Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addex | Structured version Visualization version GIF version |
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
addex | ⊢ + ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addf 10950 | . 2 ⊢ + :(ℂ × ℂ)⟶ℂ | |
2 | cnex 10952 | . . 3 ⊢ ℂ ∈ V | |
3 | 2, 2 | xpex 7603 | . 2 ⊢ (ℂ × ℂ) ∈ V |
4 | fex2 7780 | . 2 ⊢ (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V) | |
5 | 1, 3, 2, 4 | mp3an 1460 | 1 ⊢ + ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 × cxp 5587 ⟶wf 6429 ℂcc 10869 + caddc 10874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-addf 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: cnaddablx 19469 cnaddabl 19470 cnaddid 19471 cnaddinv 19472 zaddablx 19473 cnfldadd 20602 cnfldfun 20609 cnfldfunALT 20610 cnfldfunALTOLD 20611 cnlmodlem2 24300 cnnvg 29040 cnnvs 29042 cncph 29181 cnaddcom 36986 nn0mnd 45373 |
Copyright terms: Public domain | W3C validator |