Step | Hyp | Ref
| Expression |
1 | | hlimf 29500 |
. . . . 5
⊢
⇝𝑣 :dom ⇝𝑣 ⟶
ℋ |
2 | | ffun 6587 |
. . . . 5
⊢ (
⇝𝑣 :dom ⇝𝑣 ⟶ ℋ
→ Fun ⇝𝑣 ) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ Fun
⇝𝑣 |
4 | | chscl.5 |
. . . 4
⊢ (𝜑 → 𝐻 ⇝𝑣 𝑢) |
5 | | funbrfv 6802 |
. . . 4
⊢ (Fun
⇝𝑣 → (𝐻 ⇝𝑣 𝑢 → (
⇝𝑣 ‘𝐻) = 𝑢)) |
6 | 3, 4, 5 | mpsyl 68 |
. . 3
⊢ (𝜑 → (
⇝𝑣 ‘𝐻) = 𝑢) |
7 | | chscl.4 |
. . . . . . 7
⊢ (𝜑 → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) |
8 | 7 | feqmptd 6819 |
. . . . . 6
⊢ (𝜑 → 𝐻 = (𝑘 ∈ ℕ ↦ (𝐻‘𝑘))) |
9 | 7 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘𝑘) ∈ (𝐴 +ℋ 𝐵)) |
10 | | chscl.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ Cℋ
) |
11 | | chsh 29487 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈
Cℋ → 𝐴 ∈ Sℋ
) |
12 | 10, 11 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ Sℋ
) |
13 | | chscl.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ Cℋ
) |
14 | | chsh 29487 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈
Cℋ → 𝐵 ∈ Sℋ
) |
15 | 13, 14 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ Sℋ
) |
16 | | shsel 29577 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ )
→ ((𝐻‘𝑘) ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐻‘𝑘) = (𝑥 +ℎ 𝑦))) |
17 | 12, 15, 16 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐻‘𝑘) ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐻‘𝑘) = (𝑥 +ℎ 𝑦))) |
18 | 17 | biimpa 476 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐻‘𝑘) ∈ (𝐴 +ℋ 𝐵)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) |
19 | 9, 18 | syldan 590 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) |
20 | | simp3 1136 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) |
21 | | simp1l 1195 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝜑) |
22 | 21, 10 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝐴 ∈ Cℋ
) |
23 | 21, 13 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝐵 ∈ Cℋ
) |
24 | | chscl.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ⊆ (⊥‘𝐴)) |
25 | 21, 24 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝐵 ⊆ (⊥‘𝐴)) |
26 | 21, 7 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝐻:ℕ⟶(𝐴 +ℋ 𝐵)) |
27 | 21, 4 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝐻 ⇝𝑣 𝑢) |
28 | | chscl.6 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑛 ∈ ℕ ↦
((projℎ‘𝐴)‘(𝐻‘𝑛))) |
29 | | simp1r 1196 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝑘 ∈ ℕ) |
30 | | simp2l 1197 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝑥 ∈ 𝐴) |
31 | | simp2r 1198 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝑦 ∈ 𝐵) |
32 | 22, 23, 25, 26, 27, 28, 29, 30, 31, 20 | chscllem3 29902 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝑥 = (𝐹‘𝑘)) |
33 | | chsscon2 29765 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈
Cℋ ∧ 𝐴 ∈ Cℋ )
→ (𝐵 ⊆
(⊥‘𝐴) ↔
𝐴 ⊆
(⊥‘𝐵))) |
34 | 13, 10, 33 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝐵))) |
35 | 24, 34 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ (⊥‘𝐵)) |
36 | 21, 35 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝐴 ⊆ (⊥‘𝐵)) |
37 | | shscom 29582 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ )
→ (𝐴
+ℋ 𝐵) =
(𝐵 +ℋ
𝐴)) |
38 | 12, 15, 37 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) |
39 | 38 | feq3d 6571 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐻:ℕ⟶(𝐴 +ℋ 𝐵) ↔ 𝐻:ℕ⟶(𝐵 +ℋ 𝐴))) |
40 | 7, 39 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐻:ℕ⟶(𝐵 +ℋ 𝐴)) |
41 | 21, 40 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝐻:ℕ⟶(𝐵 +ℋ 𝐴)) |
42 | | chscl.7 |
. . . . . . . . . . . . 13
⊢ 𝐺 = (𝑛 ∈ ℕ ↦
((projℎ‘𝐵)‘(𝐻‘𝑛))) |
43 | | shss 29473 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈
Sℋ → 𝐴 ⊆ ℋ) |
44 | 12, 43 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ⊆ ℋ) |
45 | 21, 44 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝐴 ⊆ ℋ) |
46 | 45, 30 | sseldd 3918 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝑥 ∈ ℋ) |
47 | | shss 29473 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈
Sℋ → 𝐵 ⊆ ℋ) |
48 | 15, 47 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ⊆ ℋ) |
49 | 21, 48 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝐵 ⊆ ℋ) |
50 | 49, 31 | sseldd 3918 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝑦 ∈ ℋ) |
51 | | ax-hvcom 29264 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) |
52 | 46, 50, 51 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) |
53 | 20, 52 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → (𝐻‘𝑘) = (𝑦 +ℎ 𝑥)) |
54 | 23, 22, 36, 41, 27, 42, 29, 31, 30, 53 | chscllem3 29902 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → 𝑦 = (𝐺‘𝑘)) |
55 | 32, 54 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → (𝑥 +ℎ 𝑦) = ((𝐹‘𝑘) +ℎ (𝐺‘𝑘))) |
56 | 20, 55 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐻‘𝑘) = (𝑥 +ℎ 𝑦)) → (𝐻‘𝑘) = ((𝐹‘𝑘) +ℎ (𝐺‘𝑘))) |
57 | 56 | 3exp 1117 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ((𝐻‘𝑘) = (𝑥 +ℎ 𝑦) → (𝐻‘𝑘) = ((𝐹‘𝑘) +ℎ (𝐺‘𝑘))))) |
58 | 57 | rexlimdvv 3221 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐻‘𝑘) = (𝑥 +ℎ 𝑦) → (𝐻‘𝑘) = ((𝐹‘𝑘) +ℎ (𝐺‘𝑘)))) |
59 | 19, 58 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘𝑘) = ((𝐹‘𝑘) +ℎ (𝐺‘𝑘))) |
60 | 59 | mpteq2dva 5170 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ℕ ↦ (𝐻‘𝑘)) = (𝑘 ∈ ℕ ↦ ((𝐹‘𝑘) +ℎ (𝐺‘𝑘)))) |
61 | 8, 60 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘𝑘) +ℎ (𝐺‘𝑘)))) |
62 | 10, 13, 24, 7, 4, 28 | chscllem1 29900 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
63 | 62, 44 | fssd 6602 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℕ⟶ ℋ) |
64 | 13, 10, 35, 40, 4, 42 | chscllem1 29900 |
. . . . . . 7
⊢ (𝜑 → 𝐺:ℕ⟶𝐵) |
65 | 64, 48 | fssd 6602 |
. . . . . 6
⊢ (𝜑 → 𝐺:ℕ⟶ ℋ) |
66 | 10, 13, 24, 7, 4, 28 | chscllem2 29901 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑣
) |
67 | | funfvbrb 6910 |
. . . . . . . 8
⊢ (Fun
⇝𝑣 → (𝐹 ∈ dom ⇝𝑣
↔ 𝐹
⇝𝑣 ( ⇝𝑣 ‘𝐹))) |
68 | 3, 67 | ax-mp 5 |
. . . . . . 7
⊢ (𝐹 ∈ dom
⇝𝑣 ↔ 𝐹 ⇝𝑣 (
⇝𝑣 ‘𝐹)) |
69 | 66, 68 | sylib 217 |
. . . . . 6
⊢ (𝜑 → 𝐹 ⇝𝑣 (
⇝𝑣 ‘𝐹)) |
70 | 13, 10, 35, 40, 4, 42 | chscllem2 29901 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ dom ⇝𝑣
) |
71 | | funfvbrb 6910 |
. . . . . . . 8
⊢ (Fun
⇝𝑣 → (𝐺 ∈ dom ⇝𝑣
↔ 𝐺
⇝𝑣 ( ⇝𝑣 ‘𝐺))) |
72 | 3, 71 | ax-mp 5 |
. . . . . . 7
⊢ (𝐺 ∈ dom
⇝𝑣 ↔ 𝐺 ⇝𝑣 (
⇝𝑣 ‘𝐺)) |
73 | 70, 72 | sylib 217 |
. . . . . 6
⊢ (𝜑 → 𝐺 ⇝𝑣 (
⇝𝑣 ‘𝐺)) |
74 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ ℕ ↦ ((𝐹‘𝑘) +ℎ (𝐺‘𝑘))) = (𝑘 ∈ ℕ ↦ ((𝐹‘𝑘) +ℎ (𝐺‘𝑘))) |
75 | 63, 65, 69, 73, 74 | hlimadd 29456 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ ℕ ↦ ((𝐹‘𝑘) +ℎ (𝐺‘𝑘))) ⇝𝑣 ((
⇝𝑣 ‘𝐹) +ℎ (
⇝𝑣 ‘𝐺))) |
76 | 61, 75 | eqbrtrd 5092 |
. . . 4
⊢ (𝜑 → 𝐻 ⇝𝑣 ((
⇝𝑣 ‘𝐹) +ℎ (
⇝𝑣 ‘𝐺))) |
77 | | funbrfv 6802 |
. . . 4
⊢ (Fun
⇝𝑣 → (𝐻 ⇝𝑣 ((
⇝𝑣 ‘𝐹) +ℎ (
⇝𝑣 ‘𝐺)) → ( ⇝𝑣
‘𝐻) = ((
⇝𝑣 ‘𝐹) +ℎ (
⇝𝑣 ‘𝐺)))) |
78 | 3, 76, 77 | mpsyl 68 |
. . 3
⊢ (𝜑 → (
⇝𝑣 ‘𝐻) = (( ⇝𝑣
‘𝐹)
+ℎ ( ⇝𝑣 ‘𝐺))) |
79 | 6, 78 | eqtr3d 2780 |
. 2
⊢ (𝜑 → 𝑢 = (( ⇝𝑣
‘𝐹)
+ℎ ( ⇝𝑣 ‘𝐺))) |
80 | | fvex 6769 |
. . . . 5
⊢ (
⇝𝑣 ‘𝐹) ∈ V |
81 | 80 | chlimi 29497 |
. . . 4
⊢ ((𝐴 ∈
Cℋ ∧ 𝐹:ℕ⟶𝐴 ∧ 𝐹 ⇝𝑣 (
⇝𝑣 ‘𝐹)) → ( ⇝𝑣
‘𝐹) ∈ 𝐴) |
82 | 10, 62, 69, 81 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (
⇝𝑣 ‘𝐹) ∈ 𝐴) |
83 | | fvex 6769 |
. . . . 5
⊢ (
⇝𝑣 ‘𝐺) ∈ V |
84 | 83 | chlimi 29497 |
. . . 4
⊢ ((𝐵 ∈
Cℋ ∧ 𝐺:ℕ⟶𝐵 ∧ 𝐺 ⇝𝑣 (
⇝𝑣 ‘𝐺)) → ( ⇝𝑣
‘𝐺) ∈ 𝐵) |
85 | 13, 64, 73, 84 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (
⇝𝑣 ‘𝐺) ∈ 𝐵) |
86 | | shsva 29583 |
. . . 4
⊢ ((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ )
→ ((( ⇝𝑣 ‘𝐹) ∈ 𝐴 ∧ ( ⇝𝑣
‘𝐺) ∈ 𝐵) → ((
⇝𝑣 ‘𝐹) +ℎ (
⇝𝑣 ‘𝐺)) ∈ (𝐴 +ℋ 𝐵))) |
87 | 12, 15, 86 | syl2anc 583 |
. . 3
⊢ (𝜑 → (((
⇝𝑣 ‘𝐹) ∈ 𝐴 ∧ ( ⇝𝑣
‘𝐺) ∈ 𝐵) → ((
⇝𝑣 ‘𝐹) +ℎ (
⇝𝑣 ‘𝐺)) ∈ (𝐴 +ℋ 𝐵))) |
88 | 82, 85, 87 | mp2and 695 |
. 2
⊢ (𝜑 → ((
⇝𝑣 ‘𝐹) +ℎ (
⇝𝑣 ‘𝐺)) ∈ (𝐴 +ℋ 𝐵)) |
89 | 79, 88 | eqeltrd 2839 |
1
⊢ (𝜑 → 𝑢 ∈ (𝐴 +ℋ 𝐵)) |