![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnaddabloOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cnaddabl 19826. Complex number addition is an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cnaddabloOLD | β’ + β AbelOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11217 | . . 3 β’ β β V | |
2 | ax-addf 11215 | . . 3 β’ + :(β Γ β)βΆβ | |
3 | addass 11223 | . . 3 β’ ((π₯ β β β§ π¦ β β β§ π§ β β) β ((π₯ + π¦) + π§) = (π₯ + (π¦ + π§))) | |
4 | 0cn 11234 | . . 3 β’ 0 β β | |
5 | addlid 11425 | . . 3 β’ (π₯ β β β (0 + π₯) = π₯) | |
6 | negcl 11488 | . . 3 β’ (π₯ β β β -π₯ β β) | |
7 | addcom 11428 | . . . . 5 β’ ((π₯ β β β§ -π₯ β β) β (π₯ + -π₯) = (-π₯ + π₯)) | |
8 | 6, 7 | mpdan 685 | . . . 4 β’ (π₯ β β β (π₯ + -π₯) = (-π₯ + π₯)) |
9 | negid 11535 | . . . 4 β’ (π₯ β β β (π₯ + -π₯) = 0) | |
10 | 8, 9 | eqtr3d 2767 | . . 3 β’ (π₯ β β β (-π₯ + π₯) = 0) |
11 | 1, 2, 3, 4, 5, 6, 10 | isgrpoi 30350 | . 2 β’ + β GrpOp |
12 | 2 | fdmi 6728 | . 2 β’ dom + = (β Γ β) |
13 | addcom 11428 | . 2 β’ ((π₯ β β β§ π¦ β β) β (π₯ + π¦) = (π¦ + π₯)) | |
14 | 11, 12, 13 | isabloi 30403 | 1 β’ + β AbelOp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β wcel 2098 Γ cxp 5670 (class class class)co 7415 βcc 11134 0cc0 11136 + caddc 11139 -cneg 11473 AbelOpcablo 30396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-addf 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-ltxr 11281 df-sub 11474 df-neg 11475 df-grpo 30345 df-ablo 30397 |
This theorem is referenced by: cnidOLD 30434 cncvcOLD 30435 cnnv 30529 cnnvba 30531 cncph 30671 |
Copyright terms: Public domain | W3C validator |