![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnnv | Structured version Visualization version GIF version |
Description: The set of complex numbers is a normed complex vector space. The vector operation is +, the scalar product is ·, and the norm function is abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnnv.6 | ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 |
Ref | Expression |
---|---|
cnnv | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnaddabloOLD 30610 | . . . 4 ⊢ + ∈ AbelOp | |
2 | ablogrpo 30576 | . . . 4 ⊢ ( + ∈ AbelOp → + ∈ GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ + ∈ GrpOp |
4 | ax-addf 11232 | . . . 4 ⊢ + :(ℂ × ℂ)⟶ℂ | |
5 | 4 | fdmi 6748 | . . 3 ⊢ dom + = (ℂ × ℂ) |
6 | 3, 5 | grporn 30550 | . 2 ⊢ ℂ = ran + |
7 | cnidOLD 30611 | . 2 ⊢ 0 = (GId‘ + ) | |
8 | cncvcOLD 30612 | . 2 ⊢ 〈 + , · 〉 ∈ CVecOLD | |
9 | absf 15373 | . 2 ⊢ abs:ℂ⟶ℝ | |
10 | abs00 15325 | . . 3 ⊢ (𝑥 ∈ ℂ → ((abs‘𝑥) = 0 ↔ 𝑥 = 0)) | |
11 | 10 | biimpa 476 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ (abs‘𝑥) = 0) → 𝑥 = 0) |
12 | absmul 15330 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (abs‘𝑥))) | |
13 | abstri 15366 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) | |
14 | cnnv.6 | . 2 ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 | |
15 | 6, 7, 8, 9, 11, 12, 13, 14 | isnvi 30642 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 〈cop 4637 × cxp 5687 ‘cfv 6563 ℂcc 11151 0cc0 11153 + caddc 11156 · cmul 11158 abscabs 15270 GrpOpcgr 30518 AbelOpcablo 30573 NrmCVeccnv 30613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-grpo 30522 df-gid 30523 df-ablo 30574 df-vc 30588 df-nv 30621 |
This theorem is referenced by: cnnvm 30711 elimnvu 30713 cnims 30722 cncph 30848 ipblnfi 30884 cnbn 30898 htthlem 30946 |
Copyright terms: Public domain | W3C validator |