| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnnv | Structured version Visualization version GIF version | ||
| Description: The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is ·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnnv.6 | ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 |
| Ref | Expression |
|---|---|
| cnnv | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabloOLD 30559 | . . . 4 ⊢ + ∈ AbelOp | |
| 2 | ablogrpo 30525 | . . . 4 ⊢ ( + ∈ AbelOp → + ∈ GrpOp) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ + ∈ GrpOp |
| 4 | ax-addf 11085 | . . . 4 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 5 | 4 | fdmi 6662 | . . 3 ⊢ dom + = (ℂ × ℂ) |
| 6 | 3, 5 | grporn 30499 | . 2 ⊢ ℂ = ran + |
| 7 | cnidOLD 30560 | . 2 ⊢ 0 = (GId‘ + ) | |
| 8 | cncvcOLD 30561 | . 2 ⊢ 〈 + , · 〉 ∈ CVecOLD | |
| 9 | absf 15245 | . 2 ⊢ abs:ℂ⟶ℝ | |
| 10 | abs00 15196 | . . 3 ⊢ (𝑥 ∈ ℂ → ((abs‘𝑥) = 0 ↔ 𝑥 = 0)) | |
| 11 | 10 | biimpa 476 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ (abs‘𝑥) = 0) → 𝑥 = 0) |
| 12 | absmul 15201 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (abs‘𝑥))) | |
| 13 | abstri 15238 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) | |
| 14 | cnnv.6 | . 2 ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 | |
| 15 | 6, 7, 8, 9, 11, 12, 13, 14 | isnvi 30591 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 〈cop 4582 × cxp 5614 ‘cfv 6481 ℂcc 11004 0cc0 11006 + caddc 11009 · cmul 11011 abscabs 15141 GrpOpcgr 30467 AbelOpcablo 30522 NrmCVeccnv 30562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-grpo 30471 df-gid 30472 df-ablo 30523 df-vc 30537 df-nv 30570 |
| This theorem is referenced by: cnnvm 30660 elimnvu 30662 cnims 30671 cncph 30797 ipblnfi 30833 cnbn 30847 htthlem 30895 |
| Copyright terms: Public domain | W3C validator |