MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addex Structured version   Visualization version   GIF version

Theorem addex 12971
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 11188 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 11190 . . 3 ℂ ∈ V
32, 2xpex 7739 . 2 (ℂ × ℂ) ∈ V
4 fex2 7923 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1461 1 + ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3474   × cxp 5674  wf 6539  cc 11107   + caddc 11112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-addf 11188
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-fun 6545  df-fn 6546  df-f 6547
This theorem is referenced by:  cnaddablx  19735  cnaddabl  19736  cnaddid  19737  cnaddinv  19738  zaddablx  19739  cnfldadd  20948  cnfldfun  20955  cnfldfunALT  20956  cnfldfunALTOLD  20957  cnlmodlem2  24652  cnnvg  29926  cnnvs  29928  cncph  30067  cnaddcom  37837  nn0mnd  46579
  Copyright terms: Public domain W3C validator