MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnnv Structured version   Visualization version   GIF version

Theorem cnnv 28118
Description: The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is ·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
cnnv.6 𝑈 = ⟨⟨ + , · ⟩, abs⟩
Assertion
Ref Expression
cnnv 𝑈 ∈ NrmCVec

Proof of Theorem cnnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnaddabloOLD 28022 . . . 4 + ∈ AbelOp
2 ablogrpo 27988 . . . 4 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . . 3 + ∈ GrpOp
4 ax-addf 10351 . . . 4 + :(ℂ × ℂ)⟶ℂ
54fdmi 6301 . . 3 dom + = (ℂ × ℂ)
63, 5grporn 27962 . 2 ℂ = ran +
7 cnidOLD 28023 . 2 0 = (GId‘ + )
8 cncvcOLD 28024 . 2 ⟨ + , · ⟩ ∈ CVecOLD
9 absf 14484 . 2 abs:ℂ⟶ℝ
10 abs00 14436 . . 3 (𝑥 ∈ ℂ → ((abs‘𝑥) = 0 ↔ 𝑥 = 0))
1110biimpa 470 . 2 ((𝑥 ∈ ℂ ∧ (abs‘𝑥) = 0) → 𝑥 = 0)
12 absmul 14441 . 2 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (abs‘𝑥)))
13 abstri 14477 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦)))
14 cnnv.6 . 2 𝑈 = ⟨⟨ + , · ⟩, abs⟩
156, 7, 8, 9, 11, 12, 13, 14isnvi 28054 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wcel 2106  cop 4403   × cxp 5353  cfv 6135  cc 10270  0cc0 10272   + caddc 10275   · cmul 10277  abscabs 14381  GrpOpcgr 27930  AbelOpcablo 27985  NrmCVeccnv 28025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-grpo 27934  df-gid 27935  df-ablo 27986  df-vc 28000  df-nv 28033
This theorem is referenced by:  cnnvm  28123  elimnvu  28125  cnims  28134  cncph  28260  ipblnfi  28297  cnbn  28311  htthlem  28360
  Copyright terms: Public domain W3C validator