MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddabloOLD Structured version   Visualization version   GIF version

Theorem cnaddabloOLD 30560
Description: Obsolete version of cnaddabl 19783. Complex number addition is an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
cnaddabloOLD + ∈ AbelOp

Proof of Theorem cnaddabloOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 11125 . . 3 ℂ ∈ V
2 ax-addf 11123 . . 3 + :(ℂ × ℂ)⟶ℂ
3 addass 11131 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4 0cn 11142 . . 3 0 ∈ ℂ
5 addlid 11333 . . 3 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
6 negcl 11397 . . 3 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
7 addcom 11336 . . . . 5 ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
86, 7mpdan 687 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
9 negid 11445 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
108, 9eqtr3d 2766 . . 3 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
111, 2, 3, 4, 5, 6, 10isgrpoi 30477 . 2 + ∈ GrpOp
122fdmi 6681 . 2 dom + = (ℂ × ℂ)
13 addcom 11336 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1411, 12, 13isabloi 30530 1 + ∈ AbelOp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109   × cxp 5629  (class class class)co 7369  cc 11042  0cc0 11044   + caddc 11047  -cneg 11382  AbelOpcablo 30523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-sub 11383  df-neg 11384  df-grpo 30472  df-ablo 30524
This theorem is referenced by:  cnidOLD  30561  cncvcOLD  30562  cnnv  30656  cnnvba  30658  cncph  30798
  Copyright terms: Public domain W3C validator