| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addex | Structured version Visualization version GIF version | ||
| Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| addex | ⊢ + ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addf 11154 | . 2 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 2 | cnex 11156 | . . 3 ⊢ ℂ ∈ V | |
| 3 | 2, 2 | xpex 7732 | . 2 ⊢ (ℂ × ℂ) ∈ V |
| 4 | fex2 7915 | . 2 ⊢ (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V) | |
| 5 | 1, 3, 2, 4 | mp3an 1463 | 1 ⊢ + ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 × cxp 5639 ⟶wf 6510 ℂcc 11073 + caddc 11078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: cnaddablx 19805 cnaddabl 19806 cnaddid 19807 cnaddinv 19808 zaddablx 19809 cnfldaddOLD 21291 cnfldfunOLD 21298 cnfldfunALTOLD 21299 cnlmodlem2 25044 cnnvg 30614 cnnvs 30616 cncph 30755 cnaddcom 38972 nn0mnd 48171 |
| Copyright terms: Public domain | W3C validator |