Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnnv | Structured version Visualization version GIF version |
Description: The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is ·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnnv.6 | ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 |
Ref | Expression |
---|---|
cnnv | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnaddabloOLD 28943 | . . . 4 ⊢ + ∈ AbelOp | |
2 | ablogrpo 28909 | . . . 4 ⊢ ( + ∈ AbelOp → + ∈ GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ + ∈ GrpOp |
4 | ax-addf 10950 | . . . 4 ⊢ + :(ℂ × ℂ)⟶ℂ | |
5 | 4 | fdmi 6612 | . . 3 ⊢ dom + = (ℂ × ℂ) |
6 | 3, 5 | grporn 28883 | . 2 ⊢ ℂ = ran + |
7 | cnidOLD 28944 | . 2 ⊢ 0 = (GId‘ + ) | |
8 | cncvcOLD 28945 | . 2 ⊢ 〈 + , · 〉 ∈ CVecOLD | |
9 | absf 15049 | . 2 ⊢ abs:ℂ⟶ℝ | |
10 | abs00 15001 | . . 3 ⊢ (𝑥 ∈ ℂ → ((abs‘𝑥) = 0 ↔ 𝑥 = 0)) | |
11 | 10 | biimpa 477 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ (abs‘𝑥) = 0) → 𝑥 = 0) |
12 | absmul 15006 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (abs‘𝑥))) | |
13 | abstri 15042 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) | |
14 | cnnv.6 | . 2 ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 | |
15 | 6, 7, 8, 9, 11, 12, 13, 14 | isnvi 28975 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 〈cop 4567 × cxp 5587 ‘cfv 6433 ℂcc 10869 0cc0 10871 + caddc 10874 · cmul 10876 abscabs 14945 GrpOpcgr 28851 AbelOpcablo 28906 NrmCVeccnv 28946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-grpo 28855 df-gid 28856 df-ablo 28907 df-vc 28921 df-nv 28954 |
This theorem is referenced by: cnnvm 29044 elimnvu 29046 cnims 29055 cncph 29181 ipblnfi 29217 cnbn 29231 htthlem 29279 |
Copyright terms: Public domain | W3C validator |