MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addex Structured version   Visualization version   GIF version

Theorem addex 13054
Description: The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
addex + ∈ V

Proof of Theorem addex
StepHypRef Expression
1 ax-addf 11263 . 2 + :(ℂ × ℂ)⟶ℂ
2 cnex 11265 . . 3 ℂ ∈ V
32, 2xpex 7788 . 2 (ℂ × ℂ) ∈ V
4 fex2 7974 . 2 (( + :(ℂ × ℂ)⟶ℂ ∧ (ℂ × ℂ) ∈ V ∧ ℂ ∈ V) → + ∈ V)
51, 3, 2, 4mp3an 1461 1 + ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488   × cxp 5698  wf 6569  cc 11182   + caddc 11187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  cnaddablx  19910  cnaddabl  19911  cnaddid  19912  cnaddinv  19913  zaddablx  19914  cnfldaddOLD  21407  cnfldfunOLD  21414  cnfldfunALTOLD  21415  cnfldfunALTOLDOLD  21416  cnlmodlem2  25189  cnnvg  30710  cnnvs  30712  cncph  30851  cnaddcom  38928  nn0mnd  47902
  Copyright terms: Public domain W3C validator