HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem4 Structured version   Visualization version   GIF version

Theorem chscllem4 31672
Description: Lemma for chscl 31673. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
chscl.7 𝐺 = (𝑛 ∈ ℕ ↦ ((proj𝐵)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem4 (𝜑𝑢 ∈ (𝐴 + 𝐵))
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)   𝐺(𝑢,𝑛)

Proof of Theorem chscllem4
Dummy variables 𝑥 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlimf 31269 . . . . 5 𝑣 :dom ⇝𝑣 ⟶ ℋ
2 ffun 6750 . . . . 5 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
31, 2ax-mp 5 . . . 4 Fun ⇝𝑣
4 chscl.5 . . . 4 (𝜑𝐻𝑣 𝑢)
5 funbrfv 6971 . . . 4 (Fun ⇝𝑣 → (𝐻𝑣 𝑢 → ( ⇝𝑣𝐻) = 𝑢))
63, 4, 5mpsyl 68 . . 3 (𝜑 → ( ⇝𝑣𝐻) = 𝑢)
7 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
87feqmptd 6990 . . . . . 6 (𝜑𝐻 = (𝑘 ∈ ℕ ↦ (𝐻𝑘)))
97ffvelcdmda 7118 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) ∈ (𝐴 + 𝐵))
10 chscl.1 . . . . . . . . . . . 12 (𝜑𝐴C )
11 chsh 31256 . . . . . . . . . . . 12 (𝐴C𝐴S )
1210, 11syl 17 . . . . . . . . . . 11 (𝜑𝐴S )
13 chscl.2 . . . . . . . . . . . 12 (𝜑𝐵C )
14 chsh 31256 . . . . . . . . . . . 12 (𝐵C𝐵S )
1513, 14syl 17 . . . . . . . . . . 11 (𝜑𝐵S )
16 shsel 31346 . . . . . . . . . . 11 ((𝐴S𝐵S ) → ((𝐻𝑘) ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦)))
1712, 15, 16syl2anc 583 . . . . . . . . . 10 (𝜑 → ((𝐻𝑘) ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦)))
1817biimpa 476 . . . . . . . . 9 ((𝜑 ∧ (𝐻𝑘) ∈ (𝐴 + 𝐵)) → ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦))
199, 18syldan 590 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦))
20 simp3 1138 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝐻𝑘) = (𝑥 + 𝑦))
21 simp1l 1197 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝜑)
2221, 10syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐴C )
2321, 13syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐵C )
24 chscl.3 . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ (⊥‘𝐴))
2521, 24syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐵 ⊆ (⊥‘𝐴))
2621, 7syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐻:ℕ⟶(𝐴 + 𝐵))
2721, 4syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐻𝑣 𝑢)
28 chscl.6 . . . . . . . . . . . . 13 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
29 simp1r 1198 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑘 ∈ ℕ)
30 simp2l 1199 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑥𝐴)
31 simp2r 1200 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑦𝐵)
3222, 23, 25, 26, 27, 28, 29, 30, 31, 20chscllem3 31671 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑥 = (𝐹𝑘))
33 chsscon2 31534 . . . . . . . . . . . . . . . 16 ((𝐵C𝐴C ) → (𝐵 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝐵)))
3413, 10, 33syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝐵)))
3524, 34mpbid 232 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ (⊥‘𝐵))
3621, 35syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐴 ⊆ (⊥‘𝐵))
37 shscom 31351 . . . . . . . . . . . . . . . . 17 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
3812, 15, 37syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
3938feq3d 6734 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻:ℕ⟶(𝐴 + 𝐵) ↔ 𝐻:ℕ⟶(𝐵 + 𝐴)))
407, 39mpbid 232 . . . . . . . . . . . . . 14 (𝜑𝐻:ℕ⟶(𝐵 + 𝐴))
4121, 40syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐻:ℕ⟶(𝐵 + 𝐴))
42 chscl.7 . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ ℕ ↦ ((proj𝐵)‘(𝐻𝑛)))
43 shss 31242 . . . . . . . . . . . . . . . . . 18 (𝐴S𝐴 ⊆ ℋ)
4412, 43syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ ℋ)
4521, 44syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐴 ⊆ ℋ)
4645, 30sseldd 4009 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑥 ∈ ℋ)
47 shss 31242 . . . . . . . . . . . . . . . . . 18 (𝐵S𝐵 ⊆ ℋ)
4815, 47syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ⊆ ℋ)
4921, 48syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝐵 ⊆ ℋ)
5049, 31sseldd 4009 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑦 ∈ ℋ)
51 ax-hvcom 31033 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
5246, 50, 51syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
5320, 52eqtrd 2780 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝐻𝑘) = (𝑦 + 𝑥))
5423, 22, 36, 41, 27, 42, 29, 31, 30, 53chscllem3 31671 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → 𝑦 = (𝐺𝑘))
5532, 54oveq12d 7466 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝑥 + 𝑦) = ((𝐹𝑘) + (𝐺𝑘)))
5620, 55eqtrd 2780 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (𝑥𝐴𝑦𝐵) ∧ (𝐻𝑘) = (𝑥 + 𝑦)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
57563exp 1119 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑥𝐴𝑦𝐵) → ((𝐻𝑘) = (𝑥 + 𝑦) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))))
5857rexlimdvv 3218 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (∃𝑥𝐴𝑦𝐵 (𝐻𝑘) = (𝑥 + 𝑦) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘))))
5919, 58mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
6059mpteq2dva 5266 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ (𝐻𝑘)) = (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))))
618, 60eqtrd 2780 . . . . 5 (𝜑𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))))
6210, 13, 24, 7, 4, 28chscllem1 31669 . . . . . . 7 (𝜑𝐹:ℕ⟶𝐴)
6362, 44fssd 6764 . . . . . 6 (𝜑𝐹:ℕ⟶ ℋ)
6413, 10, 35, 40, 4, 42chscllem1 31669 . . . . . . 7 (𝜑𝐺:ℕ⟶𝐵)
6564, 48fssd 6764 . . . . . 6 (𝜑𝐺:ℕ⟶ ℋ)
6610, 13, 24, 7, 4, 28chscllem2 31670 . . . . . . 7 (𝜑𝐹 ∈ dom ⇝𝑣 )
67 funfvbrb 7084 . . . . . . . 8 (Fun ⇝𝑣 → (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹)))
683, 67ax-mp 5 . . . . . . 7 (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹))
6966, 68sylib 218 . . . . . 6 (𝜑𝐹𝑣 ( ⇝𝑣𝐹))
7013, 10, 35, 40, 4, 42chscllem2 31670 . . . . . . 7 (𝜑𝐺 ∈ dom ⇝𝑣 )
71 funfvbrb 7084 . . . . . . . 8 (Fun ⇝𝑣 → (𝐺 ∈ dom ⇝𝑣𝐺𝑣 ( ⇝𝑣𝐺)))
723, 71ax-mp 5 . . . . . . 7 (𝐺 ∈ dom ⇝𝑣𝐺𝑣 ( ⇝𝑣𝐺))
7370, 72sylib 218 . . . . . 6 (𝜑𝐺𝑣 ( ⇝𝑣𝐺))
74 eqid 2740 . . . . . 6 (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))) = (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘)))
7563, 65, 69, 73, 74hlimadd 31225 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((𝐹𝑘) + (𝐺𝑘))) ⇝𝑣 (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
7661, 75eqbrtrd 5188 . . . 4 (𝜑𝐻𝑣 (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
77 funbrfv 6971 . . . 4 (Fun ⇝𝑣 → (𝐻𝑣 (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) → ( ⇝𝑣𝐻) = (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺))))
783, 76, 77mpsyl 68 . . 3 (𝜑 → ( ⇝𝑣𝐻) = (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
796, 78eqtr3d 2782 . 2 (𝜑𝑢 = (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)))
80 fvex 6933 . . . . 5 ( ⇝𝑣𝐹) ∈ V
8180chlimi 31266 . . . 4 ((𝐴C𝐹:ℕ⟶𝐴𝐹𝑣 ( ⇝𝑣𝐹)) → ( ⇝𝑣𝐹) ∈ 𝐴)
8210, 62, 69, 81syl3anc 1371 . . 3 (𝜑 → ( ⇝𝑣𝐹) ∈ 𝐴)
83 fvex 6933 . . . . 5 ( ⇝𝑣𝐺) ∈ V
8483chlimi 31266 . . . 4 ((𝐵C𝐺:ℕ⟶𝐵𝐺𝑣 ( ⇝𝑣𝐺)) → ( ⇝𝑣𝐺) ∈ 𝐵)
8513, 64, 73, 84syl3anc 1371 . . 3 (𝜑 → ( ⇝𝑣𝐺) ∈ 𝐵)
86 shsva 31352 . . . 4 ((𝐴S𝐵S ) → ((( ⇝𝑣𝐹) ∈ 𝐴 ∧ ( ⇝𝑣𝐺) ∈ 𝐵) → (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) ∈ (𝐴 + 𝐵)))
8712, 15, 86syl2anc 583 . . 3 (𝜑 → ((( ⇝𝑣𝐹) ∈ 𝐴 ∧ ( ⇝𝑣𝐺) ∈ 𝐵) → (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) ∈ (𝐴 + 𝐵)))
8882, 85, 87mp2and 698 . 2 (𝜑 → (( ⇝𝑣𝐹) + ( ⇝𝑣𝐺)) ∈ (𝐴 + 𝐵))
8979, 88eqeltrd 2844 1 (𝜑𝑢 ∈ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  wss 3976   class class class wbr 5166  cmpt 5249  dom cdm 5700  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  cn 12293  chba 30951   + cva 30952  𝑣 chli 30959   S csh 30960   C cch 30961  cort 30962   + cph 30963  projcpjh 30969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-lm 23258  df-haus 23344  df-tx 23591  df-hmeo 23784  df-xms 24351  df-tms 24353  df-cau 25309  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-sh 31239  df-ch 31253  df-oc 31284  df-ch0 31285  df-shs 31340  df-pjh 31427
This theorem is referenced by:  chscl  31673
  Copyright terms: Public domain W3C validator