MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addex Structured version   Visualization version   GIF version

Theorem addex 13010
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 11213 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 11215 . . 3 ℂ ∈ V
32, 2xpex 7752 . 2 (ℂ × ℂ) ∈ V
4 fex2 7937 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1463 1 + ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3464   × cxp 5657  wf 6532  cc 11132   + caddc 11137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-fun 6538  df-fn 6539  df-f 6540
This theorem is referenced by:  cnaddablx  19854  cnaddabl  19855  cnaddid  19856  cnaddinv  19857  zaddablx  19858  cnfldaddOLD  21340  cnfldfunOLD  21347  cnfldfunALTOLD  21348  cnlmodlem2  25093  cnnvg  30664  cnnvs  30666  cncph  30805  cnaddcom  38995  nn0mnd  48121
  Copyright terms: Public domain W3C validator