![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addex | Structured version Visualization version GIF version |
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
addex | ⊢ + ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addf 10353 | . 2 ⊢ + :(ℂ × ℂ)⟶ℂ | |
2 | cnex 10355 | . . 3 ⊢ ℂ ∈ V | |
3 | 2, 2 | xpex 7242 | . 2 ⊢ (ℂ × ℂ) ∈ V |
4 | fex2 7402 | . 2 ⊢ (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V) | |
5 | 1, 3, 2, 4 | mp3an 1534 | 1 ⊢ + ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3398 × cxp 5355 ⟶wf 6133 ℂcc 10272 + caddc 10277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-addf 10353 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-xp 5363 df-rel 5364 df-cnv 5365 df-dm 5367 df-rn 5368 df-fun 6139 df-fn 6140 df-f 6141 |
This theorem is referenced by: cnaddablx 18668 cnaddabl 18669 cnaddid 18670 cnaddinv 18671 zaddablx 18672 cnfldadd 20158 cnfldfun 20165 cnfldfunALT 20166 cnlmodlem2 23355 cnnvg 28122 cnnvs 28124 cncph 28263 cnaddcom 35135 |
Copyright terms: Public domain | W3C validator |