𝑦 ∈ ℝ)
137136recnd 10826 . . . . . . . . . 10 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃𝑦 ∈ ran 𝑃)) → 𝑦 ∈ ℂ)
13862recnd 10826 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℂ)
139138adantr 484 . . . . . . . . . 10 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃𝑦 ∈ ran 𝑃)) → 𝑧 ∈ ℂ)
140134, 137, 139subcan2ad 11199 . . . . . . . . 9 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑣 ∈ ran 𝑃𝑦 ∈ ran 𝑃)) → ((𝑣𝑧) = (𝑦𝑧) ↔ 𝑣 = 𝑦))
141140ex 416 . . . . . . . 8 ((𝜑𝑧 ∈ ran 𝐺) → ((𝑣 ∈ ran 𝑃𝑦 ∈ ran 𝑃) → ((𝑣𝑧) = (𝑦𝑧) ↔ 𝑣 = 𝑦)))
142132, 141dom2lem 8646 . . . . . . 7 ((𝜑𝑧 ∈ ran 𝐺) → (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)):ran 𝑃1-1→ℝ)
143 f1f1orn 6650 . . . . . . 7 ((𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)):ran 𝑃1-1→ℝ → (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)):ran 𝑃1-1-onto→ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)))
144142, 143syl 17 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)):ran 𝑃1-1-onto→ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)))
145 oveq1 7198 . . . . . . . 8 (𝑣 = 𝑤 → (𝑣𝑧) = (𝑤𝑧))
146 eqid 2736 . . . . . . . 8 (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)) = (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))
147 ovex 7224 . . . . . . . 8 (𝑤𝑧) ∈ V
148145, 146, 147fvmpt 6796 . . . . . . 7 (𝑤 ∈ ran 𝑃 → ((𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))‘𝑤) = (𝑤𝑧))
149148adantl 485 . . . . . 6 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ ran 𝑃) → ((𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))‘𝑤) = (𝑤𝑧))
150 f1f 6593 . . . . . . . . . . 11 ((𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)):ran 𝑃1-1→ℝ → (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)):ran 𝑃⟶ℝ)
151 frn 6530 . . . . . . . . . . 11 ((𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)):ran 𝑃⟶ℝ → ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)) ⊆ ℝ)
152142, 150, 1513syl 18 . . . . . . . . . 10 ((𝜑𝑧 ∈ ran 𝐺) → ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)) ⊆ ℝ)
153152sselda 3887 . . . . . . . . 9 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))) → 𝑦 ∈ ℝ)
15462adantr 484 . . . . . . . . 9 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))) → 𝑧 ∈ ℝ)
155153, 154readdcld 10827 . . . . . . . 8 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))) → (𝑦 + 𝑧) ∈ ℝ)
156104ad2antrr 726 . . . . . . . . 9 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))) → 𝐼:(ℝ × ℝ)⟶ℝ)
157156, 153, 154fovrnd 7358 . . . . . . . 8 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))) → (𝑦𝐼𝑧) ∈ ℝ)
158155, 157remulcld 10828 . . . . . . 7 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) ∈ ℝ)
159158recnd 10826 . . . . . 6 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) ∈ ℂ)
160126, 127, 144, 149, 159fsumf1o 15252 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → Σ𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑤 ∈ ran 𝑃(((𝑤𝑧) + 𝑧) · ((𝑤𝑧)𝐼𝑧)))
161128sselda 3887 . . . . . . . . 9 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ ran 𝑃) → 𝑤 ∈ ℝ)
162161recnd 10826 . . . . . . . 8 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ ran 𝑃) → 𝑤 ∈ ℂ)
163138adantr 484 . . . . . . . 8 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ ran 𝑃) → 𝑧 ∈ ℂ)
164162, 163npcand 11158 . . . . . . 7 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ ran 𝑃) → ((𝑤𝑧) + 𝑧) = 𝑤)
165164oveq1d 7206 . . . . . 6 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ ran 𝑃) → (((𝑤𝑧) + 𝑧) · ((𝑤𝑧)𝐼𝑧)) = (𝑤 · ((𝑤𝑧)𝐼𝑧)))
166165sumeq2dv 15232 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → Σ𝑤 ∈ ran 𝑃(((𝑤𝑧) + 𝑧) · ((𝑤𝑧)𝐼𝑧)) = Σ𝑤 ∈ ran 𝑃(𝑤 · ((𝑤𝑧)𝐼𝑧)))
167160, 166eqtrd 2771 . . . 4 ((𝜑𝑧 ∈ ran 𝐺) → Σ𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑤 ∈ ran 𝑃(𝑤 · ((𝑤𝑧)𝐼𝑧)))
16839ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (ran 𝐹 × ran 𝐺) ⊆ dom + )
169 simpr 488 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
170 simplr 769 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ran 𝐺)
171169, 170opelxpd 5574 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → ⟨𝑦, 𝑧⟩ ∈ (ran 𝐹 × ran 𝐺))
172 funfvima2 7025 . . . . . . . . . . . 12 ((Fun + ∧ (ran 𝐹 × ran 𝐺) ⊆ dom + ) → (⟨𝑦, 𝑧⟩ ∈ (ran 𝐹 × ran 𝐺) → ( + ‘⟨𝑦, 𝑧⟩) ∈ ( + “ (ran 𝐹 × ran 𝐺))))
17337, 172mpan 690 . . . . . . . . . . 11 ((ran 𝐹 × ran 𝐺) ⊆ dom + → (⟨𝑦, 𝑧⟩ ∈ (ran 𝐹 × ran 𝐺) → ( + ‘⟨𝑦, 𝑧⟩) ∈ ( + “ (ran 𝐹 × ran 𝐺))))
174168, 171, 173sylc 65 . . . . . . . . . 10 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → ( + ‘⟨𝑦, 𝑧⟩) ∈ ( + “ (ran 𝐹 × ran 𝐺)))
175 df-ov 7194 . . . . . . . . . 10 (𝑦 + 𝑧) = ( + ‘⟨𝑦, 𝑧⟩)
176174, 175, 473eltr4g 2848 . . . . . . . . 9 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦 + 𝑧) ∈ ran 𝑃)
17761adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ)
178177recnd 10826 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℂ)
179138adantr 484 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℂ)
180178, 179pncand 11155 . . . . . . . . . 10 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → ((𝑦 + 𝑧) − 𝑧) = 𝑦)
181180eqcomd 2742 . . . . . . . . 9 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 = ((𝑦 + 𝑧) − 𝑧))
182 oveq1 7198 . . . . . . . . . 10 (𝑣 = (𝑦 + 𝑧) → (𝑣𝑧) = ((𝑦 + 𝑧) − 𝑧))
183182rspceeqv 3542 . . . . . . . . 9 (((𝑦 + 𝑧) ∈ ran 𝑃𝑦 = ((𝑦 + 𝑧) − 𝑧)) → ∃𝑣 ∈ ran 𝑃 𝑦 = (𝑣𝑧))
184176, 181, 183syl2anc 587 . . . . . . . 8 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑣 ∈ ran 𝑃 𝑦 = (𝑣𝑧))
185184ralrimiva 3095 . . . . . . 7 ((𝜑𝑧 ∈ ran 𝐺) → ∀𝑦 ∈ ran 𝐹𝑣 ∈ ran 𝑃 𝑦 = (𝑣𝑧))
186 ssabral 3962 . . . . . . 7 (ran 𝐹 ⊆ {𝑦 ∣ ∃𝑣 ∈ ran 𝑃 𝑦 = (𝑣𝑧)} ↔ ∀𝑦 ∈ ran 𝐹𝑣 ∈ ran 𝑃 𝑦 = (𝑣𝑧))
187185, 186sylibr 237 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → ran 𝐹 ⊆ {𝑦 ∣ ∃𝑣 ∈ ran 𝑃 𝑦 = (𝑣𝑧)})
188146rnmpt 5809 . . . . . 6 ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)) = {𝑦 ∣ ∃𝑣 ∈ ran 𝑃 𝑦 = (𝑣𝑧)}
189187, 188sseqtrrdi 3938 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → ran 𝐹 ⊆ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)))
19062adantr 484 . . . . . . . 8 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ)
191177, 190readdcld 10827 . . . . . . 7 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦 + 𝑧) ∈ ℝ)
192104ad2antrr 726 . . . . . . . 8 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ × ℝ)⟶ℝ)
193192, 177, 190fovrnd 7358 . . . . . . 7 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ)
194191, 193remulcld 10828 . . . . . 6 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) ∈ ℝ)
195194recnd 10826 . . . . 5 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) ∈ ℂ)
196152ssdifd 4041 . . . . . . 7 ((𝜑𝑧 ∈ ran 𝐺) → (ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)) ∖ ran 𝐹) ⊆ (ℝ ∖ ran 𝐹))
197196sselda 3887 . . . . . 6 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ (ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)) ∖ ran 𝐹)) → 𝑦 ∈ (ℝ ∖ ran 𝐹))
198 eldifi 4027 . . . . . . . . . . . . 13 (𝑦 ∈ (ℝ ∖ ran 𝐹) → 𝑦 ∈ ℝ)
199198ad2antrl 728 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → 𝑦 ∈ ℝ)
20062adantr 484 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → 𝑧 ∈ ℝ)
201 simprr 773 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ¬ (𝑦 = 0 ∧ 𝑧 = 0))
2021, 2, 101itg1addlem3 24549 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0)) → (𝑦𝐼𝑧) = (vol‘((𝐹 “ {𝑦}) ∩ (𝐺 “ {𝑧}))))
203199, 200, 201, 202syl21anc 838 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (𝑦𝐼𝑧) = (vol‘((𝐹 “ {𝑦}) ∩ (𝐺 “ {𝑧}))))
204 inss1 4129 . . . . . . . . . . . . . . 15 ((𝐹 “ {𝑦}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐹 “ {𝑦})
205 eldifn 4028 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (ℝ ∖ ran 𝐹) → ¬ 𝑦 ∈ ran 𝐹)
206205ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ¬ 𝑦 ∈ ran 𝐹)
207 vex 3402 . . . . . . . . . . . . . . . . . . . . 21 𝑣 ∈ V
208207eliniseg 5943 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ V → (𝑣 ∈ (𝐹 “ {𝑦}) ↔ 𝑣𝐹𝑦))
209208elv 3404 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ (𝐹 “ {𝑦}) ↔ 𝑣𝐹𝑦)
210 vex 3402 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ V
211207, 210brelrn 5796 . . . . . . . . . . . . . . . . . . 19 (𝑣𝐹𝑦𝑦 ∈ ran 𝐹)
212209, 211sylbi 220 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ (𝐹 “ {𝑦}) → 𝑦 ∈ ran 𝐹)
213206, 212nsyl 142 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ¬ 𝑣 ∈ (𝐹 “ {𝑦}))
214213pm2.21d 121 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (𝑣 ∈ (𝐹 “ {𝑦}) → 𝑣 ∈ ∅))
215214ssrdv 3893 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (𝐹 “ {𝑦}) ⊆ ∅)
216204, 215sstrid 3898 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ((𝐹 “ {𝑦}) ∩ (𝐺 “ {𝑧})) ⊆ ∅)
217 ss0 4299 . . . . . . . . . . . . . 14 (((𝐹 “ {𝑦}) ∩ (𝐺 “ {𝑧})) ⊆ ∅ → ((𝐹 “ {𝑦}) ∩ (𝐺 “ {𝑧})) = ∅)
218216, 217syl 17 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ((𝐹 “ {𝑦}) ∩ (𝐺 “ {𝑧})) = ∅)
219218fveq2d 6699 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (vol‘((𝐹 “ {𝑦}) ∩ (𝐺 “ {𝑧}))) = (vol‘∅))
220 0mbl 24390 . . . . . . . . . . . . . 14 ∅ ∈ dom vol
221 mblvol 24381 . . . . . . . . . . . . . 14 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
222220, 221ax-mp 5 . . . . . . . . . . . . 13 (vol‘∅) = (vol*‘∅)
223 ovol0 24344 . . . . . . . . . . . . 13 (vol*‘∅) = 0
224222, 223eqtri 2759 . . . . . . . . . . . 12 (vol‘∅) = 0
225219, 224eqtrdi 2787 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (vol‘((𝐹 “ {𝑦}) ∩ (𝐺 “ {𝑧}))) = 0)
226203, 225eqtrd 2771 . . . . . . . . . 10 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (𝑦𝐼𝑧) = 0)
227226oveq2d 7207 . . . . . . . . 9 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = ((𝑦 + 𝑧) · 0))
228199, 200readdcld 10827 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (𝑦 + 𝑧) ∈ ℝ)
229228recnd 10826 . . . . . . . . . 10 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → (𝑦 + 𝑧) ∈ ℂ)
230229mul01d 10996 . . . . . . . . 9 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ((𝑦 + 𝑧) · 0) = 0)
231227, 230eqtrd 2771 . . . . . . . 8 (((𝜑𝑧 ∈ ran 𝐺) ∧ (𝑦 ∈ (ℝ ∖ ran 𝐹) ∧ ¬ (𝑦 = 0 ∧ 𝑧 = 0))) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = 0)
232231expr 460 . . . . . . 7 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ (ℝ ∖ ran 𝐹)) → (¬ (𝑦 = 0 ∧ 𝑧 = 0) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = 0))
233 oveq12 7200 . . . . . . . . . 10 ((𝑦 = 0 ∧ 𝑧 = 0) → (𝑦 + 𝑧) = (0 + 0))
234233, 97eqtrdi 2787 . . . . . . . . 9 ((𝑦 = 0 ∧ 𝑧 = 0) → (𝑦 + 𝑧) = 0)
235 oveq12 7200 . . . . . . . . . 10 ((𝑦 = 0 ∧ 𝑧 = 0) → (𝑦𝐼𝑧) = (0𝐼0))
236 0re 10800 . . . . . . . . . . 11 0 ∈ ℝ
237 iftrue 4431 . . . . . . . . . . . 12 ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = 0)
238 c0ex 10792 . . . . . . . . . . . 12 0 ∈ V
239237, 101, 238ovmpoa 7342 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → (0𝐼0) = 0)
240236, 236, 239mp2an 692 . . . . . . . . . 10 (0𝐼0) = 0
241235, 240eqtrdi 2787 . . . . . . . . 9 ((𝑦 = 0 ∧ 𝑧 = 0) → (𝑦𝐼𝑧) = 0)
242234, 241oveq12d 7209 . . . . . . . 8 ((𝑦 = 0 ∧ 𝑧 = 0) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = (0 · 0))
243 0cn 10790 . . . . . . . . 9 0 ∈ ℂ
244243mul01i 10987 . . . . . . . 8 (0 · 0) = 0
245242, 244eqtrdi 2787 . . . . . . 7 ((𝑦 = 0 ∧ 𝑧 = 0) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = 0)
246232, 245pm2.61d2 184 . . . . . 6 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ (ℝ ∖ ran 𝐹)) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = 0)
247197, 246syldan 594 . . . . 5 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ (ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)) ∖ ran 𝐹)) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = 0)
248 f1ofo 6646 . . . . . . 7 ((𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)):ran 𝑃1-1-onto→ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)) → (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)):ran 𝑃onto→ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)))
249144, 248syl 17 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)):ran 𝑃onto→ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)))
250 fofi 8940 . . . . . 6 ((ran 𝑃 ∈ Fin ∧ (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)):ran 𝑃onto→ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))) → ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)) ∈ Fin)
251127, 249, 250syl2anc 587 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧)) ∈ Fin)
252189, 195, 247, 251fsumss 15254 . . . 4 ((𝜑𝑧 ∈ ran 𝐺) → Σ𝑦 ∈ ran 𝐹((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran (𝑣 ∈ ran 𝑃 ↦ (𝑣𝑧))((𝑦 + 𝑧) · (𝑦𝐼𝑧)))
25333a1i 11 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → (ran 𝑃 ∖ {0}) ⊆ ran 𝑃)
254120an32s 652 . . . . 5 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ (ran 𝑃 ∖ {0})) → (𝑤 · ((𝑤𝑧)𝐼𝑧)) ∈ ℂ)
255 dfin4 4168 . . . . . . . 8 (ran 𝑃 ∩ {0}) = (ran 𝑃 ∖ (ran 𝑃 ∖ {0}))
256 inss2 4130 . . . . . . . 8 (ran 𝑃 ∩ {0}) ⊆ {0}
257255, 256eqsstrri 3922 . . . . . . 7 (ran 𝑃 ∖ (ran 𝑃 ∖ {0})) ⊆ {0}
258257sseli 3883 . . . . . 6 (𝑤 ∈ (ran 𝑃 ∖ (ran 𝑃 ∖ {0})) → 𝑤 ∈ {0})
259 elsni 4544 . . . . . . . . 9 (𝑤 ∈ {0} → 𝑤 = 0)
260259adantl 485 . . . . . . . 8 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → 𝑤 = 0)
261260oveq1d 7206 . . . . . . 7 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → (𝑤 · ((𝑤𝑧)𝐼𝑧)) = (0 · ((𝑤𝑧)𝐼𝑧)))
262104ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → 𝐼:(ℝ × ℝ)⟶ℝ)
263260, 236eqeltrdi 2839 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → 𝑤 ∈ ℝ)
26462adantr 484 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → 𝑧 ∈ ℝ)
265263, 264resubcld 11225 . . . . . . . . . 10 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → (𝑤𝑧) ∈ ℝ)
266262, 265, 264fovrnd 7358 . . . . . . . . 9 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → ((𝑤𝑧)𝐼𝑧) ∈ ℝ)
267266recnd 10826 . . . . . . . 8 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → ((𝑤𝑧)𝐼𝑧) ∈ ℂ)
268267mul02d 10995 . . . . . . 7 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → (0 · ((𝑤𝑧)𝐼𝑧)) = 0)
269261, 268eqtrd 2771 . . . . . 6 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ {0}) → (𝑤 · ((𝑤𝑧)𝐼𝑧)) = 0)
270258, 269sylan2 596 . . . . 5 (((𝜑𝑧 ∈ ran 𝐺) ∧ 𝑤 ∈ (ran 𝑃 ∖ (ran 𝑃 ∖ {0}))) → (𝑤 · ((𝑤𝑧)𝐼𝑧)) = 0)
271253, 254, 270, 127fsumss 15254 . . . 4 ((𝜑𝑧 ∈ ran 𝐺) → Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · ((𝑤𝑧)𝐼𝑧)) = Σ𝑤 ∈ ran 𝑃(𝑤 · ((𝑤𝑧)𝐼𝑧)))
272167, 252, 2713eqtr4d 2781 . . 3 ((𝜑𝑧 ∈ ran 𝐺) → Σ𝑦 ∈ ran 𝐹((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · ((𝑤𝑧)𝐼𝑧)))
273272sumeq2dv 15232 . 2 (𝜑 → Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺Σ𝑤 ∈ (ran 𝑃 ∖ {0})(𝑤 · ((𝑤𝑧)𝐼𝑧)))
274195anasss 470 . . 3 ((𝜑 ∧ (𝑧 ∈ ran 𝐺𝑦 ∈ ran 𝐹)) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) ∈ ℂ)
2757, 5, 274fsumcom 15302 . 2 (𝜑 → Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)))
276123, 273, 2753eqtr2d 2777 1 (𝜑 → (∫1‘(𝐹f + 𝐺)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  {cab 2714  wne 2932  wral 3051  wrex 3052  Vcvv 3398  cdif 3850  cin 3852  wss 3853  c0 4223  ifcif 4425  {csn 4527  cop 4533   ciun 4890   class class class wbr 5039  cmpt 5120   × cxp 5534  ccnv 5535  dom cdm 5536  ran crn 5537  cres 5538  cima 5539  Fun wfun 6352   Fn wfn 6353  wf 6354  1-1wf1 6355  ontowfo 6356  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7191  cmpo 7193  f cof 7445  Fincfn 8604  cc 10692  cr 10693  0cc0 10694   + caddc 10697   · cmul 10699  cmin 11027  Σcsu 15214  vol*covol 24313  volcvol 24314  1citg1 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-dju 9482  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-xadd 12670  df-ioo 12904  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215  df-xmet 20310  df-met 20311  df-ovol 24315  df-vol 24316  df-mbf 24470  df-itg1 24471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator