| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnidOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of cnaddid 19800. The group identity element of complex number addition is zero. (Contributed by Steve Rodriguez, 3-Dec-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| cnidOLD | ⊢ 0 = (GId‘ + ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabloOLD 30510 | . . . 4 ⊢ + ∈ AbelOp | |
| 2 | ablogrpo 30476 | . . . 4 ⊢ ( + ∈ AbelOp → + ∈ GrpOp) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ + ∈ GrpOp |
| 4 | ax-addf 11147 | . . . . . 6 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 5 | 4 | fdmi 6699 | . . . . 5 ⊢ dom + = (ℂ × ℂ) |
| 6 | 3, 5 | grporn 30450 | . . . 4 ⊢ ℂ = ran + |
| 7 | eqid 2729 | . . . 4 ⊢ (GId‘ + ) = (GId‘ + ) | |
| 8 | 6, 7 | grpoidval 30442 | . . 3 ⊢ ( + ∈ GrpOp → (GId‘ + ) = (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥)) |
| 9 | 3, 8 | ax-mp 5 | . 2 ⊢ (GId‘ + ) = (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) |
| 10 | addlid 11357 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
| 11 | 10 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥 |
| 12 | 0cn 11166 | . . . 4 ⊢ 0 ∈ ℂ | |
| 13 | 6 | grpoideu 30438 | . . . . 5 ⊢ ( + ∈ GrpOp → ∃!𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) |
| 14 | 3, 13 | ax-mp 5 | . . . 4 ⊢ ∃!𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥 |
| 15 | oveq1 7394 | . . . . . . 7 ⊢ (𝑦 = 0 → (𝑦 + 𝑥) = (0 + 𝑥)) | |
| 16 | 15 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑦 = 0 → ((𝑦 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥)) |
| 17 | 16 | ralbidv 3156 | . . . . 5 ⊢ (𝑦 = 0 → (∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥 ↔ ∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥)) |
| 18 | 17 | riota2 7369 | . . . 4 ⊢ ((0 ∈ ℂ ∧ ∃!𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) → (∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) = 0)) |
| 19 | 12, 14, 18 | mp2an 692 | . . 3 ⊢ (∀𝑥 ∈ ℂ (0 + 𝑥) = 𝑥 ↔ (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) = 0) |
| 20 | 11, 19 | mpbi 230 | . 2 ⊢ (℩𝑦 ∈ ℂ ∀𝑥 ∈ ℂ (𝑦 + 𝑥) = 𝑥) = 0 |
| 21 | 9, 20 | eqtr2i 2753 | 1 ⊢ 0 = (GId‘ + ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3352 × cxp 5636 ‘cfv 6511 ℩crio 7343 (class class class)co 7387 ℂcc 11066 0cc0 11068 + caddc 11071 GrpOpcgr 30418 GIdcgi 30419 AbelOpcablo 30473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-grpo 30422 df-gid 30423 df-ablo 30474 |
| This theorem is referenced by: cnnv 30606 |
| Copyright terms: Public domain | W3C validator |