MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addex Structured version   Visualization version   GIF version

Theorem addex 12897
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 11095 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 11097 . . 3 ℂ ∈ V
32, 2xpex 7695 . 2 (ℂ × ℂ) ∈ V
4 fex2 7875 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1463 1 + ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  Vcvv 3438   × cxp 5619  wf 6485  cc 11014   + caddc 11019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-fun 6491  df-fn 6492  df-f 6493
This theorem is referenced by:  cnaddablx  19790  cnaddabl  19791  cnaddid  19792  cnaddinv  19793  zaddablx  19794  cnfldaddOLD  21321  cnfldfunOLD  21328  cnfldfunALTOLD  21329  cnlmodlem2  25074  cnnvg  30669  cnnvs  30671  cncph  30810  cnaddcom  39081  nn0mnd  48293
  Copyright terms: Public domain W3C validator