![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnaddabloOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cnaddabl 18745. Complex number addition is an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cnaddabloOLD | ⊢ + ∈ AbelOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10416 | . . 3 ⊢ ℂ ∈ V | |
2 | ax-addf 10414 | . . 3 ⊢ + :(ℂ × ℂ)⟶ℂ | |
3 | addass 10422 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
4 | 0cn 10431 | . . 3 ⊢ 0 ∈ ℂ | |
5 | addid2 10623 | . . 3 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
6 | negcl 10686 | . . 3 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
7 | addcom 10626 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) | |
8 | 6, 7 | mpdan 674 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥)) |
9 | negid 10734 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
10 | 8, 9 | eqtr3d 2817 | . . 3 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
11 | 1, 2, 3, 4, 5, 6, 10 | isgrpoi 28052 | . 2 ⊢ + ∈ GrpOp |
12 | 2 | fdmi 6354 | . 2 ⊢ dom + = (ℂ × ℂ) |
13 | addcom 10626 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
14 | 11, 12, 13 | isabloi 28105 | 1 ⊢ + ∈ AbelOp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2050 × cxp 5405 (class class class)co 6976 ℂcc 10333 0cc0 10335 + caddc 10338 -cneg 10671 AbelOpcablo 28098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-addf 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-ltxr 10479 df-sub 10672 df-neg 10673 df-grpo 28047 df-ablo 28099 |
This theorem is referenced by: cnidOLD 28136 cncvcOLD 28137 cnnv 28231 cnnvba 28233 cncph 28373 |
Copyright terms: Public domain | W3C validator |