| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjimai | Structured version Visualization version GIF version | ||
| Description: The image of a projection. Lemma 5 in Daniel Lehmann, "A presentation of Quantum Logic based on an and then connective", https://doi.org/10.48550/arXiv.quant-ph/0701113. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjima.1 | ⊢ 𝐴 ∈ Sℋ |
| pjima.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| pjimai | ⊢ ((projℎ‘𝐵) “ 𝐴) = ((𝐴 +ℋ (⊥‘𝐵)) ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjima.2 | . . . . . . . . 9 ⊢ 𝐵 ∈ Cℋ | |
| 2 | pjima.1 | . . . . . . . . . 10 ⊢ 𝐴 ∈ Sℋ | |
| 3 | 2 | sheli 31176 | . . . . . . . . 9 ⊢ (𝑣 ∈ 𝐴 → 𝑣 ∈ ℋ) |
| 4 | pjeq 31361 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝑣 ∈ ℋ) → (((projℎ‘𝐵)‘𝑣) = 𝑢 ↔ (𝑢 ∈ 𝐵 ∧ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤)))) | |
| 5 | 1, 3, 4 | sylancr 587 | . . . . . . . 8 ⊢ (𝑣 ∈ 𝐴 → (((projℎ‘𝐵)‘𝑣) = 𝑢 ↔ (𝑢 ∈ 𝐵 ∧ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤)))) |
| 6 | ibar 528 | . . . . . . . . 9 ⊢ (𝑢 ∈ 𝐵 → (∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤) ↔ (𝑢 ∈ 𝐵 ∧ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤)))) | |
| 7 | 6 | bicomd 223 | . . . . . . . 8 ⊢ (𝑢 ∈ 𝐵 → ((𝑢 ∈ 𝐵 ∧ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤)) ↔ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤))) |
| 8 | 5, 7 | sylan9bbr 510 | . . . . . . 7 ⊢ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴) → (((projℎ‘𝐵)‘𝑣) = 𝑢 ↔ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤))) |
| 9 | 1 | cheli 31194 | . . . . . . . . . . 11 ⊢ (𝑢 ∈ 𝐵 → 𝑢 ∈ ℋ) |
| 10 | 1 | choccli 31269 | . . . . . . . . . . . 12 ⊢ (⊥‘𝐵) ∈ Cℋ |
| 11 | 10 | cheli 31194 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ (⊥‘𝐵) → 𝑤 ∈ ℋ) |
| 12 | hvsubadd 31039 | . . . . . . . . . . . . 13 ⊢ ((𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑣 −ℎ 𝑤) = 𝑢 ↔ (𝑤 +ℎ 𝑢) = 𝑣)) | |
| 13 | 12 | 3comr 1125 | . . . . . . . . . . . 12 ⊢ ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑣 −ℎ 𝑤) = 𝑢 ↔ (𝑤 +ℎ 𝑢) = 𝑣)) |
| 14 | ax-hvcom 30963 | . . . . . . . . . . . . . 14 ⊢ ((𝑢 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑢 +ℎ 𝑤) = (𝑤 +ℎ 𝑢)) | |
| 15 | 14 | 3adant2 1131 | . . . . . . . . . . . . 13 ⊢ ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑢 +ℎ 𝑤) = (𝑤 +ℎ 𝑢)) |
| 16 | 15 | eqeq1d 2731 | . . . . . . . . . . . 12 ⊢ ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑢 +ℎ 𝑤) = 𝑣 ↔ (𝑤 +ℎ 𝑢) = 𝑣)) |
| 17 | 13, 16 | bitr4d 282 | . . . . . . . . . . 11 ⊢ ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑣 −ℎ 𝑤) = 𝑢 ↔ (𝑢 +ℎ 𝑤) = 𝑣)) |
| 18 | 9, 3, 11, 17 | syl3an 1160 | . . . . . . . . . 10 ⊢ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ (⊥‘𝐵)) → ((𝑣 −ℎ 𝑤) = 𝑢 ↔ (𝑢 +ℎ 𝑤) = 𝑣)) |
| 19 | eqcom 2736 | . . . . . . . . . 10 ⊢ (𝑢 = (𝑣 −ℎ 𝑤) ↔ (𝑣 −ℎ 𝑤) = 𝑢) | |
| 20 | eqcom 2736 | . . . . . . . . . 10 ⊢ (𝑣 = (𝑢 +ℎ 𝑤) ↔ (𝑢 +ℎ 𝑤) = 𝑣) | |
| 21 | 18, 19, 20 | 3bitr4g 314 | . . . . . . . . 9 ⊢ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ (⊥‘𝐵)) → (𝑢 = (𝑣 −ℎ 𝑤) ↔ 𝑣 = (𝑢 +ℎ 𝑤))) |
| 22 | 21 | 3expa 1118 | . . . . . . . 8 ⊢ (((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑤 ∈ (⊥‘𝐵)) → (𝑢 = (𝑣 −ℎ 𝑤) ↔ 𝑣 = (𝑢 +ℎ 𝑤))) |
| 23 | 22 | rexbidva 3151 | . . . . . . 7 ⊢ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 −ℎ 𝑤) ↔ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤))) |
| 24 | 8, 23 | bitr4d 282 | . . . . . 6 ⊢ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴) → (((projℎ‘𝐵)‘𝑣) = 𝑢 ↔ ∃𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 −ℎ 𝑤))) |
| 25 | 24 | rexbidva 3151 | . . . . 5 ⊢ (𝑢 ∈ 𝐵 → (∃𝑣 ∈ 𝐴 ((projℎ‘𝐵)‘𝑣) = 𝑢 ↔ ∃𝑣 ∈ 𝐴 ∃𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 −ℎ 𝑤))) |
| 26 | 1 | pjfni 31663 | . . . . . 6 ⊢ (projℎ‘𝐵) Fn ℋ |
| 27 | 2 | shssii 31175 | . . . . . 6 ⊢ 𝐴 ⊆ ℋ |
| 28 | fvelimab 6899 | . . . . . 6 ⊢ (((projℎ‘𝐵) Fn ℋ ∧ 𝐴 ⊆ ℋ) → (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ↔ ∃𝑣 ∈ 𝐴 ((projℎ‘𝐵)‘𝑣) = 𝑢)) | |
| 29 | 26, 27, 28 | mp2an 692 | . . . . 5 ⊢ (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ↔ ∃𝑣 ∈ 𝐴 ((projℎ‘𝐵)‘𝑣) = 𝑢) |
| 30 | 10 | chshii 31189 | . . . . . 6 ⊢ (⊥‘𝐵) ∈ Sℋ |
| 31 | shsel3 31277 | . . . . . 6 ⊢ ((𝐴 ∈ Sℋ ∧ (⊥‘𝐵) ∈ Sℋ ) → (𝑢 ∈ (𝐴 +ℋ (⊥‘𝐵)) ↔ ∃𝑣 ∈ 𝐴 ∃𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 −ℎ 𝑤))) | |
| 32 | 2, 30, 31 | mp2an 692 | . . . . 5 ⊢ (𝑢 ∈ (𝐴 +ℋ (⊥‘𝐵)) ↔ ∃𝑣 ∈ 𝐴 ∃𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 −ℎ 𝑤)) |
| 33 | 25, 29, 32 | 3bitr4g 314 | . . . 4 ⊢ (𝑢 ∈ 𝐵 → (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ↔ 𝑢 ∈ (𝐴 +ℋ (⊥‘𝐵)))) |
| 34 | 33 | pm5.32ri 575 | . . 3 ⊢ ((𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ∧ 𝑢 ∈ 𝐵) ↔ (𝑢 ∈ (𝐴 +ℋ (⊥‘𝐵)) ∧ 𝑢 ∈ 𝐵)) |
| 35 | imassrn 6026 | . . . . . 6 ⊢ ((projℎ‘𝐵) “ 𝐴) ⊆ ran (projℎ‘𝐵) | |
| 36 | 1 | pjrni 31664 | . . . . . 6 ⊢ ran (projℎ‘𝐵) = 𝐵 |
| 37 | 35, 36 | sseqtri 3986 | . . . . 5 ⊢ ((projℎ‘𝐵) “ 𝐴) ⊆ 𝐵 |
| 38 | 37 | sseli 3933 | . . . 4 ⊢ (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) → 𝑢 ∈ 𝐵) |
| 39 | 38 | pm4.71i 559 | . . 3 ⊢ (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ↔ (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ∧ 𝑢 ∈ 𝐵)) |
| 40 | elin 3921 | . . 3 ⊢ (𝑢 ∈ ((𝐴 +ℋ (⊥‘𝐵)) ∩ 𝐵) ↔ (𝑢 ∈ (𝐴 +ℋ (⊥‘𝐵)) ∧ 𝑢 ∈ 𝐵)) | |
| 41 | 34, 39, 40 | 3bitr4i 303 | . 2 ⊢ (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ↔ 𝑢 ∈ ((𝐴 +ℋ (⊥‘𝐵)) ∩ 𝐵)) |
| 42 | 41 | eqriv 2726 | 1 ⊢ ((projℎ‘𝐵) “ 𝐴) = ((𝐴 +ℋ (⊥‘𝐵)) ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3904 ⊆ wss 3905 ran crn 5624 “ cima 5626 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ℋchba 30881 +ℎ cva 30882 −ℎ cmv 30887 Sℋ csh 30890 Cℋ cch 30891 ⊥cort 30892 +ℋ cph 30893 projℎcpjh 30899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 ax-hilex 30961 ax-hfvadd 30962 ax-hvcom 30963 ax-hvass 30964 ax-hv0cl 30965 ax-hvaddid 30966 ax-hfvmul 30967 ax-hvmulid 30968 ax-hvmulass 30969 ax-hvdistr1 30970 ax-hvdistr2 30971 ax-hvmul0 30972 ax-hfi 31041 ax-his1 31044 ax-his2 31045 ax-his3 31046 ax-his4 31047 ax-hcompl 31164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-rlim 15414 df-sum 15612 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-cn 23130 df-cnp 23131 df-lm 23132 df-haus 23218 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cfil 25171 df-cau 25172 df-cmet 25173 df-grpo 30455 df-gid 30456 df-ginv 30457 df-gdiv 30458 df-ablo 30507 df-vc 30521 df-nv 30554 df-va 30557 df-ba 30558 df-sm 30559 df-0v 30560 df-vs 30561 df-nmcv 30562 df-ims 30563 df-dip 30663 df-ssp 30684 df-ph 30775 df-cbn 30825 df-hnorm 30930 df-hba 30931 df-hvsub 30933 df-hlim 30934 df-hcau 30935 df-sh 31169 df-ch 31183 df-oc 31214 df-ch0 31215 df-shs 31270 df-pjh 31357 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |