![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnidOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cnaddid 19779. The group identity element of complex number addition is zero. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
cnidOLD | β’ 0 = (GIdβ + ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnaddabloOLD 30089 | . . . 4 β’ + β AbelOp | |
2 | ablogrpo 30055 | . . . 4 β’ ( + β AbelOp β + β GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 β’ + β GrpOp |
4 | ax-addf 11191 | . . . . . 6 β’ + :(β Γ β)βΆβ | |
5 | 4 | fdmi 6729 | . . . . 5 β’ dom + = (β Γ β) |
6 | 3, 5 | grporn 30029 | . . . 4 β’ β = ran + |
7 | eqid 2732 | . . . 4 β’ (GIdβ + ) = (GIdβ + ) | |
8 | 6, 7 | grpoidval 30021 | . . 3 β’ ( + β GrpOp β (GIdβ + ) = (β©π¦ β β βπ₯ β β (π¦ + π₯) = π₯)) |
9 | 3, 8 | ax-mp 5 | . 2 β’ (GIdβ + ) = (β©π¦ β β βπ₯ β β (π¦ + π₯) = π₯) |
10 | addlid 11401 | . . . 4 β’ (π₯ β β β (0 + π₯) = π₯) | |
11 | 10 | rgen 3063 | . . 3 β’ βπ₯ β β (0 + π₯) = π₯ |
12 | 0cn 11210 | . . . 4 β’ 0 β β | |
13 | 6 | grpoideu 30017 | . . . . 5 β’ ( + β GrpOp β β!π¦ β β βπ₯ β β (π¦ + π₯) = π₯) |
14 | 3, 13 | ax-mp 5 | . . . 4 β’ β!π¦ β β βπ₯ β β (π¦ + π₯) = π₯ |
15 | oveq1 7418 | . . . . . . 7 β’ (π¦ = 0 β (π¦ + π₯) = (0 + π₯)) | |
16 | 15 | eqeq1d 2734 | . . . . . 6 β’ (π¦ = 0 β ((π¦ + π₯) = π₯ β (0 + π₯) = π₯)) |
17 | 16 | ralbidv 3177 | . . . . 5 β’ (π¦ = 0 β (βπ₯ β β (π¦ + π₯) = π₯ β βπ₯ β β (0 + π₯) = π₯)) |
18 | 17 | riota2 7393 | . . . 4 β’ ((0 β β β§ β!π¦ β β βπ₯ β β (π¦ + π₯) = π₯) β (βπ₯ β β (0 + π₯) = π₯ β (β©π¦ β β βπ₯ β β (π¦ + π₯) = π₯) = 0)) |
19 | 12, 14, 18 | mp2an 690 | . . 3 β’ (βπ₯ β β (0 + π₯) = π₯ β (β©π¦ β β βπ₯ β β (π¦ + π₯) = π₯) = 0) |
20 | 11, 19 | mpbi 229 | . 2 β’ (β©π¦ β β βπ₯ β β (π¦ + π₯) = π₯) = 0 |
21 | 9, 20 | eqtr2i 2761 | 1 β’ 0 = (GIdβ + ) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1541 β wcel 2106 βwral 3061 β!wreu 3374 Γ cxp 5674 βcfv 6543 β©crio 7366 (class class class)co 7411 βcc 11110 0cc0 11112 + caddc 11115 GrpOpcgr 29997 GIdcgi 29998 AbelOpcablo 30052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-addf 11191 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 df-neg 11451 df-grpo 30001 df-gid 30002 df-ablo 30053 |
This theorem is referenced by: cnnv 30185 |
Copyright terms: Public domain | W3C validator |