MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnnv Structured version   Visualization version   GIF version

Theorem cnnv 28460
Description: The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is ·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
cnnv.6 𝑈 = ⟨⟨ + , · ⟩, abs⟩
Assertion
Ref Expression
cnnv 𝑈 ∈ NrmCVec

Proof of Theorem cnnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnaddabloOLD 28364 . . . 4 + ∈ AbelOp
2 ablogrpo 28330 . . . 4 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . . 3 + ∈ GrpOp
4 ax-addf 10605 . . . 4 + :(ℂ × ℂ)⟶ℂ
54fdmi 6498 . . 3 dom + = (ℂ × ℂ)
63, 5grporn 28304 . 2 ℂ = ran +
7 cnidOLD 28365 . 2 0 = (GId‘ + )
8 cncvcOLD 28366 . 2 ⟨ + , · ⟩ ∈ CVecOLD
9 absf 14689 . 2 abs:ℂ⟶ℝ
10 abs00 14641 . . 3 (𝑥 ∈ ℂ → ((abs‘𝑥) = 0 ↔ 𝑥 = 0))
1110biimpa 480 . 2 ((𝑥 ∈ ℂ ∧ (abs‘𝑥) = 0) → 𝑥 = 0)
12 absmul 14646 . 2 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (abs‘𝑥)))
13 abstri 14682 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦)))
14 cnnv.6 . 2 𝑈 = ⟨⟨ + , · ⟩, abs⟩
156, 7, 8, 9, 11, 12, 13, 14isnvi 28396 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  cop 4531   × cxp 5517  cfv 6324  cc 10524  0cc0 10526   + caddc 10529   · cmul 10531  abscabs 14585  GrpOpcgr 28272  AbelOpcablo 28327  NrmCVeccnv 28367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-grpo 28276  df-gid 28277  df-ablo 28328  df-vc 28342  df-nv 28375
This theorem is referenced by:  cnnvm  28465  elimnvu  28467  cnims  28476  cncph  28602  ipblnfi  28638  cnbn  28652  htthlem  28700
  Copyright terms: Public domain W3C validator