![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjimai | Structured version Visualization version GIF version |
Description: The image of a projection. Lemma 5 in Daniel Lehmann, "A presentation of Quantum Logic based on an and then connective", https://doi.org/10.48550/arXiv.quant-ph/0701113. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjima.1 | ⊢ 𝐴 ∈ Sℋ |
pjima.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
pjimai | ⊢ ((projℎ‘𝐵) “ 𝐴) = ((𝐴 +ℋ (⊥‘𝐵)) ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjima.2 | . . . . . . . . 9 ⊢ 𝐵 ∈ Cℋ | |
2 | pjima.1 | . . . . . . . . . 10 ⊢ 𝐴 ∈ Sℋ | |
3 | 2 | sheli 30972 | . . . . . . . . 9 ⊢ (𝑣 ∈ 𝐴 → 𝑣 ∈ ℋ) |
4 | pjeq 31157 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝑣 ∈ ℋ) → (((projℎ‘𝐵)‘𝑣) = 𝑢 ↔ (𝑢 ∈ 𝐵 ∧ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤)))) | |
5 | 1, 3, 4 | sylancr 586 | . . . . . . . 8 ⊢ (𝑣 ∈ 𝐴 → (((projℎ‘𝐵)‘𝑣) = 𝑢 ↔ (𝑢 ∈ 𝐵 ∧ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤)))) |
6 | ibar 528 | . . . . . . . . 9 ⊢ (𝑢 ∈ 𝐵 → (∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤) ↔ (𝑢 ∈ 𝐵 ∧ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤)))) | |
7 | 6 | bicomd 222 | . . . . . . . 8 ⊢ (𝑢 ∈ 𝐵 → ((𝑢 ∈ 𝐵 ∧ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤)) ↔ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤))) |
8 | 5, 7 | sylan9bbr 510 | . . . . . . 7 ⊢ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴) → (((projℎ‘𝐵)‘𝑣) = 𝑢 ↔ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤))) |
9 | 1 | cheli 30990 | . . . . . . . . . . 11 ⊢ (𝑢 ∈ 𝐵 → 𝑢 ∈ ℋ) |
10 | 1 | choccli 31065 | . . . . . . . . . . . 12 ⊢ (⊥‘𝐵) ∈ Cℋ |
11 | 10 | cheli 30990 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ (⊥‘𝐵) → 𝑤 ∈ ℋ) |
12 | hvsubadd 30835 | . . . . . . . . . . . . 13 ⊢ ((𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑣 −ℎ 𝑤) = 𝑢 ↔ (𝑤 +ℎ 𝑢) = 𝑣)) | |
13 | 12 | 3comr 1122 | . . . . . . . . . . . 12 ⊢ ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑣 −ℎ 𝑤) = 𝑢 ↔ (𝑤 +ℎ 𝑢) = 𝑣)) |
14 | ax-hvcom 30759 | . . . . . . . . . . . . . 14 ⊢ ((𝑢 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑢 +ℎ 𝑤) = (𝑤 +ℎ 𝑢)) | |
15 | 14 | 3adant2 1128 | . . . . . . . . . . . . 13 ⊢ ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑢 +ℎ 𝑤) = (𝑤 +ℎ 𝑢)) |
16 | 15 | eqeq1d 2728 | . . . . . . . . . . . 12 ⊢ ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑢 +ℎ 𝑤) = 𝑣 ↔ (𝑤 +ℎ 𝑢) = 𝑣)) |
17 | 13, 16 | bitr4d 282 | . . . . . . . . . . 11 ⊢ ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑣 −ℎ 𝑤) = 𝑢 ↔ (𝑢 +ℎ 𝑤) = 𝑣)) |
18 | 9, 3, 11, 17 | syl3an 1157 | . . . . . . . . . 10 ⊢ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ (⊥‘𝐵)) → ((𝑣 −ℎ 𝑤) = 𝑢 ↔ (𝑢 +ℎ 𝑤) = 𝑣)) |
19 | eqcom 2733 | . . . . . . . . . 10 ⊢ (𝑢 = (𝑣 −ℎ 𝑤) ↔ (𝑣 −ℎ 𝑤) = 𝑢) | |
20 | eqcom 2733 | . . . . . . . . . 10 ⊢ (𝑣 = (𝑢 +ℎ 𝑤) ↔ (𝑢 +ℎ 𝑤) = 𝑣) | |
21 | 18, 19, 20 | 3bitr4g 314 | . . . . . . . . 9 ⊢ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ (⊥‘𝐵)) → (𝑢 = (𝑣 −ℎ 𝑤) ↔ 𝑣 = (𝑢 +ℎ 𝑤))) |
22 | 21 | 3expa 1115 | . . . . . . . 8 ⊢ (((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑤 ∈ (⊥‘𝐵)) → (𝑢 = (𝑣 −ℎ 𝑤) ↔ 𝑣 = (𝑢 +ℎ 𝑤))) |
23 | 22 | rexbidva 3170 | . . . . . . 7 ⊢ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 −ℎ 𝑤) ↔ ∃𝑤 ∈ (⊥‘𝐵)𝑣 = (𝑢 +ℎ 𝑤))) |
24 | 8, 23 | bitr4d 282 | . . . . . 6 ⊢ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐴) → (((projℎ‘𝐵)‘𝑣) = 𝑢 ↔ ∃𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 −ℎ 𝑤))) |
25 | 24 | rexbidva 3170 | . . . . 5 ⊢ (𝑢 ∈ 𝐵 → (∃𝑣 ∈ 𝐴 ((projℎ‘𝐵)‘𝑣) = 𝑢 ↔ ∃𝑣 ∈ 𝐴 ∃𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 −ℎ 𝑤))) |
26 | 1 | pjfni 31459 | . . . . . 6 ⊢ (projℎ‘𝐵) Fn ℋ |
27 | 2 | shssii 30971 | . . . . . 6 ⊢ 𝐴 ⊆ ℋ |
28 | fvelimab 6957 | . . . . . 6 ⊢ (((projℎ‘𝐵) Fn ℋ ∧ 𝐴 ⊆ ℋ) → (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ↔ ∃𝑣 ∈ 𝐴 ((projℎ‘𝐵)‘𝑣) = 𝑢)) | |
29 | 26, 27, 28 | mp2an 689 | . . . . 5 ⊢ (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ↔ ∃𝑣 ∈ 𝐴 ((projℎ‘𝐵)‘𝑣) = 𝑢) |
30 | 10 | chshii 30985 | . . . . . 6 ⊢ (⊥‘𝐵) ∈ Sℋ |
31 | shsel3 31073 | . . . . . 6 ⊢ ((𝐴 ∈ Sℋ ∧ (⊥‘𝐵) ∈ Sℋ ) → (𝑢 ∈ (𝐴 +ℋ (⊥‘𝐵)) ↔ ∃𝑣 ∈ 𝐴 ∃𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 −ℎ 𝑤))) | |
32 | 2, 30, 31 | mp2an 689 | . . . . 5 ⊢ (𝑢 ∈ (𝐴 +ℋ (⊥‘𝐵)) ↔ ∃𝑣 ∈ 𝐴 ∃𝑤 ∈ (⊥‘𝐵)𝑢 = (𝑣 −ℎ 𝑤)) |
33 | 25, 29, 32 | 3bitr4g 314 | . . . 4 ⊢ (𝑢 ∈ 𝐵 → (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ↔ 𝑢 ∈ (𝐴 +ℋ (⊥‘𝐵)))) |
34 | 33 | pm5.32ri 575 | . . 3 ⊢ ((𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ∧ 𝑢 ∈ 𝐵) ↔ (𝑢 ∈ (𝐴 +ℋ (⊥‘𝐵)) ∧ 𝑢 ∈ 𝐵)) |
35 | imassrn 6063 | . . . . . 6 ⊢ ((projℎ‘𝐵) “ 𝐴) ⊆ ran (projℎ‘𝐵) | |
36 | 1 | pjrni 31460 | . . . . . 6 ⊢ ran (projℎ‘𝐵) = 𝐵 |
37 | 35, 36 | sseqtri 4013 | . . . . 5 ⊢ ((projℎ‘𝐵) “ 𝐴) ⊆ 𝐵 |
38 | 37 | sseli 3973 | . . . 4 ⊢ (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) → 𝑢 ∈ 𝐵) |
39 | 38 | pm4.71i 559 | . . 3 ⊢ (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ↔ (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ∧ 𝑢 ∈ 𝐵)) |
40 | elin 3959 | . . 3 ⊢ (𝑢 ∈ ((𝐴 +ℋ (⊥‘𝐵)) ∩ 𝐵) ↔ (𝑢 ∈ (𝐴 +ℋ (⊥‘𝐵)) ∧ 𝑢 ∈ 𝐵)) | |
41 | 34, 39, 40 | 3bitr4i 303 | . 2 ⊢ (𝑢 ∈ ((projℎ‘𝐵) “ 𝐴) ↔ 𝑢 ∈ ((𝐴 +ℋ (⊥‘𝐵)) ∩ 𝐵)) |
42 | 41 | eqriv 2723 | 1 ⊢ ((projℎ‘𝐵) “ 𝐴) = ((𝐴 +ℋ (⊥‘𝐵)) ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 ∩ cin 3942 ⊆ wss 3943 ran crn 5670 “ cima 5672 Fn wfn 6531 ‘cfv 6536 (class class class)co 7404 ℋchba 30677 +ℎ cva 30678 −ℎ cmv 30683 Sℋ csh 30686 Cℋ cch 30687 ⊥cort 30688 +ℋ cph 30689 projℎcpjh 30695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cc 10429 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 ax-hilex 30757 ax-hfvadd 30758 ax-hvcom 30759 ax-hvass 30760 ax-hv0cl 30761 ax-hvaddid 30762 ax-hfvmul 30763 ax-hvmulid 30764 ax-hvmulass 30765 ax-hvdistr1 30766 ax-hvdistr2 30767 ax-hvmul0 30768 ax-hfi 30837 ax-his1 30840 ax-his2 30841 ax-his3 30842 ax-his4 30843 ax-hcompl 30960 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-oadd 8468 df-omul 8469 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-acn 9936 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-seq 13970 df-exp 14031 df-hash 14294 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19231 df-cmn 19700 df-psmet 21228 df-xmet 21229 df-met 21230 df-bl 21231 df-mopn 21232 df-fbas 21233 df-fg 21234 df-cnfld 21237 df-top 22747 df-topon 22764 df-topsp 22786 df-bases 22800 df-cld 22874 df-ntr 22875 df-cls 22876 df-nei 22953 df-cn 23082 df-cnp 23083 df-lm 23084 df-haus 23170 df-tx 23417 df-hmeo 23610 df-fil 23701 df-fm 23793 df-flim 23794 df-flf 23795 df-xms 24177 df-ms 24178 df-tms 24179 df-cfil 25134 df-cau 25135 df-cmet 25136 df-grpo 30251 df-gid 30252 df-ginv 30253 df-gdiv 30254 df-ablo 30303 df-vc 30317 df-nv 30350 df-va 30353 df-ba 30354 df-sm 30355 df-0v 30356 df-vs 30357 df-nmcv 30358 df-ims 30359 df-dip 30459 df-ssp 30480 df-ph 30571 df-cbn 30621 df-hnorm 30726 df-hba 30727 df-hvsub 30729 df-hlim 30730 df-hcau 30731 df-sh 30965 df-ch 30979 df-oc 31010 df-ch0 31011 df-shs 31066 df-pjh 31153 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |