MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addex Structured version   Visualization version   GIF version

Theorem addex 13029
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 11232 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 11234 . . 3 ℂ ∈ V
32, 2xpex 7772 . 2 (ℂ × ℂ) ∈ V
4 fex2 7957 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1460 1 + ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3478   × cxp 5687  wf 6559  cc 11151   + caddc 11156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  cnaddablx  19901  cnaddabl  19902  cnaddid  19903  cnaddinv  19904  zaddablx  19905  cnfldaddOLD  21402  cnfldfunOLD  21409  cnfldfunALTOLD  21410  cnfldfunALTOLDOLD  21411  cnlmodlem2  25184  cnnvg  30707  cnnvs  30709  cncph  30848  cnaddcom  38954  nn0mnd  48023
  Copyright terms: Public domain W3C validator