HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem3b Structured version   Visualization version   GIF version

Theorem cdj3lem3b 30219
Description: Lemma for cdj3i 30220. The second-component function 𝑇 is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem3.3 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem3b (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑣,𝑇,𝑢
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cdj3lem3b
Dummy variables 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.2 . . 3 𝐵S
2 cdj3lem2.1 . . 3 𝐴S
3 cdj3lem3.3 . . . 4 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
41, 2shscomi 29142 . . . . 5 (𝐵 + 𝐴) = (𝐴 + 𝐵)
51sheli 28993 . . . . . . . . 9 (𝑤𝐵𝑤 ∈ ℋ)
62sheli 28993 . . . . . . . . 9 (𝑧𝐴𝑧 ∈ ℋ)
7 ax-hvcom 28780 . . . . . . . . 9 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
85, 6, 7syl2an 597 . . . . . . . 8 ((𝑤𝐵𝑧𝐴) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
98eqeq2d 2834 . . . . . . 7 ((𝑤𝐵𝑧𝐴) → (𝑥 = (𝑤 + 𝑧) ↔ 𝑥 = (𝑧 + 𝑤)))
109rexbidva 3298 . . . . . 6 (𝑤𝐵 → (∃𝑧𝐴 𝑥 = (𝑤 + 𝑧) ↔ ∃𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
1110riotabiia 7136 . . . . 5 (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)) = (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤))
124, 11mpteq12i 5161 . . . 4 (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧))) = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
133, 12eqtr4i 2849 . . 3 𝑇 = (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)))
141, 2, 13cdj3lem2b 30216 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
15 fveq2 6672 . . . . . . . 8 (𝑥 = 𝑡 → (norm𝑥) = (norm𝑡))
1615oveq1d 7173 . . . . . . 7 (𝑥 = 𝑡 → ((norm𝑥) + (norm𝑦)) = ((norm𝑡) + (norm𝑦)))
17 fvoveq1 7181 . . . . . . . 8 (𝑥 = 𝑡 → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑡 + 𝑦)))
1817oveq2d 7174 . . . . . . 7 (𝑥 = 𝑡 → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑡 + 𝑦))))
1916, 18breq12d 5081 . . . . . 6 (𝑥 = 𝑡 → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦)))))
20 fveq2 6672 . . . . . . . 8 (𝑦 = → (norm𝑦) = (norm))
2120oveq2d 7174 . . . . . . 7 (𝑦 = → ((norm𝑡) + (norm𝑦)) = ((norm𝑡) + (norm)))
22 oveq2 7166 . . . . . . . . 9 (𝑦 = → (𝑡 + 𝑦) = (𝑡 + ))
2322fveq2d 6676 . . . . . . . 8 (𝑦 = → (norm‘(𝑡 + 𝑦)) = (norm‘(𝑡 + )))
2423oveq2d 7174 . . . . . . 7 (𝑦 = → (𝑣 · (norm‘(𝑡 + 𝑦))) = (𝑣 · (norm‘(𝑡 + ))))
2521, 24breq12d 5081 . . . . . 6 (𝑦 = → (((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
2619, 25cbvral2vw 3463 . . . . 5 (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
27 ralcom 3356 . . . . 5 (∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ∀𝐵𝑡𝐴 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
281sheli 28993 . . . . . . . . . . . 12 (𝑥𝐵𝑥 ∈ ℋ)
29 normcl 28904 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
3028, 29syl 17 . . . . . . . . . . 11 (𝑥𝐵 → (norm𝑥) ∈ ℝ)
3130recnd 10671 . . . . . . . . . 10 (𝑥𝐵 → (norm𝑥) ∈ ℂ)
322sheli 28993 . . . . . . . . . . . 12 (𝑦𝐴𝑦 ∈ ℋ)
33 normcl 28904 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . 11 (𝑦𝐴 → (norm𝑦) ∈ ℝ)
3534recnd 10671 . . . . . . . . . 10 (𝑦𝐴 → (norm𝑦) ∈ ℂ)
36 addcom 10828 . . . . . . . . . 10 (((norm𝑥) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → ((norm𝑥) + (norm𝑦)) = ((norm𝑦) + (norm𝑥)))
3731, 35, 36syl2an 597 . . . . . . . . 9 ((𝑥𝐵𝑦𝐴) → ((norm𝑥) + (norm𝑦)) = ((norm𝑦) + (norm𝑥)))
38 ax-hvcom 28780 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3928, 32, 38syl2an 597 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐴) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
4039fveq2d 6676 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐴) → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑦 + 𝑥)))
4140oveq2d 7174 . . . . . . . . 9 ((𝑥𝐵𝑦𝐴) → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑦 + 𝑥))))
4237, 41breq12d 5081 . . . . . . . 8 ((𝑥𝐵𝑦𝐴) → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥)))))
4342ralbidva 3198 . . . . . . 7 (𝑥𝐵 → (∀𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑦𝐴 ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥)))))
4443ralbiia 3166 . . . . . 6 (∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑥𝐵𝑦𝐴 ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥))))
45 fveq2 6672 . . . . . . . . 9 (𝑥 = → (norm𝑥) = (norm))
4645oveq2d 7174 . . . . . . . 8 (𝑥 = → ((norm𝑦) + (norm𝑥)) = ((norm𝑦) + (norm)))
47 oveq2 7166 . . . . . . . . . 10 (𝑥 = → (𝑦 + 𝑥) = (𝑦 + ))
4847fveq2d 6676 . . . . . . . . 9 (𝑥 = → (norm‘(𝑦 + 𝑥)) = (norm‘(𝑦 + )))
4948oveq2d 7174 . . . . . . . 8 (𝑥 = → (𝑣 · (norm‘(𝑦 + 𝑥))) = (𝑣 · (norm‘(𝑦 + ))))
5046, 49breq12d 5081 . . . . . . 7 (𝑥 = → (((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥))) ↔ ((norm𝑦) + (norm)) ≤ (𝑣 · (norm‘(𝑦 + )))))
51 fveq2 6672 . . . . . . . . 9 (𝑦 = 𝑡 → (norm𝑦) = (norm𝑡))
5251oveq1d 7173 . . . . . . . 8 (𝑦 = 𝑡 → ((norm𝑦) + (norm)) = ((norm𝑡) + (norm)))
53 fvoveq1 7181 . . . . . . . . 9 (𝑦 = 𝑡 → (norm‘(𝑦 + )) = (norm‘(𝑡 + )))
5453oveq2d 7174 . . . . . . . 8 (𝑦 = 𝑡 → (𝑣 · (norm‘(𝑦 + ))) = (𝑣 · (norm‘(𝑡 + ))))
5552, 54breq12d 5081 . . . . . . 7 (𝑦 = 𝑡 → (((norm𝑦) + (norm)) ≤ (𝑣 · (norm‘(𝑦 + ))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
5650, 55cbvral2vw 3463 . . . . . 6 (∀𝑥𝐵𝑦𝐴 ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥))) ↔ ∀𝐵𝑡𝐴 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
5744, 56bitr2i 278 . . . . 5 (∀𝐵𝑡𝐴 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))
5826, 27, 573bitri 299 . . . 4 (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))
5958anbi2i 624 . . 3 ((0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ (0 < 𝑣 ∧ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
6059rexbii 3249 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
612, 1shscomi 29142 . . . . 5 (𝐴 + 𝐵) = (𝐵 + 𝐴)
6261raleqi 3415 . . . 4 (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)))
6362anbi2i 624 . . 3 ((0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
6463rexbii 3249 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
6514, 60, 643imtr4i 294 1 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141   class class class wbr 5068  cmpt 5148  cfv 6357  crio 7115  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  chba 28698   + cva 28699  normcno 28702   S csh 28707   + cph 28710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-hilex 28778  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvmulass 28786  ax-hvdistr1 28787  ax-hvdistr2 28788  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his3 28863  ax-his4 28864
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-grpo 28272  df-ablo 28324  df-hnorm 28747  df-hvsub 28750  df-sh 28986  df-ch0 29032  df-shs 29087
This theorem is referenced by:  cdj3i  30220
  Copyright terms: Public domain W3C validator