HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjpjpre Structured version   Visualization version   GIF version

Theorem pjpjpre 30361
Description: Decomposition of a vector into projections. This formulation of axpjpj 30362 avoids pjhth 30335. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjpjpre.1 (𝜑𝐻C )
pjpjpre.2 (𝜑𝐴 ∈ (𝐻 + (⊥‘𝐻)))
Assertion
Ref Expression
pjpjpre (𝜑𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)))

Proof of Theorem pjpjpre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjpjpre.2 . . 3 (𝜑𝐴 ∈ (𝐻 + (⊥‘𝐻)))
2 pjpjpre.1 . . . . 5 (𝜑𝐻C )
3 chsh 30166 . . . . 5 (𝐻C𝐻S )
42, 3syl 17 . . . 4 (𝜑𝐻S )
5 shocsh 30226 . . . . 5 (𝐻S → (⊥‘𝐻) ∈ S )
64, 5syl 17 . . . 4 (𝜑 → (⊥‘𝐻) ∈ S )
7 shsel 30256 . . . 4 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
84, 6, 7syl2anc 584 . . 3 (𝜑 → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
91, 8mpbid 231 . 2 (𝜑 → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
10 simprr 771 . . . . 5 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐴 = (𝑥 + 𝑦))
11 simprll 777 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑥𝐻)
12 simprlr 778 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑦 ∈ (⊥‘𝐻))
13 rspe 3232 . . . . . . . 8 ((𝑦 ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 + 𝑦)) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
1412, 10, 13syl2anc 584 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
15 pjpreeq 30340 . . . . . . . . 9 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝑥 ↔ (𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
162, 1, 15syl2anc 584 . . . . . . . 8 (𝜑 → (((proj𝐻)‘𝐴) = 𝑥 ↔ (𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
1716adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (((proj𝐻)‘𝐴) = 𝑥 ↔ (𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
1811, 14, 17mpbir2and 711 . . . . . 6 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → ((proj𝐻)‘𝐴) = 𝑥)
19 shococss 30236 . . . . . . . . . . 11 (𝐻S𝐻 ⊆ (⊥‘(⊥‘𝐻)))
204, 19syl 17 . . . . . . . . . 10 (𝜑𝐻 ⊆ (⊥‘(⊥‘𝐻)))
2120adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐻 ⊆ (⊥‘(⊥‘𝐻)))
2221, 11sseldd 3945 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑥 ∈ (⊥‘(⊥‘𝐻)))
232adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐻C )
2423, 3syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐻S )
25 shel 30153 . . . . . . . . . . 11 ((𝐻S𝑥𝐻) → 𝑥 ∈ ℋ)
2624, 11, 25syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑥 ∈ ℋ)
2724, 5syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (⊥‘𝐻) ∈ S )
28 shel 30153 . . . . . . . . . . 11 (((⊥‘𝐻) ∈ S𝑦 ∈ (⊥‘𝐻)) → 𝑦 ∈ ℋ)
2927, 12, 28syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑦 ∈ ℋ)
30 ax-hvcom 29943 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3126, 29, 30syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3210, 31eqtrd 2776 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐴 = (𝑦 + 𝑥))
33 rspe 3232 . . . . . . . 8 ((𝑥 ∈ (⊥‘(⊥‘𝐻)) ∧ 𝐴 = (𝑦 + 𝑥)) → ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))
3422, 32, 33syl2anc 584 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))
35 choccl 30248 . . . . . . . . . 10 (𝐻C → (⊥‘𝐻) ∈ C )
362, 35syl 17 . . . . . . . . 9 (𝜑 → (⊥‘𝐻) ∈ C )
37 shocsh 30226 . . . . . . . . . . . . 13 ((⊥‘𝐻) ∈ S → (⊥‘(⊥‘𝐻)) ∈ S )
386, 37syl 17 . . . . . . . . . . . 12 (𝜑 → (⊥‘(⊥‘𝐻)) ∈ S )
39 shless 30301 . . . . . . . . . . . 12 (((𝐻S ∧ (⊥‘(⊥‘𝐻)) ∈ S ∧ (⊥‘𝐻) ∈ S ) ∧ 𝐻 ⊆ (⊥‘(⊥‘𝐻))) → (𝐻 + (⊥‘𝐻)) ⊆ ((⊥‘(⊥‘𝐻)) + (⊥‘𝐻)))
404, 38, 6, 20, 39syl31anc 1373 . . . . . . . . . . 11 (𝜑 → (𝐻 + (⊥‘𝐻)) ⊆ ((⊥‘(⊥‘𝐻)) + (⊥‘𝐻)))
41 shscom 30261 . . . . . . . . . . . 12 (((⊥‘𝐻) ∈ S ∧ (⊥‘(⊥‘𝐻)) ∈ S ) → ((⊥‘𝐻) + (⊥‘(⊥‘𝐻))) = ((⊥‘(⊥‘𝐻)) + (⊥‘𝐻)))
426, 38, 41syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((⊥‘𝐻) + (⊥‘(⊥‘𝐻))) = ((⊥‘(⊥‘𝐻)) + (⊥‘𝐻)))
4340, 42sseqtrrd 3985 . . . . . . . . . 10 (𝜑 → (𝐻 + (⊥‘𝐻)) ⊆ ((⊥‘𝐻) + (⊥‘(⊥‘𝐻))))
4443, 1sseldd 3945 . . . . . . . . 9 (𝜑𝐴 ∈ ((⊥‘𝐻) + (⊥‘(⊥‘𝐻))))
45 pjpreeq 30340 . . . . . . . . 9 (((⊥‘𝐻) ∈ C𝐴 ∈ ((⊥‘𝐻) + (⊥‘(⊥‘𝐻)))) → (((proj‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))))
4636, 44, 45syl2anc 584 . . . . . . . 8 (𝜑 → (((proj‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))))
4746adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (((proj‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))))
4812, 34, 47mpbir2and 711 . . . . . 6 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → ((proj‘(⊥‘𝐻))‘𝐴) = 𝑦)
4918, 48oveq12d 7375 . . . . 5 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)) = (𝑥 + 𝑦))
5010, 49eqtr4d 2779 . . . 4 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)))
5150exp32 421 . . 3 (𝜑 → ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) → (𝐴 = (𝑥 + 𝑦) → 𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)))))
5251rexlimdvv 3204 . 2 (𝜑 → (∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) → 𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴))))
539, 52mpd 15 1 (𝜑𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  wss 3910  cfv 6496  (class class class)co 7357  chba 29861   + cva 29862   S csh 29870   C cch 29871  cort 29872   + cph 29873  projcpjh 29879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his2 30025  ax-his3 30026  ax-his4 30027  ax-hcompl 30144
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-lm 22580  df-haus 22666  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-cau 24620  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-dip 29643  df-hnorm 29910  df-hvsub 29913  df-hlim 29914  df-hcau 29915  df-sh 30149  df-ch 30163  df-oc 30194  df-ch0 30195  df-shs 30250  df-pjh 30337
This theorem is referenced by:  axpjpj  30362
  Copyright terms: Public domain W3C validator