MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnnv Structured version   Visualization version   GIF version

Theorem cnnv 28458
Description: The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is ·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
cnnv.6 𝑈 = ⟨⟨ + , · ⟩, abs⟩
Assertion
Ref Expression
cnnv 𝑈 ∈ NrmCVec

Proof of Theorem cnnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnaddabloOLD 28362 . . . 4 + ∈ AbelOp
2 ablogrpo 28328 . . . 4 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . . 3 + ∈ GrpOp
4 ax-addf 10605 . . . 4 + :(ℂ × ℂ)⟶ℂ
54fdmi 6505 . . 3 dom + = (ℂ × ℂ)
63, 5grporn 28302 . 2 ℂ = ran +
7 cnidOLD 28363 . 2 0 = (GId‘ + )
8 cncvcOLD 28364 . 2 ⟨ + , · ⟩ ∈ CVecOLD
9 absf 14688 . 2 abs:ℂ⟶ℝ
10 abs00 14640 . . 3 (𝑥 ∈ ℂ → ((abs‘𝑥) = 0 ↔ 𝑥 = 0))
1110biimpa 480 . 2 ((𝑥 ∈ ℂ ∧ (abs‘𝑥) = 0) → 𝑥 = 0)
12 absmul 14645 . 2 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (abs‘𝑥)))
13 abstri 14681 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦)))
14 cnnv.6 . 2 𝑈 = ⟨⟨ + , · ⟩, abs⟩
156, 7, 8, 9, 11, 12, 13, 14isnvi 28394 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2114  cop 4545   × cxp 5530  cfv 6334  cc 10524  0cc0 10526   + caddc 10529   · cmul 10531  abscabs 14584  GrpOpcgr 28270  AbelOpcablo 28325  NrmCVeccnv 28365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-grpo 28274  df-gid 28275  df-ablo 28326  df-vc 28340  df-nv 28373
This theorem is referenced by:  cnnvm  28463  elimnvu  28465  cnims  28474  cncph  28600  ipblnfi  28636  cnbn  28650  htthlem  28698
  Copyright terms: Public domain W3C validator