HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem3b Structured version   Visualization version   GIF version

Theorem cdj3lem3b 30811
Description: Lemma for cdj3i 30812. The second-component function 𝑇 is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem3.3 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem3b (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑣,𝑇,𝑢
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cdj3lem3b
Dummy variables 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.2 . . 3 𝐵S
2 cdj3lem2.1 . . 3 𝐴S
3 cdj3lem3.3 . . . 4 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
41, 2shscomi 29734 . . . . 5 (𝐵 + 𝐴) = (𝐴 + 𝐵)
51sheli 29585 . . . . . . . . 9 (𝑤𝐵𝑤 ∈ ℋ)
62sheli 29585 . . . . . . . . 9 (𝑧𝐴𝑧 ∈ ℋ)
7 ax-hvcom 29372 . . . . . . . . 9 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
85, 6, 7syl2an 596 . . . . . . . 8 ((𝑤𝐵𝑧𝐴) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
98eqeq2d 2751 . . . . . . 7 ((𝑤𝐵𝑧𝐴) → (𝑥 = (𝑤 + 𝑧) ↔ 𝑥 = (𝑧 + 𝑤)))
109rexbidva 3227 . . . . . 6 (𝑤𝐵 → (∃𝑧𝐴 𝑥 = (𝑤 + 𝑧) ↔ ∃𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
1110riotabiia 7250 . . . . 5 (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)) = (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤))
124, 11mpteq12i 5185 . . . 4 (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧))) = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
133, 12eqtr4i 2771 . . 3 𝑇 = (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)))
141, 2, 13cdj3lem2b 30808 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
15 fveq2 6771 . . . . . . . 8 (𝑥 = 𝑡 → (norm𝑥) = (norm𝑡))
1615oveq1d 7287 . . . . . . 7 (𝑥 = 𝑡 → ((norm𝑥) + (norm𝑦)) = ((norm𝑡) + (norm𝑦)))
17 fvoveq1 7295 . . . . . . . 8 (𝑥 = 𝑡 → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑡 + 𝑦)))
1817oveq2d 7288 . . . . . . 7 (𝑥 = 𝑡 → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑡 + 𝑦))))
1916, 18breq12d 5092 . . . . . 6 (𝑥 = 𝑡 → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦)))))
20 fveq2 6771 . . . . . . . 8 (𝑦 = → (norm𝑦) = (norm))
2120oveq2d 7288 . . . . . . 7 (𝑦 = → ((norm𝑡) + (norm𝑦)) = ((norm𝑡) + (norm)))
22 oveq2 7280 . . . . . . . . 9 (𝑦 = → (𝑡 + 𝑦) = (𝑡 + ))
2322fveq2d 6775 . . . . . . . 8 (𝑦 = → (norm‘(𝑡 + 𝑦)) = (norm‘(𝑡 + )))
2423oveq2d 7288 . . . . . . 7 (𝑦 = → (𝑣 · (norm‘(𝑡 + 𝑦))) = (𝑣 · (norm‘(𝑡 + ))))
2521, 24breq12d 5092 . . . . . 6 (𝑦 = → (((norm𝑡) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑡 + 𝑦))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
2619, 25cbvral2vw 3394 . . . . 5 (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
27 ralcom 3283 . . . . 5 (∀𝑡𝐴𝐵 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ∀𝐵𝑡𝐴 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
281sheli 29585 . . . . . . . . . . . 12 (𝑥𝐵𝑥 ∈ ℋ)
29 normcl 29496 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
3028, 29syl 17 . . . . . . . . . . 11 (𝑥𝐵 → (norm𝑥) ∈ ℝ)
3130recnd 11014 . . . . . . . . . 10 (𝑥𝐵 → (norm𝑥) ∈ ℂ)
322sheli 29585 . . . . . . . . . . . 12 (𝑦𝐴𝑦 ∈ ℋ)
33 normcl 29496 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
3432, 33syl 17 . . . . . . . . . . 11 (𝑦𝐴 → (norm𝑦) ∈ ℝ)
3534recnd 11014 . . . . . . . . . 10 (𝑦𝐴 → (norm𝑦) ∈ ℂ)
36 addcom 11172 . . . . . . . . . 10 (((norm𝑥) ∈ ℂ ∧ (norm𝑦) ∈ ℂ) → ((norm𝑥) + (norm𝑦)) = ((norm𝑦) + (norm𝑥)))
3731, 35, 36syl2an 596 . . . . . . . . 9 ((𝑥𝐵𝑦𝐴) → ((norm𝑥) + (norm𝑦)) = ((norm𝑦) + (norm𝑥)))
38 ax-hvcom 29372 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3928, 32, 38syl2an 596 . . . . . . . . . . 11 ((𝑥𝐵𝑦𝐴) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
4039fveq2d 6775 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐴) → (norm‘(𝑥 + 𝑦)) = (norm‘(𝑦 + 𝑥)))
4140oveq2d 7288 . . . . . . . . 9 ((𝑥𝐵𝑦𝐴) → (𝑣 · (norm‘(𝑥 + 𝑦))) = (𝑣 · (norm‘(𝑦 + 𝑥))))
4237, 41breq12d 5092 . . . . . . . 8 ((𝑥𝐵𝑦𝐴) → (((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥)))))
4342ralbidva 3122 . . . . . . 7 (𝑥𝐵 → (∀𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑦𝐴 ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥)))))
4443ralbiia 3092 . . . . . 6 (∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑥𝐵𝑦𝐴 ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥))))
45 fveq2 6771 . . . . . . . . 9 (𝑥 = → (norm𝑥) = (norm))
4645oveq2d 7288 . . . . . . . 8 (𝑥 = → ((norm𝑦) + (norm𝑥)) = ((norm𝑦) + (norm)))
47 oveq2 7280 . . . . . . . . . 10 (𝑥 = → (𝑦 + 𝑥) = (𝑦 + ))
4847fveq2d 6775 . . . . . . . . 9 (𝑥 = → (norm‘(𝑦 + 𝑥)) = (norm‘(𝑦 + )))
4948oveq2d 7288 . . . . . . . 8 (𝑥 = → (𝑣 · (norm‘(𝑦 + 𝑥))) = (𝑣 · (norm‘(𝑦 + ))))
5046, 49breq12d 5092 . . . . . . 7 (𝑥 = → (((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥))) ↔ ((norm𝑦) + (norm)) ≤ (𝑣 · (norm‘(𝑦 + )))))
51 fveq2 6771 . . . . . . . . 9 (𝑦 = 𝑡 → (norm𝑦) = (norm𝑡))
5251oveq1d 7287 . . . . . . . 8 (𝑦 = 𝑡 → ((norm𝑦) + (norm)) = ((norm𝑡) + (norm)))
53 fvoveq1 7295 . . . . . . . . 9 (𝑦 = 𝑡 → (norm‘(𝑦 + )) = (norm‘(𝑡 + )))
5453oveq2d 7288 . . . . . . . 8 (𝑦 = 𝑡 → (𝑣 · (norm‘(𝑦 + ))) = (𝑣 · (norm‘(𝑡 + ))))
5552, 54breq12d 5092 . . . . . . 7 (𝑦 = 𝑡 → (((norm𝑦) + (norm)) ≤ (𝑣 · (norm‘(𝑦 + ))) ↔ ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + )))))
5650, 55cbvral2vw 3394 . . . . . 6 (∀𝑥𝐵𝑦𝐴 ((norm𝑦) + (norm𝑥)) ≤ (𝑣 · (norm‘(𝑦 + 𝑥))) ↔ ∀𝐵𝑡𝐴 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))))
5744, 56bitr2i 275 . . . . 5 (∀𝐵𝑡𝐴 ((norm𝑡) + (norm)) ≤ (𝑣 · (norm‘(𝑡 + ))) ↔ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))
5826, 27, 573bitri 297 . . . 4 (∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))) ↔ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦))))
5958anbi2i 623 . . 3 ((0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ (0 < 𝑣 ∧ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
6059rexbii 3180 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐵𝑦𝐴 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))))
612, 1shscomi 29734 . . . . 5 (𝐴 + 𝐵) = (𝐵 + 𝐴)
6261raleqi 3345 . . . 4 (∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)) ↔ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢)))
6362anbi2i 623 . . 3 ((0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
6463rexbii 3180 . 2 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))) ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐵 + 𝐴)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
6514, 60, 643imtr4i 292 1 (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥𝐴𝑦𝐵 ((norm𝑥) + (norm𝑦)) ≤ (𝑣 · (norm‘(𝑥 + 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 + 𝐵)(norm‘(𝑇𝑢)) ≤ (𝑣 · (norm𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067   class class class wbr 5079  cmpt 5162  cfv 6432  crio 7228  (class class class)co 7272  cc 10880  cr 10881  0cc0 10882   + caddc 10885   · cmul 10887   < clt 11020  cle 11021  chba 29290   + cva 29291  normcno 29294   S csh 29299   + cph 29302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960  ax-hilex 29370  ax-hfvadd 29371  ax-hvcom 29372  ax-hvass 29373  ax-hv0cl 29374  ax-hvaddid 29375  ax-hfvmul 29376  ax-hvmulid 29377  ax-hvmulass 29378  ax-hvdistr1 29379  ax-hvdistr2 29380  ax-hvmul0 29381  ax-hfi 29450  ax-his1 29453  ax-his3 29455  ax-his4 29456
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-sup 9189  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-n0 12245  df-z 12331  df-uz 12594  df-rp 12742  df-seq 13733  df-exp 13794  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-grpo 28864  df-ablo 28916  df-hnorm 29339  df-hvsub 29342  df-sh 29578  df-ch0 29624  df-shs 29679
This theorem is referenced by:  cdj3i  30812
  Copyright terms: Public domain W3C validator