HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem3b Structured version   Visualization version   GIF version

Theorem cdj3lem3b 32384
Description: Lemma for cdj3i 32385. The second-component function 𝑇 is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem3.3 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem3b (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑣,𝑇,𝑢
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cdj3lem3b
Dummy variables 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.2 . . 3 𝐵S
2 cdj3lem2.1 . . 3 𝐴S
3 cdj3lem3.3 . . . 4 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
41, 2shscomi 31307 . . . . 5 (𝐵 + 𝐴) = (𝐴 + 𝐵)
51sheli 31158 . . . . . . . . 9 (𝑤𝐵𝑤 ∈ ℋ)
62sheli 31158 . . . . . . . . 9 (𝑧𝐴𝑧 ∈ ℋ)
7 ax-hvcom 30945 . . . . . . . . 9 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
85, 6, 7syl2an 596 . . . . . . . 8 ((𝑤𝐵𝑧𝐴) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
98eqeq2d 2740 . . . . . . 7 ((𝑤𝐵𝑧𝐴) → (𝑥 = (𝑤 + 𝑧) ↔ 𝑥 = (𝑧 + 𝑤)))
109rexbidva 3151 . . . . . 6 (𝑤𝐵 → (∃𝑧𝐴 𝑥 = (𝑤 + 𝑧) ↔ ∃𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
1110riotabiia 7326 . . . . 5 (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)) = (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤))
124, 11mpteq12i 5189 . . . 4 (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧))) = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
133, 12eqtr4i 2755 . . 3 𝑇 = (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)))
141, 2, 13cdj3lem2b 32381 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
15 fveq2 6822 . . . . . . . 8 (𝑥 = 𝑡 → (norm𝑥) = (norm𝑡))
1615oveq1d 7364 . . . . . . 7 (𝑥 = 𝑡 → ((norm𝑥) + (norm𝑦)) = ((norm𝑡) + (norm𝑦)))
17 fvoveq1 7372 . . . . . . . 8 (𝑥 = 𝑡 → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑡 + 𝑦)))
1817oveq2d 7365 . . . . . . 7 (𝑥 = 𝑡 → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑡 + 𝑦))))
1916, 18breq12d 5105 . . . . . 6 (𝑥 = 𝑡 → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦)))))
20 fveq2 6822 . . . . . . . 8 (𝑦 = → (norm𝑦) = (norm))
2120oveq2d 7365 . . . . . . 7 (𝑦 = → ((norm𝑡) + (norm𝑦)) = ((norm𝑡) + (norm)))
22 oveq2 7357 . . . . . . . . 9 (𝑦 = → (𝑡 + 𝑦) = (𝑡 + ))
2322fveq2d 6826 . . . . . . . 8 (𝑦 = → (norm‘(𝑡 + 𝑦)) = (norm‘(𝑡 + )))
2423oveq2d 7365 . . . . . . 7 (𝑦 = → (𝑣 · (norm‘(𝑡 + 𝑦))) = (𝑣 · (norm‘(𝑡 + ))))
2521, 24breq12d 5105 . . . . . 6 (𝑦 = → (((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
2619, 25cbvral2vw 3211 . . . . 5 (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
27 ralcom 3257 . . . . 5 (∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ∀𝐵𝑡𝐴 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
281sheli 31158 . . . . . . . . . . . 12 (𝑥𝐵𝑥 ∈ ℋ)
29 normcl 31069 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
3028, 29syl 17 . . . . . . . . . . 11 (𝑥𝐵 → (norm𝑥) ∈ ℝ)
3130recnd 11143 . . . . . . . . . 10 (𝑥𝐵 → (norm𝑥) ∈ ℂ)
322sheli 31158 . . . . . . . . . . . 12 (𝑦𝐴𝑦 ∈ ℋ)
33 normcl 31069 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . 11 (𝑦𝐴 → (norm𝑦) ∈ ℝ)
3534recnd 11143 . . . . . . . . . 10 (𝑦𝐴 → (norm𝑦) ∈ ℂ)
36 addcom 11302 . . . . . . . . . 10 (((norm𝑥) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → ((norm𝑥) + (norm𝑦)) = ((norm𝑦) + (norm𝑥)))
3731, 35, 36syl2an 596 . . . . . . . . 9 ((𝑥𝐵𝑦𝐴) → ((norm𝑥) + (norm𝑦)) = ((norm𝑦) + (norm𝑥)))
38 ax-hvcom 30945 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3928, 32, 38syl2an 596 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐴) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
4039fveq2d 6826 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐴) → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑦 + 𝑥)))
4140oveq2d 7365 . . . . . . . . 9 ((𝑥𝐵𝑦𝐴) → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑦 + 𝑥))))
4237, 41breq12d 5105 . . . . . . . 8 ((𝑥𝐵𝑦𝐴) → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥)))))
4342ralbidva 3150 . . . . . . 7 (𝑥𝐵 → (∀𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑦𝐴 ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥)))))
4443ralbiia 3073 . . . . . 6 (∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑥𝐵𝑦𝐴 ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥))))
45 fveq2 6822 . . . . . . . . 9 (𝑥 = → (norm𝑥) = (norm))
4645oveq2d 7365 . . . . . . . 8 (𝑥 = → ((norm𝑦) + (norm𝑥)) = ((norm𝑦) + (norm)))
47 oveq2 7357 . . . . . . . . . 10 (𝑥 = → (𝑦 + 𝑥) = (𝑦 + ))
4847fveq2d 6826 . . . . . . . . 9 (𝑥 = → (norm‘(𝑦 + 𝑥)) = (norm‘(𝑦 + )))
4948oveq2d 7365 . . . . . . . 8 (𝑥 = → (𝑣 · (norm‘(𝑦 + 𝑥))) = (𝑣 · (norm‘(𝑦 + ))))
5046, 49breq12d 5105 . . . . . . 7 (𝑥 = → (((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥))) ↔ ((norm𝑦) + (norm)) ≤ (𝑣 · (norm‘(𝑦 + )))))
51 fveq2 6822 . . . . . . . . 9 (𝑦 = 𝑡 → (norm𝑦) = (norm𝑡))
5251oveq1d 7364 . . . . . . . 8 (𝑦 = 𝑡 → ((norm𝑦) + (norm)) = ((norm𝑡) + (norm)))
53 fvoveq1 7372 . . . . . . . . 9 (𝑦 = 𝑡 → (norm‘(𝑦 + )) = (norm‘(𝑡 + )))
5453oveq2d 7365 . . . . . . . 8 (𝑦 = 𝑡 → (𝑣 · (norm‘(𝑦 + ))) = (𝑣 · (norm‘(𝑡 + ))))
5552, 54breq12d 5105 . . . . . . 7 (𝑦 = 𝑡 → (((norm𝑦) + (norm)) ≤ (𝑣 · (norm‘(𝑦 + ))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
5650, 55cbvral2vw 3211 . . . . . 6 (∀𝑥𝐵𝑦𝐴 ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥))) ↔ ∀𝐵𝑡𝐴 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
5744, 56bitr2i 276 . . . . 5 (∀𝐵𝑡𝐴 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))
5826, 27, 573bitri 297 . . . 4 (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))
5958anbi2i 623 . . 3 ((0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ (0 < 𝑣 ∧ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
6059rexbii 3076 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
612, 1shscomi 31307 . . . . 5 (𝐴 + 𝐵) = (𝐵 + 𝐴)
6261raleqi 3287 . . . 4 (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)))
6362anbi2i 623 . . 3 ((0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
6463rexbii 3076 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
6514, 60, 643imtr4i 292 1 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092  cmpt 5173  cfv 6482  crio 7305  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  chba 30863   + cva 30864  normcno 30867   S csh 30872   + cph 30875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30437  df-ablo 30489  df-hnorm 30912  df-hvsub 30915  df-sh 31151  df-ch0 31197  df-shs 31252
This theorem is referenced by:  cdj3i  32385
  Copyright terms: Public domain W3C validator