MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addex Structured version   Visualization version   GIF version

Theorem addex 12921
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 11138 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 11140 . . 3 ℂ ∈ V
32, 2xpex 7691 . 2 (ℂ × ℂ) ∈ V
4 fex2 7874 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1462 1 + ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3447   × cxp 5635  wf 6496  cc 11057   + caddc 11062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-addf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-xp 5643  df-rel 5644  df-cnv 5645  df-dm 5647  df-rn 5648  df-fun 6502  df-fn 6503  df-f 6504
This theorem is referenced by:  cnaddablx  19654  cnaddabl  19655  cnaddid  19656  cnaddinv  19657  zaddablx  19658  cnfldadd  20824  cnfldfun  20831  cnfldfunALT  20832  cnfldfunALTOLD  20833  cnlmodlem2  24523  cnnvg  29669  cnnvs  29671  cncph  29810  cnaddcom  37484  nn0mnd  46203
  Copyright terms: Public domain W3C validator