![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnidOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cnaddid 19558. The group identity element of complex number addition is zero. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cnidOLD | ⊢ 0 = (GId‘ + ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnaddabloOLD 29172 | . . . 4 ⊢ + ∈ AbelOp | |
2 | ablogrpo 29138 | . . . 4 ⊢ ( + ∈ AbelOp → + ∈ GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ + ∈ GrpOp |
4 | ax-addf 11043 | . . . . . 6 ⊢ + :(ℂ × ℂ)⟶ℂ | |
5 | 4 | fdmi 6657 | . . . . 5 ⊢ dom + = (ℂ × ℂ) |
6 | 3, 5 | grporn 29112 | . . . 4 ⊢ ℂ = ran + |
7 | eqid 2736 | . . . 4 ⊢ (GId‘ + ) = (GId‘ + ) | |
8 | 6, 7 | grpoidval 29104 | . . 3 ⊢ ( + ∈ GrpOp → (GId‘ + ) = (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥)) |
9 | 3, 8 | ax-mp 5 | . 2 ⊢ (GId‘ + ) = (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) |
10 | addid2 11251 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
11 | 10 | rgen 3063 | . . 3 ⊢ ∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥 |
12 | 0cn 11060 | . . . 4 ⊢ 0 ∈ ℂ | |
13 | 6 | grpoideu 29100 | . . . . 5 ⊢ ( + ∈ GrpOp → ∃!𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) |
14 | 3, 13 | ax-mp 5 | . . . 4 ⊢ ∃!𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥 |
15 | oveq1 7336 | . . . . . . 7 ⊢ (𝑦 = 0 → (𝑦 + 𝑥) = (0 + 𝑥)) | |
16 | 15 | eqeq1d 2738 | . . . . . 6 ⊢ (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥)) |
17 | 16 | ralbidv 3170 | . . . . 5 ⊢ (𝑦 = 0 → (∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥 ↔ ∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥)) |
18 | 17 | riota2 7312 | . . . 4 ⊢ ((0 ∈ ℂ ∧ ∃!𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) → (∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) = 0)) |
19 | 12, 14, 18 | mp2an 689 | . . 3 ⊢ (∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) = 0) |
20 | 11, 19 | mpbi 229 | . 2 ⊢ (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) = 0 |
21 | 9, 20 | eqtr2i 2765 | 1 ⊢ 0 = (GId‘ + ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃!wreu 3347 × cxp 5612 ‘cfv 6473 ℩crio 7285 (class class class)co 7329 ℂcc 10962 0cc0 10964 + caddc 10967 GrpOpcgr 29080 GIdcgi 29081 AbelOpcablo 29135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-addf 11043 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-ltxr 11107 df-sub 11300 df-neg 11301 df-grpo 29084 df-gid 29085 df-ablo 29136 |
This theorem is referenced by: cnnv 29268 |
Copyright terms: Public domain | W3C validator |