| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnidOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of cnaddid 19807. The group identity element of complex number addition is zero. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| cnidOLD | ⊢ 0 = (GId‘ + ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabloOLD 30517 | . . . 4 ⊢ + ∈ AbelOp | |
| 2 | ablogrpo 30483 | . . . 4 ⊢ ( + ∈ AbelOp → + ∈ GrpOp) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ + ∈ GrpOp |
| 4 | ax-addf 11154 | . . . . . 6 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 5 | 4 | fdmi 6702 | . . . . 5 ⊢ dom + = (ℂ × ℂ) |
| 6 | 3, 5 | grporn 30457 | . . . 4 ⊢ ℂ = ran + |
| 7 | eqid 2730 | . . . 4 ⊢ (GId‘ + ) = (GId‘ + ) | |
| 8 | 6, 7 | grpoidval 30449 | . . 3 ⊢ ( + ∈ GrpOp → (GId‘ + ) = (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥)) |
| 9 | 3, 8 | ax-mp 5 | . 2 ⊢ (GId‘ + ) = (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) |
| 10 | addlid 11364 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
| 11 | 10 | rgen 3047 | . . 3 ⊢ ∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥 |
| 12 | 0cn 11173 | . . . 4 ⊢ 0 ∈ ℂ | |
| 13 | 6 | grpoideu 30445 | . . . . 5 ⊢ ( + ∈ GrpOp → ∃!𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) |
| 14 | 3, 13 | ax-mp 5 | . . . 4 ⊢ ∃!𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥 |
| 15 | oveq1 7397 | . . . . . . 7 ⊢ (𝑦 = 0 → (𝑦 + 𝑥) = (0 + 𝑥)) | |
| 16 | 15 | eqeq1d 2732 | . . . . . 6 ⊢ (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥)) |
| 17 | 16 | ralbidv 3157 | . . . . 5 ⊢ (𝑦 = 0 → (∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥 ↔ ∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥)) |
| 18 | 17 | riota2 7372 | . . . 4 ⊢ ((0 ∈ ℂ ∧ ∃!𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) → (∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) = 0)) |
| 19 | 12, 14, 18 | mp2an 692 | . . 3 ⊢ (∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) = 0) |
| 20 | 11, 19 | mpbi 230 | . 2 ⊢ (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) = 0 |
| 21 | 9, 20 | eqtr2i 2754 | 1 ⊢ 0 = (GId‘ + ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃!wreu 3354 × cxp 5639 ‘cfv 6514 ℩crio 7346 (class class class)co 7390 ℂcc 11073 0cc0 11075 + caddc 11078 GrpOpcgr 30425 GIdcgi 30426 AbelOpcablo 30480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 df-grpo 30429 df-gid 30430 df-ablo 30481 |
| This theorem is referenced by: cnnv 30613 |
| Copyright terms: Public domain | W3C validator |