![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > addcomgi | Structured version Visualization version GIF version |
Description: Generalization of commutative law for addition. Simplifies proofs dealing with vectors. However, it is dependent on our particular definition of ordered pair. (Contributed by Andrew Salmon, 28-Jan-2012.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
addcomgi | β’ (π΄ + π΅) = (π΅ + π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcom 11398 | . 2 β’ ((π΄ β β β§ π΅ β β) β (π΄ + π΅) = (π΅ + π΄)) | |
2 | ax-addf 11186 | . . . 4 β’ + :(β Γ β)βΆβ | |
3 | 2 | fdmi 6720 | . . 3 β’ dom + = (β Γ β) |
4 | 3 | ndmovcom 7588 | . 2 β’ (Β¬ (π΄ β β β§ π΅ β β) β (π΄ + π΅) = (π΅ + π΄)) |
5 | 1, 4 | pm2.61i 182 | 1 β’ (π΄ + π΅) = (π΅ + π΄) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 = wceq 1533 β wcel 2098 Γ cxp 5665 (class class class)co 7402 βcc 11105 + caddc 11110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-addf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-ltxr 11251 |
This theorem is referenced by: addrcom 43748 |
Copyright terms: Public domain | W3C validator |