Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addex | Structured version Visualization version GIF version |
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
addex | ⊢ + ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addf 10881 | . 2 ⊢ + :(ℂ × ℂ)⟶ℂ | |
2 | cnex 10883 | . . 3 ⊢ ℂ ∈ V | |
3 | 2, 2 | xpex 7581 | . 2 ⊢ (ℂ × ℂ) ∈ V |
4 | fex2 7754 | . 2 ⊢ (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V) | |
5 | 1, 3, 2, 4 | mp3an 1459 | 1 ⊢ + ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 × cxp 5578 ⟶wf 6414 ℂcc 10800 + caddc 10805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: cnaddablx 19384 cnaddabl 19385 cnaddid 19386 cnaddinv 19387 zaddablx 19388 cnfldadd 20515 cnfldfun 20522 cnfldfunALT 20523 cnlmodlem2 24206 cnnvg 28941 cnnvs 28943 cncph 29082 cnaddcom 36913 nn0mnd 45261 |
Copyright terms: Public domain | W3C validator |