MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddabloOLD Structured version   Visualization version   GIF version

Theorem cnaddabloOLD 30600
Description: Obsolete version of cnaddabl 19887. Complex number addition is an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
cnaddabloOLD + ∈ AbelOp

Proof of Theorem cnaddabloOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 11236 . . 3 ℂ ∈ V
2 ax-addf 11234 . . 3 + :(ℂ × ℂ)⟶ℂ
3 addass 11242 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4 0cn 11253 . . 3 0 ∈ ℂ
5 addlid 11444 . . 3 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
6 negcl 11508 . . 3 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
7 addcom 11447 . . . . 5 ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
86, 7mpdan 687 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
9 negid 11556 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
108, 9eqtr3d 2779 . . 3 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
111, 2, 3, 4, 5, 6, 10isgrpoi 30517 . 2 + ∈ GrpOp
122fdmi 6747 . 2 dom + = (ℂ × ℂ)
13 addcom 11447 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1411, 12, 13isabloi 30570 1 + ∈ AbelOp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108   × cxp 5683  (class class class)co 7431  cc 11153  0cc0 11155   + caddc 11158  -cneg 11493  AbelOpcablo 30563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-grpo 30512  df-ablo 30564
This theorem is referenced by:  cnidOLD  30601  cncvcOLD  30602  cnnv  30696  cnnvba  30698  cncph  30838
  Copyright terms: Public domain W3C validator