MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddabloOLD Structured version   Visualization version   GIF version

Theorem cnaddabloOLD 28364
Description: Obsolete version of cnaddabl 18982. Complex number addition is an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
cnaddabloOLD + ∈ AbelOp

Proof of Theorem cnaddabloOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 10607 . . 3 ℂ ∈ V
2 ax-addf 10605 . . 3 + :(ℂ × ℂ)⟶ℂ
3 addass 10613 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4 0cn 10622 . . 3 0 ∈ ℂ
5 addid2 10812 . . 3 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
6 negcl 10875 . . 3 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
7 addcom 10815 . . . . 5 ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
86, 7mpdan 686 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
9 negid 10922 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
108, 9eqtr3d 2835 . . 3 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
111, 2, 3, 4, 5, 6, 10isgrpoi 28281 . 2 + ∈ GrpOp
122fdmi 6498 . 2 dom + = (ℂ × ℂ)
13 addcom 10815 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1411, 12, 13isabloi 28334 1 + ∈ AbelOp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111   × cxp 5517  (class class class)co 7135  cc 10524  0cc0 10526   + caddc 10529  -cneg 10860  AbelOpcablo 28327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-neg 10862  df-grpo 28276  df-ablo 28328
This theorem is referenced by:  cnidOLD  28365  cncvcOLD  28366  cnnv  28460  cnnvba  28462  cncph  28602
  Copyright terms: Public domain W3C validator