MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addex Structured version   Visualization version   GIF version

Theorem addex 12140
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 10353 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 10355 . . 3 ℂ ∈ V
32, 2xpex 7242 . 2 (ℂ × ℂ) ∈ V
4 fex2 7402 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1534 1 + ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3398   × cxp 5355  wf 6133  cc 10272   + caddc 10277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-addf 10353
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-xp 5363  df-rel 5364  df-cnv 5365  df-dm 5367  df-rn 5368  df-fun 6139  df-fn 6140  df-f 6141
This theorem is referenced by:  cnaddablx  18668  cnaddabl  18669  cnaddid  18670  cnaddinv  18671  zaddablx  18672  cnfldadd  20158  cnfldfun  20165  cnfldfunALT  20166  cnlmodlem2  23355  cnnvg  28122  cnnvs  28124  cncph  28263  cnaddcom  35135
  Copyright terms: Public domain W3C validator