| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addex | Structured version Visualization version GIF version | ||
| Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| addex | ⊢ + ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addf 11095 | . 2 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 2 | cnex 11097 | . . 3 ⊢ ℂ ∈ V | |
| 3 | 2, 2 | xpex 7695 | . 2 ⊢ (ℂ × ℂ) ∈ V |
| 4 | fex2 7875 | . 2 ⊢ (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V) | |
| 5 | 1, 3, 2, 4 | mp3an 1463 | 1 ⊢ + ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3438 × cxp 5619 ⟶wf 6485 ℂcc 11014 + caddc 11019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-addf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-fun 6491 df-fn 6492 df-f 6493 |
| This theorem is referenced by: cnaddablx 19790 cnaddabl 19791 cnaddid 19792 cnaddinv 19793 zaddablx 19794 cnfldaddOLD 21321 cnfldfunOLD 21328 cnfldfunALTOLD 21329 cnlmodlem2 25074 cnnvg 30669 cnnvs 30671 cncph 30810 cnaddcom 39081 nn0mnd 48293 |
| Copyright terms: Public domain | W3C validator |