| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addex | Structured version Visualization version GIF version | ||
| Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| addex | ⊢ + ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addf 11213 | . 2 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 2 | cnex 11215 | . . 3 ⊢ ℂ ∈ V | |
| 3 | 2, 2 | xpex 7752 | . 2 ⊢ (ℂ × ℂ) ∈ V |
| 4 | fex2 7937 | . 2 ⊢ (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V) | |
| 5 | 1, 3, 2, 4 | mp3an 1463 | 1 ⊢ + ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 × cxp 5657 ⟶wf 6532 ℂcc 11132 + caddc 11137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: cnaddablx 19854 cnaddabl 19855 cnaddid 19856 cnaddinv 19857 zaddablx 19858 cnfldaddOLD 21340 cnfldfunOLD 21347 cnfldfunALTOLD 21348 cnlmodlem2 25093 cnnvg 30664 cnnvs 30666 cncph 30805 cnaddcom 38995 nn0mnd 48121 |
| Copyright terms: Public domain | W3C validator |