![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnnv | Structured version Visualization version GIF version |
Description: The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is ·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnnv.6 | ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 |
Ref | Expression |
---|---|
cnnv | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnaddabloOLD 30613 | . . . 4 ⊢ + ∈ AbelOp | |
2 | ablogrpo 30579 | . . . 4 ⊢ ( + ∈ AbelOp → + ∈ GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ + ∈ GrpOp |
4 | ax-addf 11263 | . . . 4 ⊢ + :(ℂ × ℂ)⟶ℂ | |
5 | 4 | fdmi 6758 | . . 3 ⊢ dom + = (ℂ × ℂ) |
6 | 3, 5 | grporn 30553 | . 2 ⊢ ℂ = ran + |
7 | cnidOLD 30614 | . 2 ⊢ 0 = (GId‘ + ) | |
8 | cncvcOLD 30615 | . 2 ⊢ 〈 + , · 〉 ∈ CVecOLD | |
9 | absf 15386 | . 2 ⊢ abs:ℂ⟶ℝ | |
10 | abs00 15338 | . . 3 ⊢ (𝑥 ∈ ℂ → ((abs‘𝑥) = 0 ↔ 𝑥 = 0)) | |
11 | 10 | biimpa 476 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ (abs‘𝑥) = 0) → 𝑥 = 0) |
12 | absmul 15343 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (abs‘𝑥))) | |
13 | abstri 15379 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) | |
14 | cnnv.6 | . 2 ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 | |
15 | 6, 7, 8, 9, 11, 12, 13, 14 | isnvi 30645 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 〈cop 4654 × cxp 5698 ‘cfv 6573 ℂcc 11182 0cc0 11184 + caddc 11187 · cmul 11189 abscabs 15283 GrpOpcgr 30521 AbelOpcablo 30576 NrmCVeccnv 30616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-grpo 30525 df-gid 30526 df-ablo 30577 df-vc 30591 df-nv 30624 |
This theorem is referenced by: cnnvm 30714 elimnvu 30716 cnims 30725 cncph 30851 ipblnfi 30887 cnbn 30901 htthlem 30949 |
Copyright terms: Public domain | W3C validator |