MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addex Structured version   Visualization version   GIF version

Theorem addex 12995
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 11209 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 11211 . . 3 ℂ ∈ V
32, 2xpex 7749 . 2 (ℂ × ℂ) ∈ V
4 fex2 7935 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1458 1 + ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  Vcvv 3469   × cxp 5670  wf 6538  cc 11128   + caddc 11133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-fun 6544  df-fn 6545  df-f 6546
This theorem is referenced by:  cnaddablx  19814  cnaddabl  19815  cnaddid  19816  cnaddinv  19817  zaddablx  19818  cnfldaddOLD  21286  cnfldfunOLD  21293  cnfldfunALTOLD  21294  cnfldfunALTOLDOLD  21295  cnlmodlem2  25051  cnnvg  30475  cnnvs  30477  cncph  30616  cnaddcom  38381  nn0mnd  47164
  Copyright terms: Public domain W3C validator