MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addex Structured version   Visualization version   GIF version

Theorem addex 12728
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 10950 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 10952 . . 3 ℂ ∈ V
32, 2xpex 7603 . 2 (ℂ × ℂ) ∈ V
4 fex2 7780 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1460 1 + ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432   × cxp 5587  wf 6429  cc 10869   + caddc 10874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-addf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  cnaddablx  19469  cnaddabl  19470  cnaddid  19471  cnaddinv  19472  zaddablx  19473  cnfldadd  20602  cnfldfun  20609  cnfldfunALT  20610  cnfldfunALTOLD  20611  cnlmodlem2  24300  cnnvg  29040  cnnvs  29042  cncph  29181  cnaddcom  36986  nn0mnd  45373
  Copyright terms: Public domain W3C validator