| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cdj3lem2.2 | . . 3
⊢ 𝐵 ∈
Sℋ | 
| 2 |  | cdj3lem2.1 | . . 3
⊢ 𝐴 ∈
Sℋ | 
| 3 |  | cdj3lem3.3 | . . . 4
⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) | 
| 4 | 1, 2 | shscomi 31382 | . . . . 5
⊢ (𝐵 +ℋ 𝐴) = (𝐴 +ℋ 𝐵) | 
| 5 | 1 | sheli 31233 | . . . . . . . . 9
⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ ℋ) | 
| 6 | 2 | sheli 31233 | . . . . . . . . 9
⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ ℋ) | 
| 7 |  | ax-hvcom 31020 | . . . . . . . . 9
⊢ ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 +ℎ 𝑧) = (𝑧 +ℎ 𝑤)) | 
| 8 | 5, 6, 7 | syl2an 596 | . . . . . . . 8
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑤 +ℎ 𝑧) = (𝑧 +ℎ 𝑤)) | 
| 9 | 8 | eqeq2d 2748 | . . . . . . 7
⊢ ((𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑥 = (𝑤 +ℎ 𝑧) ↔ 𝑥 = (𝑧 +ℎ 𝑤))) | 
| 10 | 9 | rexbidva 3177 | . . . . . 6
⊢ (𝑤 ∈ 𝐵 → (∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧) ↔ ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) | 
| 11 | 10 | riotabiia 7408 | . . . . 5
⊢
(℩𝑤
∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧)) = (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤)) | 
| 12 | 4, 11 | mpteq12i 5248 | . . . 4
⊢ (𝑥 ∈ (𝐵 +ℋ 𝐴) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧))) = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) | 
| 13 | 3, 12 | eqtr4i 2768 | . . 3
⊢ 𝑇 = (𝑥 ∈ (𝐵 +ℋ 𝐴) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧))) | 
| 14 | 1, 2, 13 | cdj3lem2b 32456 | . 2
⊢
(∃𝑣 ∈
ℝ (0 < 𝑣 ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 +ℋ 𝐴)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)))) | 
| 15 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝑥 = 𝑡 → (normℎ‘𝑥) =
(normℎ‘𝑡)) | 
| 16 | 15 | oveq1d 7446 | . . . . . . 7
⊢ (𝑥 = 𝑡 → ((normℎ‘𝑥) +
(normℎ‘𝑦)) = ((normℎ‘𝑡) +
(normℎ‘𝑦))) | 
| 17 |  | fvoveq1 7454 | . . . . . . . 8
⊢ (𝑥 = 𝑡 → (normℎ‘(𝑥 +ℎ 𝑦)) =
(normℎ‘(𝑡 +ℎ 𝑦))) | 
| 18 | 17 | oveq2d 7447 | . . . . . . 7
⊢ (𝑥 = 𝑡 → (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) = (𝑣 ·
(normℎ‘(𝑡 +ℎ 𝑦)))) | 
| 19 | 16, 18 | breq12d 5156 | . . . . . 6
⊢ (𝑥 = 𝑡 →
(((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) ↔
((normℎ‘𝑡) + (normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ 𝑦))))) | 
| 20 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝑦 = ℎ → (normℎ‘𝑦) =
(normℎ‘ℎ)) | 
| 21 | 20 | oveq2d 7447 | . . . . . . 7
⊢ (𝑦 = ℎ → ((normℎ‘𝑡) +
(normℎ‘𝑦)) = ((normℎ‘𝑡) +
(normℎ‘ℎ))) | 
| 22 |  | oveq2 7439 | . . . . . . . . 9
⊢ (𝑦 = ℎ → (𝑡 +ℎ 𝑦) = (𝑡 +ℎ ℎ)) | 
| 23 | 22 | fveq2d 6910 | . . . . . . . 8
⊢ (𝑦 = ℎ → (normℎ‘(𝑡 +ℎ 𝑦)) =
(normℎ‘(𝑡 +ℎ ℎ))) | 
| 24 | 23 | oveq2d 7447 | . . . . . . 7
⊢ (𝑦 = ℎ → (𝑣 ·
(normℎ‘(𝑡 +ℎ 𝑦))) = (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) | 
| 25 | 21, 24 | breq12d 5156 | . . . . . 6
⊢ (𝑦 = ℎ → (((normℎ‘𝑡) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ 𝑦))) ↔
((normℎ‘𝑡) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))))) | 
| 26 | 19, 25 | cbvral2vw 3241 | . . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) ↔ ∀𝑡 ∈ 𝐴 ∀ℎ ∈ 𝐵 ((normℎ‘𝑡) +
(normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) | 
| 27 |  | ralcom 3289 | . . . . 5
⊢
(∀𝑡 ∈
𝐴 ∀ℎ ∈ 𝐵 ((normℎ‘𝑡) +
(normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))) ↔ ∀ℎ ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((normℎ‘𝑡) +
(normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) | 
| 28 | 1 | sheli 31233 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) | 
| 29 |  | normcl 31144 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
(normℎ‘𝑥) ∈ ℝ) | 
| 30 | 28, 29 | syl 17 | . . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐵 → (normℎ‘𝑥) ∈
ℝ) | 
| 31 | 30 | recnd 11289 | . . . . . . . . . 10
⊢ (𝑥 ∈ 𝐵 → (normℎ‘𝑥) ∈
ℂ) | 
| 32 | 2 | sheli 31233 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ) | 
| 33 |  | normcl 31144 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ ℋ →
(normℎ‘𝑦) ∈ ℝ) | 
| 34 | 32, 33 | syl 17 | . . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐴 → (normℎ‘𝑦) ∈
ℝ) | 
| 35 | 34 | recnd 11289 | . . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → (normℎ‘𝑦) ∈
ℂ) | 
| 36 |  | addcom 11447 | . . . . . . . . . 10
⊢
(((normℎ‘𝑥) ∈ ℂ ∧
(normℎ‘𝑦) ∈ ℂ) →
((normℎ‘𝑥) + (normℎ‘𝑦)) =
((normℎ‘𝑦) + (normℎ‘𝑥))) | 
| 37 | 31, 35, 36 | syl2an 596 | . . . . . . . . 9
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) →
((normℎ‘𝑥) + (normℎ‘𝑦)) =
((normℎ‘𝑦) + (normℎ‘𝑥))) | 
| 38 |  | ax-hvcom 31020 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) | 
| 39 | 28, 32, 38 | syl2an 596 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) | 
| 40 | 39 | fveq2d 6910 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) →
(normℎ‘(𝑥 +ℎ 𝑦)) = (normℎ‘(𝑦 +ℎ 𝑥))) | 
| 41 | 40 | oveq2d 7447 | . . . . . . . . 9
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) = (𝑣 ·
(normℎ‘(𝑦 +ℎ 𝑥)))) | 
| 42 | 37, 41 | breq12d 5156 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) →
(((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) ↔
((normℎ‘𝑦) + (normℎ‘𝑥)) ≤ (𝑣 ·
(normℎ‘(𝑦 +ℎ 𝑥))))) | 
| 43 | 42 | ralbidva 3176 | . . . . . . 7
⊢ (𝑥 ∈ 𝐵 → (∀𝑦 ∈ 𝐴 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) ↔ ∀𝑦 ∈ 𝐴 ((normℎ‘𝑦) +
(normℎ‘𝑥)) ≤ (𝑣 ·
(normℎ‘(𝑦 +ℎ 𝑥))))) | 
| 44 | 43 | ralbiia 3091 | . . . . . 6
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐴 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 ((normℎ‘𝑦) +
(normℎ‘𝑥)) ≤ (𝑣 ·
(normℎ‘(𝑦 +ℎ 𝑥)))) | 
| 45 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑥 = ℎ → (normℎ‘𝑥) =
(normℎ‘ℎ)) | 
| 46 | 45 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑥 = ℎ → ((normℎ‘𝑦) +
(normℎ‘𝑥)) = ((normℎ‘𝑦) +
(normℎ‘ℎ))) | 
| 47 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑥 = ℎ → (𝑦 +ℎ 𝑥) = (𝑦 +ℎ ℎ)) | 
| 48 | 47 | fveq2d 6910 | . . . . . . . . 9
⊢ (𝑥 = ℎ → (normℎ‘(𝑦 +ℎ 𝑥)) =
(normℎ‘(𝑦 +ℎ ℎ))) | 
| 49 | 48 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑥 = ℎ → (𝑣 ·
(normℎ‘(𝑦 +ℎ 𝑥))) = (𝑣 ·
(normℎ‘(𝑦 +ℎ ℎ)))) | 
| 50 | 46, 49 | breq12d 5156 | . . . . . . 7
⊢ (𝑥 = ℎ → (((normℎ‘𝑦) +
(normℎ‘𝑥)) ≤ (𝑣 ·
(normℎ‘(𝑦 +ℎ 𝑥))) ↔
((normℎ‘𝑦) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑦 +ℎ ℎ))))) | 
| 51 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑦 = 𝑡 → (normℎ‘𝑦) =
(normℎ‘𝑡)) | 
| 52 | 51 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑦 = 𝑡 → ((normℎ‘𝑦) +
(normℎ‘ℎ)) = ((normℎ‘𝑡) +
(normℎ‘ℎ))) | 
| 53 |  | fvoveq1 7454 | . . . . . . . . 9
⊢ (𝑦 = 𝑡 → (normℎ‘(𝑦 +ℎ ℎ)) =
(normℎ‘(𝑡 +ℎ ℎ))) | 
| 54 | 53 | oveq2d 7447 | . . . . . . . 8
⊢ (𝑦 = 𝑡 → (𝑣 ·
(normℎ‘(𝑦 +ℎ ℎ))) = (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) | 
| 55 | 52, 54 | breq12d 5156 | . . . . . . 7
⊢ (𝑦 = 𝑡 →
(((normℎ‘𝑦) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑦 +ℎ ℎ))) ↔
((normℎ‘𝑡) + (normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))))) | 
| 56 | 50, 55 | cbvral2vw 3241 | . . . . . 6
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐴 ((normℎ‘𝑦) +
(normℎ‘𝑥)) ≤ (𝑣 ·
(normℎ‘(𝑦 +ℎ 𝑥))) ↔ ∀ℎ ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((normℎ‘𝑡) +
(normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ)))) | 
| 57 | 44, 56 | bitr2i 276 | . . . . 5
⊢
(∀ℎ ∈
𝐵 ∀𝑡 ∈ 𝐴 ((normℎ‘𝑡) +
(normℎ‘ℎ)) ≤ (𝑣 ·
(normℎ‘(𝑡 +ℎ ℎ))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦)))) | 
| 58 | 26, 27, 57 | 3bitri 297 | . . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦)))) | 
| 59 | 58 | anbi2i 623 | . . 3
⊢ ((0 <
𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦)))) ↔ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))))) | 
| 60 | 59 | rexbii 3094 | . 2
⊢
(∃𝑣 ∈
ℝ (0 < 𝑣 ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦)))) ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦))))) | 
| 61 | 2, 1 | shscomi 31382 | . . . . 5
⊢ (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴) | 
| 62 | 61 | raleqi 3324 | . . . 4
⊢
(∀𝑢 ∈
(𝐴 +ℋ
𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)) ↔ ∀𝑢 ∈ (𝐵 +ℋ 𝐴)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢))) | 
| 63 | 62 | anbi2i 623 | . . 3
⊢ ((0 <
𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢))) ↔ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 +ℋ 𝐴)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)))) | 
| 64 | 63 | rexbii 3094 | . 2
⊢
(∃𝑣 ∈
ℝ (0 < 𝑣 ∧
∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢))) ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 +ℋ 𝐴)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)))) | 
| 65 | 14, 60, 64 | 3imtr4i 292 | 1
⊢
(∃𝑣 ∈
ℝ (0 < 𝑣 ∧
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) +
(normℎ‘𝑦)) ≤ (𝑣 ·
(normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 ·
(normℎ‘𝑢)))) |