MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addex Structured version   Visualization version   GIF version

Theorem addex 12908
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 11107 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 11109 . . 3 ℂ ∈ V
32, 2xpex 7693 . 2 (ℂ × ℂ) ∈ V
4 fex2 7876 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1463 1 + ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3438   × cxp 5621  wf 6482  cc 11026   + caddc 11031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  cnaddablx  19765  cnaddabl  19766  cnaddid  19767  cnaddinv  19768  zaddablx  19769  cnfldaddOLD  21299  cnfldfunOLD  21306  cnfldfunALTOLD  21307  cnlmodlem2  25053  cnnvg  30640  cnnvs  30642  cncph  30781  cnaddcom  38950  nn0mnd  48151
  Copyright terms: Public domain W3C validator