![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnnv | Structured version Visualization version GIF version |
Description: The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is Β·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnnv.6 | β’ π = β¨β¨ + , Β· β©, absβ© |
Ref | Expression |
---|---|
cnnv | β’ π β NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnaddabloOLD 30102 | . . . 4 β’ + β AbelOp | |
2 | ablogrpo 30068 | . . . 4 β’ ( + β AbelOp β + β GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 β’ + β GrpOp |
4 | ax-addf 11193 | . . . 4 β’ + :(β Γ β)βΆβ | |
5 | 4 | fdmi 6729 | . . 3 β’ dom + = (β Γ β) |
6 | 3, 5 | grporn 30042 | . 2 β’ β = ran + |
7 | cnidOLD 30103 | . 2 β’ 0 = (GIdβ + ) | |
8 | cncvcOLD 30104 | . 2 β’ β¨ + , Β· β© β CVecOLD | |
9 | absf 15289 | . 2 β’ abs:ββΆβ | |
10 | abs00 15241 | . . 3 β’ (π₯ β β β ((absβπ₯) = 0 β π₯ = 0)) | |
11 | 10 | biimpa 476 | . 2 β’ ((π₯ β β β§ (absβπ₯) = 0) β π₯ = 0) |
12 | absmul 15246 | . 2 β’ ((π¦ β β β§ π₯ β β) β (absβ(π¦ Β· π₯)) = ((absβπ¦) Β· (absβπ₯))) | |
13 | abstri 15282 | . 2 β’ ((π₯ β β β§ π¦ β β) β (absβ(π₯ + π¦)) β€ ((absβπ₯) + (absβπ¦))) | |
14 | cnnv.6 | . 2 β’ π = β¨β¨ + , Β· β©, absβ© | |
15 | 6, 7, 8, 9, 11, 12, 13, 14 | isnvi 30134 | 1 β’ π β NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 β wcel 2105 β¨cop 4634 Γ cxp 5674 βcfv 6543 βcc 11112 0cc0 11114 + caddc 11117 Β· cmul 11119 abscabs 15186 GrpOpcgr 30010 AbelOpcablo 30065 NrmCVeccnv 30105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-grpo 30014 df-gid 30015 df-ablo 30066 df-vc 30080 df-nv 30113 |
This theorem is referenced by: cnnvm 30203 elimnvu 30205 cnims 30214 cncph 30340 ipblnfi 30376 cnbn 30390 htthlem 30438 |
Copyright terms: Public domain | W3C validator |