| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnidOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of cnaddid 19851. The group identity element of complex number addition is zero. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| cnidOLD | ⊢ 0 = (GId‘ + ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabloOLD 30562 | . . . 4 ⊢ + ∈ AbelOp | |
| 2 | ablogrpo 30528 | . . . 4 ⊢ ( + ∈ AbelOp → + ∈ GrpOp) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ + ∈ GrpOp |
| 4 | ax-addf 11208 | . . . . . 6 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 5 | 4 | fdmi 6717 | . . . . 5 ⊢ dom + = (ℂ × ℂ) |
| 6 | 3, 5 | grporn 30502 | . . . 4 ⊢ ℂ = ran + |
| 7 | eqid 2735 | . . . 4 ⊢ (GId‘ + ) = (GId‘ + ) | |
| 8 | 6, 7 | grpoidval 30494 | . . 3 ⊢ ( + ∈ GrpOp → (GId‘ + ) = (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥)) |
| 9 | 3, 8 | ax-mp 5 | . 2 ⊢ (GId‘ + ) = (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) |
| 10 | addlid 11418 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
| 11 | 10 | rgen 3053 | . . 3 ⊢ ∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥 |
| 12 | 0cn 11227 | . . . 4 ⊢ 0 ∈ ℂ | |
| 13 | 6 | grpoideu 30490 | . . . . 5 ⊢ ( + ∈ GrpOp → ∃!𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) |
| 14 | 3, 13 | ax-mp 5 | . . . 4 ⊢ ∃!𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥 |
| 15 | oveq1 7412 | . . . . . . 7 ⊢ (𝑦 = 0 → (𝑦 + 𝑥) = (0 + 𝑥)) | |
| 16 | 15 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥)) |
| 17 | 16 | ralbidv 3163 | . . . . 5 ⊢ (𝑦 = 0 → (∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥 ↔ ∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥)) |
| 18 | 17 | riota2 7387 | . . . 4 ⊢ ((0 ∈ ℂ ∧ ∃!𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) → (∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) = 0)) |
| 19 | 12, 14, 18 | mp2an 692 | . . 3 ⊢ (∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) = 0) |
| 20 | 11, 19 | mpbi 230 | . 2 ⊢ (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) = 0 |
| 21 | 9, 20 | eqtr2i 2759 | 1 ⊢ 0 = (GId‘ + ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃!wreu 3357 × cxp 5652 ‘cfv 6531 ℩crio 7361 (class class class)co 7405 ℂcc 11127 0cc0 11129 + caddc 11132 GrpOpcgr 30470 GIdcgi 30471 AbelOpcablo 30525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-neg 11469 df-grpo 30474 df-gid 30475 df-ablo 30526 |
| This theorem is referenced by: cnnv 30658 |
| Copyright terms: Public domain | W3C validator |