MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddabloOLD Structured version   Visualization version   GIF version

Theorem cnaddabloOLD 28943
Description: Obsolete version of cnaddabl 19470. Complex number addition is an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
cnaddabloOLD + ∈ AbelOp

Proof of Theorem cnaddabloOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 10952 . . 3 ℂ ∈ V
2 ax-addf 10950 . . 3 + :(ℂ × ℂ)⟶ℂ
3 addass 10958 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4 0cn 10967 . . 3 0 ∈ ℂ
5 addid2 11158 . . 3 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
6 negcl 11221 . . 3 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
7 addcom 11161 . . . . 5 ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
86, 7mpdan 684 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
9 negid 11268 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
108, 9eqtr3d 2780 . . 3 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
111, 2, 3, 4, 5, 6, 10isgrpoi 28860 . 2 + ∈ GrpOp
122fdmi 6612 . 2 dom + = (ℂ × ℂ)
13 addcom 11161 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1411, 12, 13isabloi 28913 1 + ∈ AbelOp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106   × cxp 5587  (class class class)co 7275  cc 10869  0cc0 10871   + caddc 10874  -cneg 11206  AbelOpcablo 28906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-addf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208  df-grpo 28855  df-ablo 28907
This theorem is referenced by:  cnidOLD  28944  cncvcOLD  28945  cnnv  29039  cnnvba  29041  cncph  29181
  Copyright terms: Public domain W3C validator