| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | pjpjpre.2 | . . 3
⊢ (𝜑 → 𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻))) | 
| 2 |  | pjpjpre.1 | . . . . 5
⊢ (𝜑 → 𝐻 ∈ Cℋ
) | 
| 3 |  | chsh 31243 | . . . . 5
⊢ (𝐻 ∈
Cℋ → 𝐻 ∈ Sℋ
) | 
| 4 | 2, 3 | syl 17 | . . . 4
⊢ (𝜑 → 𝐻 ∈ Sℋ
) | 
| 5 |  | shocsh 31303 | . . . . 5
⊢ (𝐻 ∈
Sℋ → (⊥‘𝐻) ∈ Sℋ
) | 
| 6 | 4, 5 | syl 17 | . . . 4
⊢ (𝜑 → (⊥‘𝐻) ∈
Sℋ ) | 
| 7 |  | shsel 31333 | . . . 4
⊢ ((𝐻 ∈
Sℋ ∧ (⊥‘𝐻) ∈ Sℋ )
→ (𝐴 ∈ (𝐻 +ℋ
(⊥‘𝐻)) ↔
∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | 
| 8 | 4, 6, 7 | syl2anc 584 | . . 3
⊢ (𝜑 → (𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | 
| 9 | 1, 8 | mpbid 232 | . 2
⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | 
| 10 |  | simprr 773 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝐴 = (𝑥 +ℎ 𝑦)) | 
| 11 |  | simprll 779 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝑥 ∈ 𝐻) | 
| 12 |  | simprlr 780 | . . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝑦 ∈ (⊥‘𝐻)) | 
| 13 |  | rspe 3249 | . . . . . . . 8
⊢ ((𝑦 ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 +ℎ 𝑦)) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | 
| 14 | 12, 10, 13 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) | 
| 15 |  | pjpreeq 31417 | . . . . . . . . 9
⊢ ((𝐻 ∈
Cℋ ∧ 𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻))) →
(((projℎ‘𝐻)‘𝐴) = 𝑥 ↔ (𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)))) | 
| 16 | 2, 1, 15 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 →
(((projℎ‘𝐻)‘𝐴) = 𝑥 ↔ (𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)))) | 
| 17 | 16 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) →
(((projℎ‘𝐻)‘𝐴) = 𝑥 ↔ (𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)))) | 
| 18 | 11, 14, 17 | mpbir2and 713 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) →
((projℎ‘𝐻)‘𝐴) = 𝑥) | 
| 19 |  | shococss 31313 | . . . . . . . . . . 11
⊢ (𝐻 ∈
Sℋ → 𝐻 ⊆ (⊥‘(⊥‘𝐻))) | 
| 20 | 4, 19 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝐻 ⊆ (⊥‘(⊥‘𝐻))) | 
| 21 | 20 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝐻 ⊆ (⊥‘(⊥‘𝐻))) | 
| 22 | 21, 11 | sseldd 3984 | . . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝑥 ∈ (⊥‘(⊥‘𝐻))) | 
| 23 | 2 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝐻 ∈ Cℋ
) | 
| 24 | 23, 3 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝐻 ∈ Sℋ
) | 
| 25 |  | shel 31230 | . . . . . . . . . . 11
⊢ ((𝐻 ∈
Sℋ ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ ℋ) | 
| 26 | 24, 11, 25 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝑥 ∈ ℋ) | 
| 27 | 24, 5 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → (⊥‘𝐻) ∈ Sℋ
) | 
| 28 |  | shel 31230 | . . . . . . . . . . 11
⊢
(((⊥‘𝐻)
∈ Sℋ ∧ 𝑦 ∈ (⊥‘𝐻)) → 𝑦 ∈ ℋ) | 
| 29 | 27, 12, 28 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝑦 ∈ ℋ) | 
| 30 |  | ax-hvcom 31020 | . . . . . . . . . 10
⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) | 
| 31 | 26, 29, 30 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) | 
| 32 | 10, 31 | eqtrd 2777 | . . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝐴 = (𝑦 +ℎ 𝑥)) | 
| 33 |  | rspe 3249 | . . . . . . . 8
⊢ ((𝑥 ∈
(⊥‘(⊥‘𝐻)) ∧ 𝐴 = (𝑦 +ℎ 𝑥)) → ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 +ℎ 𝑥)) | 
| 34 | 22, 32, 33 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 +ℎ 𝑥)) | 
| 35 |  | choccl 31325 | . . . . . . . . . 10
⊢ (𝐻 ∈
Cℋ → (⊥‘𝐻) ∈ Cℋ
) | 
| 36 | 2, 35 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (⊥‘𝐻) ∈
Cℋ ) | 
| 37 |  | shocsh 31303 | . . . . . . . . . . . . 13
⊢
((⊥‘𝐻)
∈ Sℋ →
(⊥‘(⊥‘𝐻)) ∈ Sℋ
) | 
| 38 | 6, 37 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 →
(⊥‘(⊥‘𝐻)) ∈ Sℋ
) | 
| 39 |  | shless 31378 | . . . . . . . . . . . 12
⊢ (((𝐻 ∈
Sℋ ∧ (⊥‘(⊥‘𝐻)) ∈
Sℋ ∧ (⊥‘𝐻) ∈ Sℋ )
∧ 𝐻 ⊆
(⊥‘(⊥‘𝐻))) → (𝐻 +ℋ (⊥‘𝐻)) ⊆
((⊥‘(⊥‘𝐻)) +ℋ (⊥‘𝐻))) | 
| 40 | 4, 38, 6, 20, 39 | syl31anc 1375 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐻 +ℋ (⊥‘𝐻)) ⊆
((⊥‘(⊥‘𝐻)) +ℋ (⊥‘𝐻))) | 
| 41 |  | shscom 31338 | . . . . . . . . . . . 12
⊢
(((⊥‘𝐻)
∈ Sℋ ∧
(⊥‘(⊥‘𝐻)) ∈ Sℋ
) → ((⊥‘𝐻)
+ℋ (⊥‘(⊥‘𝐻))) = ((⊥‘(⊥‘𝐻)) +ℋ
(⊥‘𝐻))) | 
| 42 | 6, 38, 41 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → ((⊥‘𝐻) +ℋ
(⊥‘(⊥‘𝐻))) = ((⊥‘(⊥‘𝐻)) +ℋ
(⊥‘𝐻))) | 
| 43 | 40, 42 | sseqtrrd 4021 | . . . . . . . . . 10
⊢ (𝜑 → (𝐻 +ℋ (⊥‘𝐻)) ⊆ ((⊥‘𝐻) +ℋ
(⊥‘(⊥‘𝐻)))) | 
| 44 | 43, 1 | sseldd 3984 | . . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ((⊥‘𝐻) +ℋ
(⊥‘(⊥‘𝐻)))) | 
| 45 |  | pjpreeq 31417 | . . . . . . . . 9
⊢
(((⊥‘𝐻)
∈ Cℋ ∧ 𝐴 ∈ ((⊥‘𝐻) +ℋ
(⊥‘(⊥‘𝐻)))) →
(((projℎ‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 +ℎ 𝑥)))) | 
| 46 | 36, 44, 45 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 →
(((projℎ‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 +ℎ 𝑥)))) | 
| 47 | 46 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) →
(((projℎ‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 +ℎ 𝑥)))) | 
| 48 | 12, 34, 47 | mpbir2and 713 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) →
((projℎ‘(⊥‘𝐻))‘𝐴) = 𝑦) | 
| 49 | 18, 48 | oveq12d 7449 | . . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) →
(((projℎ‘𝐻)‘𝐴) +ℎ
((projℎ‘(⊥‘𝐻))‘𝐴)) = (𝑥 +ℎ 𝑦)) | 
| 50 | 10, 49 | eqtr4d 2780 | . . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ
((projℎ‘(⊥‘𝐻))‘𝐴))) | 
| 51 | 50 | exp32 420 | . . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) → (𝐴 = (𝑥 +ℎ 𝑦) → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ
((projℎ‘(⊥‘𝐻))‘𝐴))))) | 
| 52 | 51 | rexlimdvv 3212 | . 2
⊢ (𝜑 → (∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ
((projℎ‘(⊥‘𝐻))‘𝐴)))) | 
| 53 | 9, 52 | mpd 15 | 1
⊢ (𝜑 → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ
((projℎ‘(⊥‘𝐻))‘𝐴))) |