MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addex Structured version   Visualization version   GIF version

Theorem addex 12879
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 11077 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 11079 . . 3 ℂ ∈ V
32, 2xpex 7681 . 2 (ℂ × ℂ) ∈ V
4 fex2 7861 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1463 1 + ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  Vcvv 3434   × cxp 5612  wf 6473  cc 10996   + caddc 11001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-fun 6479  df-fn 6480  df-f 6481
This theorem is referenced by:  cnaddablx  19773  cnaddabl  19774  cnaddid  19775  cnaddinv  19776  zaddablx  19777  cnfldaddOLD  21304  cnfldfunOLD  21311  cnfldfunALTOLD  21312  cnlmodlem2  25057  cnnvg  30648  cnnvs  30650  cncph  30789  cnaddcom  38990  nn0mnd  48189
  Copyright terms: Public domain W3C validator