![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnnv | Structured version Visualization version GIF version |
Description: The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is Β·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnnv.6 | β’ π = β¨β¨ + , Β· β©, absβ© |
Ref | Expression |
---|---|
cnnv | β’ π β NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnaddabloOLD 29822 | . . . 4 β’ + β AbelOp | |
2 | ablogrpo 29788 | . . . 4 β’ ( + β AbelOp β + β GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 β’ + β GrpOp |
4 | ax-addf 11186 | . . . 4 β’ + :(β Γ β)βΆβ | |
5 | 4 | fdmi 6727 | . . 3 β’ dom + = (β Γ β) |
6 | 3, 5 | grporn 29762 | . 2 β’ β = ran + |
7 | cnidOLD 29823 | . 2 β’ 0 = (GIdβ + ) | |
8 | cncvcOLD 29824 | . 2 β’ β¨ + , Β· β© β CVecOLD | |
9 | absf 15281 | . 2 β’ abs:ββΆβ | |
10 | abs00 15233 | . . 3 β’ (π₯ β β β ((absβπ₯) = 0 β π₯ = 0)) | |
11 | 10 | biimpa 478 | . 2 β’ ((π₯ β β β§ (absβπ₯) = 0) β π₯ = 0) |
12 | absmul 15238 | . 2 β’ ((π¦ β β β§ π₯ β β) β (absβ(π¦ Β· π₯)) = ((absβπ¦) Β· (absβπ₯))) | |
13 | abstri 15274 | . 2 β’ ((π₯ β β β§ π¦ β β) β (absβ(π₯ + π¦)) β€ ((absβπ₯) + (absβπ¦))) | |
14 | cnnv.6 | . 2 β’ π = β¨β¨ + , Β· β©, absβ© | |
15 | 6, 7, 8, 9, 11, 12, 13, 14 | isnvi 29854 | 1 β’ π β NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 β wcel 2107 β¨cop 4634 Γ cxp 5674 βcfv 6541 βcc 11105 0cc0 11107 + caddc 11110 Β· cmul 11112 abscabs 15178 GrpOpcgr 29730 AbelOpcablo 29785 NrmCVeccnv 29825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 ax-mulf 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-grpo 29734 df-gid 29735 df-ablo 29786 df-vc 29800 df-nv 29833 |
This theorem is referenced by: cnnvm 29923 elimnvu 29925 cnims 29934 cncph 30060 ipblnfi 30096 cnbn 30110 htthlem 30158 |
Copyright terms: Public domain | W3C validator |