| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addex | Structured version Visualization version GIF version | ||
| Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| addex | ⊢ + ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addf 11077 | . 2 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 2 | cnex 11079 | . . 3 ⊢ ℂ ∈ V | |
| 3 | 2, 2 | xpex 7681 | . 2 ⊢ (ℂ × ℂ) ∈ V |
| 4 | fex2 7861 | . 2 ⊢ (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V) | |
| 5 | 1, 3, 2, 4 | mp3an 1463 | 1 ⊢ + ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2110 Vcvv 3434 × cxp 5612 ⟶wf 6473 ℂcc 10996 + caddc 11001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-fun 6479 df-fn 6480 df-f 6481 |
| This theorem is referenced by: cnaddablx 19773 cnaddabl 19774 cnaddid 19775 cnaddinv 19776 zaddablx 19777 cnfldaddOLD 21304 cnfldfunOLD 21311 cnfldfunALTOLD 21312 cnlmodlem2 25057 cnnvg 30648 cnnvs 30650 cncph 30789 cnaddcom 38990 nn0mnd 48189 |
| Copyright terms: Public domain | W3C validator |