HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjimai Structured version   Visualization version   GIF version

Theorem pjimai 32204
Description: The image of a projection. Lemma 5 in Daniel Lehmann, "A presentation of Quantum Logic based on an and then connective", https://doi.org/10.48550/arXiv.quant-ph/0701113. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjima.1 𝐴S
pjima.2 𝐵C
Assertion
Ref Expression
pjimai ((proj𝐵) “ 𝐴) = ((𝐴 + (⊥‘𝐵)) ∩ 𝐵)

Proof of Theorem pjimai
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjima.2 . . . . . . . . 9 𝐵C
2 pjima.1 . . . . . . . . . 10 𝐴S
32sheli 31242 . . . . . . . . 9 (𝑣𝐴𝑣 ∈ ℋ)
4 pjeq 31427 . . . . . . . . 9 ((𝐵C𝑣 ∈ ℋ) → (((proj𝐵)‘𝑣) = 𝑢 ↔ (𝑢𝐵 ∧ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 + 𝑤))))
51, 3, 4sylancr 587 . . . . . . . 8 (𝑣𝐴 → (((proj𝐵)‘𝑣) = 𝑢 ↔ (𝑢𝐵 ∧ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 + 𝑤))))
6 ibar 528 . . . . . . . . 9 (𝑢𝐵 → (∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 + 𝑤) ↔ (𝑢𝐵 ∧ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 + 𝑤))))
76bicomd 223 . . . . . . . 8 (𝑢𝐵 → ((𝑢𝐵 ∧ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 + 𝑤)) ↔ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 + 𝑤)))
85, 7sylan9bbr 510 . . . . . . 7 ((𝑢𝐵𝑣𝐴) → (((proj𝐵)‘𝑣) = 𝑢 ↔ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 + 𝑤)))
91cheli 31260 . . . . . . . . . . 11 (𝑢𝐵𝑢 ∈ ℋ)
101choccli 31335 . . . . . . . . . . . 12 (⊥‘𝐵) ∈ C
1110cheli 31260 . . . . . . . . . . 11 (𝑤 ∈ (⊥‘𝐵) → 𝑤 ∈ ℋ)
12 hvsubadd 31105 . . . . . . . . . . . . 13 ((𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑣 𝑤) = 𝑢 ↔ (𝑤 + 𝑢) = 𝑣))
13123comr 1124 . . . . . . . . . . . 12 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑣 𝑤) = 𝑢 ↔ (𝑤 + 𝑢) = 𝑣))
14 ax-hvcom 31029 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑢 + 𝑤) = (𝑤 + 𝑢))
15143adant2 1130 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑢 + 𝑤) = (𝑤 + 𝑢))
1615eqeq1d 2736 . . . . . . . . . . . 12 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑢 + 𝑤) = 𝑣 ↔ (𝑤 + 𝑢) = 𝑣))
1713, 16bitr4d 282 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑣 𝑤) = 𝑢 ↔ (𝑢 + 𝑤) = 𝑣))
189, 3, 11, 17syl3an 1159 . . . . . . . . . 10 ((𝑢𝐵𝑣𝐴𝑤 ∈ (⊥‘𝐵)) → ((𝑣 𝑤) = 𝑢 ↔ (𝑢 + 𝑤) = 𝑣))
19 eqcom 2741 . . . . . . . . . 10 (𝑢 = (𝑣 𝑤) ↔ (𝑣 𝑤) = 𝑢)
20 eqcom 2741 . . . . . . . . . 10 (𝑣 = (𝑢 + 𝑤) ↔ (𝑢 + 𝑤) = 𝑣)
2118, 19, 203bitr4g 314 . . . . . . . . 9 ((𝑢𝐵𝑣𝐴𝑤 ∈ (⊥‘𝐵)) → (𝑢 = (𝑣 𝑤) ↔ 𝑣 = (𝑢 + 𝑤)))
22213expa 1117 . . . . . . . 8 (((𝑢𝐵𝑣𝐴) ∧ 𝑤 ∈ (⊥‘𝐵)) → (𝑢 = (𝑣 𝑤) ↔ 𝑣 = (𝑢 + 𝑤)))
2322rexbidva 3174 . . . . . . 7 ((𝑢𝐵𝑣𝐴) → (∃𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 𝑤) ↔ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 + 𝑤)))
248, 23bitr4d 282 . . . . . 6 ((𝑢𝐵𝑣𝐴) → (((proj𝐵)‘𝑣) = 𝑢 ↔ ∃𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 𝑤)))
2524rexbidva 3174 . . . . 5 (𝑢𝐵 → (∃𝑣𝐴 ((proj𝐵)‘𝑣) = 𝑢 ↔ ∃𝑣𝐴𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 𝑤)))
261pjfni 31729 . . . . . 6 (proj𝐵) Fn ℋ
272shssii 31241 . . . . . 6 𝐴 ⊆ ℋ
28 fvelimab 6980 . . . . . 6 (((proj𝐵) Fn ℋ ∧ 𝐴 ⊆ ℋ) → (𝑢 ∈ ((proj𝐵) “ 𝐴) ↔ ∃𝑣𝐴 ((proj𝐵)‘𝑣) = 𝑢))
2926, 27, 28mp2an 692 . . . . 5 (𝑢 ∈ ((proj𝐵) “ 𝐴) ↔ ∃𝑣𝐴 ((proj𝐵)‘𝑣) = 𝑢)
3010chshii 31255 . . . . . 6 (⊥‘𝐵) ∈ S
31 shsel3 31343 . . . . . 6 ((𝐴S ∧ (⊥‘𝐵) ∈ S ) → (𝑢 ∈ (𝐴 + (⊥‘𝐵)) ↔ ∃𝑣𝐴𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 𝑤)))
322, 30, 31mp2an 692 . . . . 5 (𝑢 ∈ (𝐴 + (⊥‘𝐵)) ↔ ∃𝑣𝐴𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 𝑤))
3325, 29, 323bitr4g 314 . . . 4 (𝑢𝐵 → (𝑢 ∈ ((proj𝐵) “ 𝐴) ↔ 𝑢 ∈ (𝐴 + (⊥‘𝐵))))
3433pm5.32ri 575 . . 3 ((𝑢 ∈ ((proj𝐵) “ 𝐴) ∧ 𝑢𝐵) ↔ (𝑢 ∈ (𝐴 + (⊥‘𝐵)) ∧ 𝑢𝐵))
35 imassrn 6090 . . . . . 6 ((proj𝐵) “ 𝐴) ⊆ ran (proj𝐵)
361pjrni 31730 . . . . . 6 ran (proj𝐵) = 𝐵
3735, 36sseqtri 4031 . . . . 5 ((proj𝐵) “ 𝐴) ⊆ 𝐵
3837sseli 3990 . . . 4 (𝑢 ∈ ((proj𝐵) “ 𝐴) → 𝑢𝐵)
3938pm4.71i 559 . . 3 (𝑢 ∈ ((proj𝐵) “ 𝐴) ↔ (𝑢 ∈ ((proj𝐵) “ 𝐴) ∧ 𝑢𝐵))
40 elin 3978 . . 3 (𝑢 ∈ ((𝐴 + (⊥‘𝐵)) ∩ 𝐵) ↔ (𝑢 ∈ (𝐴 + (⊥‘𝐵)) ∧ 𝑢𝐵))
4134, 39, 403bitr4i 303 . 2 (𝑢 ∈ ((proj𝐵) “ 𝐴) ↔ 𝑢 ∈ ((𝐴 + (⊥‘𝐵)) ∩ 𝐵))
4241eqriv 2731 1 ((proj𝐵) “ 𝐴) = ((𝐴 + (⊥‘𝐵)) ∩ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wrex 3067  cin 3961  wss 3962  ran crn 5689  cima 5691   Fn wfn 6557  cfv 6562  (class class class)co 7430  chba 30947   + cva 30948   cmv 30953   S csh 30956   C cch 30957  cort 30958   + cph 30959  projcpjh 30965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232  ax-hilex 31027  ax-hfvadd 31028  ax-hvcom 31029  ax-hvass 31030  ax-hv0cl 31031  ax-hvaddid 31032  ax-hfvmul 31033  ax-hvmulid 31034  ax-hvmulass 31035  ax-hvdistr1 31036  ax-hvdistr2 31037  ax-hvmul0 31038  ax-hfi 31107  ax-his1 31110  ax-his2 31111  ax-his3 31112  ax-his4 31113  ax-hcompl 31230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-cn 23250  df-cnp 23251  df-lm 23252  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cfil 25302  df-cau 25303  df-cmet 25304  df-grpo 30521  df-gid 30522  df-ginv 30523  df-gdiv 30524  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-vs 30627  df-nmcv 30628  df-ims 30629  df-dip 30729  df-ssp 30750  df-ph 30841  df-cbn 30891  df-hnorm 30996  df-hba 30997  df-hvsub 30999  df-hlim 31000  df-hcau 31001  df-sh 31235  df-ch 31249  df-oc 31280  df-ch0 31281  df-shs 31336  df-pjh 31423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator