HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjpjpre Structured version   Visualization version   GIF version

Theorem pjpjpre 30672
Description: Decomposition of a vector into projections. This formulation of axpjpj 30673 avoids pjhth 30646. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjpjpre.1 (𝜑𝐻C )
pjpjpre.2 (𝜑𝐴 ∈ (𝐻 + (⊥‘𝐻)))
Assertion
Ref Expression
pjpjpre (𝜑𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)))

Proof of Theorem pjpjpre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjpjpre.2 . . 3 (𝜑𝐴 ∈ (𝐻 + (⊥‘𝐻)))
2 pjpjpre.1 . . . . 5 (𝜑𝐻C )
3 chsh 30477 . . . . 5 (𝐻C𝐻S )
42, 3syl 17 . . . 4 (𝜑𝐻S )
5 shocsh 30537 . . . . 5 (𝐻S → (⊥‘𝐻) ∈ S )
64, 5syl 17 . . . 4 (𝜑 → (⊥‘𝐻) ∈ S )
7 shsel 30567 . . . 4 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
84, 6, 7syl2anc 585 . . 3 (𝜑 → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
91, 8mpbid 231 . 2 (𝜑 → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
10 simprr 772 . . . . 5 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐴 = (𝑥 + 𝑦))
11 simprll 778 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑥𝐻)
12 simprlr 779 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑦 ∈ (⊥‘𝐻))
13 rspe 3247 . . . . . . . 8 ((𝑦 ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 + 𝑦)) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
1412, 10, 13syl2anc 585 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
15 pjpreeq 30651 . . . . . . . . 9 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝑥 ↔ (𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
162, 1, 15syl2anc 585 . . . . . . . 8 (𝜑 → (((proj𝐻)‘𝐴) = 𝑥 ↔ (𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
1716adantr 482 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (((proj𝐻)‘𝐴) = 𝑥 ↔ (𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
1811, 14, 17mpbir2and 712 . . . . . 6 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → ((proj𝐻)‘𝐴) = 𝑥)
19 shococss 30547 . . . . . . . . . . 11 (𝐻S𝐻 ⊆ (⊥‘(⊥‘𝐻)))
204, 19syl 17 . . . . . . . . . 10 (𝜑𝐻 ⊆ (⊥‘(⊥‘𝐻)))
2120adantr 482 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐻 ⊆ (⊥‘(⊥‘𝐻)))
2221, 11sseldd 3984 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑥 ∈ (⊥‘(⊥‘𝐻)))
232adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐻C )
2423, 3syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐻S )
25 shel 30464 . . . . . . . . . . 11 ((𝐻S𝑥𝐻) → 𝑥 ∈ ℋ)
2624, 11, 25syl2anc 585 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑥 ∈ ℋ)
2724, 5syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (⊥‘𝐻) ∈ S )
28 shel 30464 . . . . . . . . . . 11 (((⊥‘𝐻) ∈ S𝑦 ∈ (⊥‘𝐻)) → 𝑦 ∈ ℋ)
2927, 12, 28syl2anc 585 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑦 ∈ ℋ)
30 ax-hvcom 30254 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3126, 29, 30syl2anc 585 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3210, 31eqtrd 2773 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐴 = (𝑦 + 𝑥))
33 rspe 3247 . . . . . . . 8 ((𝑥 ∈ (⊥‘(⊥‘𝐻)) ∧ 𝐴 = (𝑦 + 𝑥)) → ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))
3422, 32, 33syl2anc 585 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))
35 choccl 30559 . . . . . . . . . 10 (𝐻C → (⊥‘𝐻) ∈ C )
362, 35syl 17 . . . . . . . . 9 (𝜑 → (⊥‘𝐻) ∈ C )
37 shocsh 30537 . . . . . . . . . . . . 13 ((⊥‘𝐻) ∈ S → (⊥‘(⊥‘𝐻)) ∈ S )
386, 37syl 17 . . . . . . . . . . . 12 (𝜑 → (⊥‘(⊥‘𝐻)) ∈ S )
39 shless 30612 . . . . . . . . . . . 12 (((𝐻S ∧ (⊥‘(⊥‘𝐻)) ∈ S ∧ (⊥‘𝐻) ∈ S ) ∧ 𝐻 ⊆ (⊥‘(⊥‘𝐻))) → (𝐻 + (⊥‘𝐻)) ⊆ ((⊥‘(⊥‘𝐻)) + (⊥‘𝐻)))
404, 38, 6, 20, 39syl31anc 1374 . . . . . . . . . . 11 (𝜑 → (𝐻 + (⊥‘𝐻)) ⊆ ((⊥‘(⊥‘𝐻)) + (⊥‘𝐻)))
41 shscom 30572 . . . . . . . . . . . 12 (((⊥‘𝐻) ∈ S ∧ (⊥‘(⊥‘𝐻)) ∈ S ) → ((⊥‘𝐻) + (⊥‘(⊥‘𝐻))) = ((⊥‘(⊥‘𝐻)) + (⊥‘𝐻)))
426, 38, 41syl2anc 585 . . . . . . . . . . 11 (𝜑 → ((⊥‘𝐻) + (⊥‘(⊥‘𝐻))) = ((⊥‘(⊥‘𝐻)) + (⊥‘𝐻)))
4340, 42sseqtrrd 4024 . . . . . . . . . 10 (𝜑 → (𝐻 + (⊥‘𝐻)) ⊆ ((⊥‘𝐻) + (⊥‘(⊥‘𝐻))))
4443, 1sseldd 3984 . . . . . . . . 9 (𝜑𝐴 ∈ ((⊥‘𝐻) + (⊥‘(⊥‘𝐻))))
45 pjpreeq 30651 . . . . . . . . 9 (((⊥‘𝐻) ∈ C𝐴 ∈ ((⊥‘𝐻) + (⊥‘(⊥‘𝐻)))) → (((proj‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))))
4636, 44, 45syl2anc 585 . . . . . . . 8 (𝜑 → (((proj‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))))
4746adantr 482 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (((proj‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))))
4812, 34, 47mpbir2and 712 . . . . . 6 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → ((proj‘(⊥‘𝐻))‘𝐴) = 𝑦)
4918, 48oveq12d 7427 . . . . 5 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)) = (𝑥 + 𝑦))
5010, 49eqtr4d 2776 . . . 4 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)))
5150exp32 422 . . 3 (𝜑 → ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) → (𝐴 = (𝑥 + 𝑦) → 𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)))))
5251rexlimdvv 3211 . 2 (𝜑 → (∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) → 𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴))))
539, 52mpd 15 1 (𝜑𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wrex 3071  wss 3949  cfv 6544  (class class class)co 7409  chba 30172   + cva 30173   S csh 30181   C cch 30182  cort 30183   + cph 30184  projcpjh 30190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190  ax-hilex 30252  ax-hfvadd 30253  ax-hvcom 30254  ax-hvass 30255  ax-hv0cl 30256  ax-hvaddid 30257  ax-hfvmul 30258  ax-hvmulid 30259  ax-hvmulass 30260  ax-hvdistr1 30261  ax-hvdistr2 30262  ax-hvmul0 30263  ax-hfi 30332  ax-his1 30335  ax-his2 30336  ax-his3 30337  ax-his4 30338  ax-hcompl 30455
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-icc 13331  df-fz 13485  df-fzo 13628  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-mulg 18951  df-cntz 19181  df-cmn 19650  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cn 22731  df-cnp 22732  df-lm 22733  df-haus 22819  df-tx 23066  df-hmeo 23259  df-xms 23826  df-ms 23827  df-tms 23828  df-cau 24773  df-grpo 29746  df-gid 29747  df-ginv 29748  df-gdiv 29749  df-ablo 29798  df-vc 29812  df-nv 29845  df-va 29848  df-ba 29849  df-sm 29850  df-0v 29851  df-vs 29852  df-nmcv 29853  df-ims 29854  df-dip 29954  df-hnorm 30221  df-hvsub 30224  df-hlim 30225  df-hcau 30226  df-sh 30460  df-ch 30474  df-oc 30505  df-ch0 30506  df-shs 30561  df-pjh 30648
This theorem is referenced by:  axpjpj  30673
  Copyright terms: Public domain W3C validator