![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addex | Structured version Visualization version GIF version |
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
addex | ⊢ + ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addf 11232 | . 2 ⊢ + :(ℂ × ℂ)⟶ℂ | |
2 | cnex 11234 | . . 3 ⊢ ℂ ∈ V | |
3 | 2, 2 | xpex 7772 | . 2 ⊢ (ℂ × ℂ) ∈ V |
4 | fex2 7957 | . 2 ⊢ (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V) | |
5 | 1, 3, 2, 4 | mp3an 1460 | 1 ⊢ + ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 × cxp 5687 ⟶wf 6559 ℂcc 11151 + caddc 11156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: cnaddablx 19901 cnaddabl 19902 cnaddid 19903 cnaddinv 19904 zaddablx 19905 cnfldaddOLD 21402 cnfldfunOLD 21409 cnfldfunALTOLD 21410 cnfldfunALTOLDOLD 21411 cnlmodlem2 25184 cnnvg 30707 cnnvs 30709 cncph 30848 cnaddcom 38954 nn0mnd 48023 |
Copyright terms: Public domain | W3C validator |