HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem4 Structured version   Visualization version   GIF version

Theorem chscllem4 29721
Description: Lemma for chscl 29722. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
chscl.7 𝐺 = (𝑛 ∈ ℕ ↦ ((proj𝐵)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem4 (𝜑𝑢 ∈ (𝐴 + 𝐵))
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)   𝐺(𝑢,𝑛)

Proof of Theorem chscllem4
Dummy variables 𝑥 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlimf 29318 . . . . 5 𝑣 :dom ⇝𝑣 ⟶ ℋ
2 ffun 6548 . . . . 5 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
31, 2ax-mp 5 . . . 4 Fun ⇝𝑣
4 chscl.5 . . . 4 (𝜑𝐻𝑣 𝑢)
5 funbrfv 6763 . . . 4 (Fun ⇝𝑣 → (𝐻𝑣 𝑢 → ( ⇝𝑣𝐻) = 𝑢))
63, 4, 5mpsyl 68 . . 3 (𝜑 → ( ⇝𝑣𝐻) = 𝑢)
7 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
87feqmptd 6780 . . . . . 6 (𝜑𝐻 = (𝑘 ∈ ℕ ↦ (𝐻𝑘)))
97ffvelrnda 6904 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) ∈ (𝐴 + 𝐵))
10 chscl.1 . . . . . . . . . . . 12 (𝜑𝐴C )
11 chsh 29305 . . . . . . . . . . . 12 (𝐴C𝐴S )
1210, 11syl 17 . . . . . . . . . . 11 (𝜑𝐴S )
13 chscl.2 . . . . . . . . . . . 12 (𝜑𝐵C )
14 chsh 29305 . . . . . . . . . . . 12 (𝐵C𝐵S )
1513, 14syl 17 . . . . . . . . . . 11 (𝜑𝐵S )
16 shsel 29395 . . . . . . . . . . 11 ((𝐴S𝐵S ) → ((𝐻𝑘) ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦)))
1712, 15, 16syl2anc 587 . . . . . . . . . 10 (𝜑 → ((𝐻𝑘) ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦)))
1817biimpa 480 . . . . . . . . 9 ((𝜑 ∧ (𝐻𝑘) ∈ (𝐴 + 𝐵)) → ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦))
199, 18syldan 594 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦))
20 simp3 1140 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝐻𝑘) = (𝑥 + 𝑦))
21 simp1l 1199 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝜑)
2221, 10syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐴C )
2321, 13syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐵C )
24 chscl.3 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ (⊥‘𝐴))
2521, 24syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐵 ⊆ (⊥‘𝐴))
2621, 7syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐻:ℕ⟶(𝐴 + 𝐵))
2721, 4syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐻𝑣 𝑢)
28 chscl.6 . . . . . . . . . . . . 13 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
29 simp1r 1200 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑘 ∈ ℕ)
30 simp2l 1201 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑥𝐴)
31 simp2r 1202 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑦𝐵)
3222, 23, 25, 26, 27, 28, 29, 30, 31, 20chscllem3 29720 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑥 = (𝐹𝑘))
33 chsscon2 29583 . . . . . . . . . . . . . . . 16 ((𝐵C𝐴C ) → (𝐵 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝐵)))
3413, 10, 33syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝐵)))
3524, 34mpbid 235 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ (⊥‘𝐵))
3621, 35syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐴 ⊆ (⊥‘𝐵))
37 shscom 29400 . . . . . . . . . . . . . . . . 17 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
3812, 15, 37syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
3938feq3d 6532 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻:ℕ⟶(𝐴 + 𝐵) ↔ 𝐻:ℕ⟶(𝐵 + 𝐴)))
407, 39mpbid 235 . . . . . . . . . . . . . 14 (𝜑𝐻:ℕ⟶(𝐵 + 𝐴))
4121, 40syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐻:ℕ⟶(𝐵 + 𝐴))
42 chscl.7 . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ ℕ ↦ ((proj𝐵)‘(𝐻𝑛)))
43 shss 29291 . . . . . . . . . . . . . . . . . 18 (𝐴S𝐴 ⊆ ℋ)
4412, 43syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ ℋ)
4521, 44syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐴 ⊆ ℋ)
4645, 30sseldd 3902 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑥 ∈ ℋ)
47 shss 29291 . . . . . . . . . . . . . . . . . 18 (𝐵S𝐵 ⊆ ℋ)
4815, 47syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ⊆ ℋ)
4921, 48syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐵 ⊆ ℋ)
5049, 31sseldd 3902 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑦 ∈ ℋ)
51 ax-hvcom 29082 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
5246, 50, 51syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
5320, 52eqtrd 2777 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝐻𝑘) = (𝑦 + 𝑥))
5423, 22, 36, 41, 27, 42, 29, 31, 30, 53chscllem3 29720 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑦 = (𝐺𝑘))
5532, 54oveq12d 7231 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝑥 + 𝑦) = ((𝐹𝑘) + (𝐺𝑘)))
5620, 55eqtrd 2777 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
57563exp 1121 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑥𝐴𝑦𝐵) → ((𝐻𝑘) = (𝑥 + 𝑦) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))))
5857rexlimdvv 3212 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘))))
5919, 58mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
6059mpteq2dva 5150 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ (𝐻𝑘)) = (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))))
618, 60eqtrd 2777 . . . . 5 (𝜑𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))))
6210, 13, 24, 7, 4, 28chscllem1 29718 . . . . . . 7 (𝜑𝐹:ℕ⟶𝐴)
6362, 44fssd 6563 . . . . . 6 (𝜑𝐹:ℕ⟶ ℋ)
6413, 10, 35, 40, 4, 42chscllem1 29718 . . . . . . 7 (𝜑𝐺:ℕ⟶𝐵)
6564, 48fssd 6563 . . . . . 6 (𝜑𝐺:ℕ⟶ ℋ)
6610, 13, 24, 7, 4, 28chscllem2 29719 . . . . . . 7 (𝜑𝐹 ∈ dom ⇝𝑣 )
67 funfvbrb 6871 . . . . . . . 8 (Fun ⇝𝑣 → (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹)))
683, 67ax-mp 5 . . . . . . 7 (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹))
6966, 68sylib 221 . . . . . 6 (𝜑𝐹𝑣 ( ⇝𝑣𝐹))
7013, 10, 35, 40, 4, 42chscllem2 29719 . . . . . . 7 (𝜑𝐺 ∈ dom ⇝𝑣 )
71 funfvbrb 6871 . . . . . . . 8 (Fun ⇝𝑣 → (𝐺 ∈ dom ⇝𝑣𝐺𝑣 ( ⇝𝑣𝐺)))
723, 71ax-mp 5 . . . . . . 7 (𝐺 ∈ dom ⇝𝑣𝐺𝑣 ( ⇝𝑣𝐺))
7370, 72sylib 221 . . . . . 6 (𝜑𝐺𝑣 ( ⇝𝑣𝐺))
74 eqid 2737 . . . . . 6 (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))) = (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘)))
7563, 65, 69, 73, 74hlimadd 29274 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))) ⇝𝑣 (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
7661, 75eqbrtrd 5075 . . . 4 (𝜑𝐻𝑣 (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
77 funbrfv 6763 . . . 4 (Fun ⇝𝑣 → (𝐻𝑣 (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) → ( ⇝𝑣𝐻) = (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺))))
783, 76, 77mpsyl 68 . . 3 (𝜑 → ( ⇝𝑣𝐻) = (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
796, 78eqtr3d 2779 . 2 (𝜑𝑢 = (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
80 fvex 6730 . . . . 5 ( ⇝𝑣𝐹) ∈ V
8180chlimi 29315 . . . 4 ((𝐴C𝐹:ℕ⟶𝐴𝐹𝑣 ( ⇝𝑣𝐹)) → ( ⇝𝑣𝐹) ∈ 𝐴)
8210, 62, 69, 81syl3anc 1373 . . 3 (𝜑 → ( ⇝𝑣𝐹) ∈ 𝐴)
83 fvex 6730 . . . . 5 ( ⇝𝑣𝐺) ∈ V
8483chlimi 29315 . . . 4 ((𝐵C𝐺:ℕ⟶𝐵𝐺𝑣 ( ⇝𝑣𝐺)) → ( ⇝𝑣𝐺) ∈ 𝐵)
8513, 64, 73, 84syl3anc 1373 . . 3 (𝜑 → ( ⇝𝑣𝐺) ∈ 𝐵)
86 shsva 29401 . . . 4 ((𝐴S𝐵S ) → ((( ⇝𝑣𝐹) ∈ 𝐴 ∧ ( ⇝𝑣𝐺) ∈ 𝐵) → (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) ∈ (𝐴 + 𝐵)))
8712, 15, 86syl2anc 587 . . 3 (𝜑 → ((( ⇝𝑣𝐹) ∈ 𝐴 ∧ ( ⇝𝑣𝐺) ∈ 𝐵) → (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) ∈ (𝐴 + 𝐵)))
8882, 85, 87mp2and 699 . 2 (𝜑 → (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) ∈ (𝐴 + 𝐵))
8979, 88eqeltrd 2838 1 (𝜑𝑢 ∈ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wrex 3062  wss 3866   class class class wbr 5053  cmpt 5135  dom cdm 5551  Fun wfun 6374  wf 6376  cfv 6380  (class class class)co 7213  cn 11830  chba 29000   + cva 29001  𝑣 chli 29008   S csh 29009   C cch 29010  cort 29011   + cph 29012  projcpjh 29018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809  ax-hilex 29080  ax-hfvadd 29081  ax-hvcom 29082  ax-hvass 29083  ax-hv0cl 29084  ax-hvaddid 29085  ax-hfvmul 29086  ax-hvmulid 29087  ax-hvmulass 29088  ax-hvdistr1 29089  ax-hvdistr2 29090  ax-hvmul0 29091  ax-hfi 29160  ax-his1 29163  ax-his2 29164  ax-his3 29165  ax-his4 29166  ax-hcompl 29283
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cn 22124  df-cnp 22125  df-lm 22126  df-haus 22212  df-tx 22459  df-hmeo 22652  df-xms 23218  df-tms 23220  df-cau 24153  df-grpo 28574  df-gid 28575  df-ginv 28576  df-gdiv 28577  df-ablo 28626  df-vc 28640  df-nv 28673  df-va 28676  df-ba 28677  df-sm 28678  df-0v 28679  df-vs 28680  df-nmcv 28681  df-ims 28682  df-hnorm 29049  df-hba 29050  df-hvsub 29052  df-hlim 29053  df-hcau 29054  df-sh 29288  df-ch 29302  df-oc 29333  df-ch0 29334  df-shs 29389  df-pjh 29476
This theorem is referenced by:  chscl  29722
  Copyright terms: Public domain W3C validator