| Step | Hyp | Ref
| Expression |
| 1 | | pjpjpre.2 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻))) |
| 2 | | pjpjpre.1 |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ Cℋ
) |
| 3 | | chsh 31210 |
. . . . 5
⊢ (𝐻 ∈
Cℋ → 𝐻 ∈ Sℋ
) |
| 4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ Sℋ
) |
| 5 | | shocsh 31270 |
. . . . 5
⊢ (𝐻 ∈
Sℋ → (⊥‘𝐻) ∈ Sℋ
) |
| 6 | 4, 5 | syl 17 |
. . . 4
⊢ (𝜑 → (⊥‘𝐻) ∈
Sℋ ) |
| 7 | | shsel 31300 |
. . . 4
⊢ ((𝐻 ∈
Sℋ ∧ (⊥‘𝐻) ∈ Sℋ )
→ (𝐴 ∈ (𝐻 +ℋ
(⊥‘𝐻)) ↔
∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
| 8 | 4, 6, 7 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
| 9 | 1, 8 | mpbid 232 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| 10 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝐴 = (𝑥 +ℎ 𝑦)) |
| 11 | | simprll 778 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝑥 ∈ 𝐻) |
| 12 | | simprlr 779 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝑦 ∈ (⊥‘𝐻)) |
| 13 | | rspe 3236 |
. . . . . . . 8
⊢ ((𝑦 ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 +ℎ 𝑦)) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| 14 | 12, 10, 13 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
| 15 | | pjpreeq 31384 |
. . . . . . . . 9
⊢ ((𝐻 ∈
Cℋ ∧ 𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻))) →
(((projℎ‘𝐻)‘𝐴) = 𝑥 ↔ (𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)))) |
| 16 | 2, 1, 15 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 →
(((projℎ‘𝐻)‘𝐴) = 𝑥 ↔ (𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)))) |
| 17 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) →
(((projℎ‘𝐻)‘𝐴) = 𝑥 ↔ (𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)))) |
| 18 | 11, 14, 17 | mpbir2and 713 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) →
((projℎ‘𝐻)‘𝐴) = 𝑥) |
| 19 | | shococss 31280 |
. . . . . . . . . . 11
⊢ (𝐻 ∈
Sℋ → 𝐻 ⊆ (⊥‘(⊥‘𝐻))) |
| 20 | 4, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ⊆ (⊥‘(⊥‘𝐻))) |
| 21 | 20 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝐻 ⊆ (⊥‘(⊥‘𝐻))) |
| 22 | 21, 11 | sseldd 3964 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝑥 ∈ (⊥‘(⊥‘𝐻))) |
| 23 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝐻 ∈ Cℋ
) |
| 24 | 23, 3 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝐻 ∈ Sℋ
) |
| 25 | | shel 31197 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈
Sℋ ∧ 𝑥 ∈ 𝐻) → 𝑥 ∈ ℋ) |
| 26 | 24, 11, 25 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝑥 ∈ ℋ) |
| 27 | 24, 5 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → (⊥‘𝐻) ∈ Sℋ
) |
| 28 | | shel 31197 |
. . . . . . . . . . 11
⊢
(((⊥‘𝐻)
∈ Sℋ ∧ 𝑦 ∈ (⊥‘𝐻)) → 𝑦 ∈ ℋ) |
| 29 | 27, 12, 28 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝑦 ∈ ℋ) |
| 30 | | ax-hvcom 30987 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) |
| 31 | 26, 29, 30 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) |
| 32 | 10, 31 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝐴 = (𝑦 +ℎ 𝑥)) |
| 33 | | rspe 3236 |
. . . . . . . 8
⊢ ((𝑥 ∈
(⊥‘(⊥‘𝐻)) ∧ 𝐴 = (𝑦 +ℎ 𝑥)) → ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 +ℎ 𝑥)) |
| 34 | 22, 32, 33 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 +ℎ 𝑥)) |
| 35 | | choccl 31292 |
. . . . . . . . . 10
⊢ (𝐻 ∈
Cℋ → (⊥‘𝐻) ∈ Cℋ
) |
| 36 | 2, 35 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (⊥‘𝐻) ∈
Cℋ ) |
| 37 | | shocsh 31270 |
. . . . . . . . . . . . 13
⊢
((⊥‘𝐻)
∈ Sℋ →
(⊥‘(⊥‘𝐻)) ∈ Sℋ
) |
| 38 | 6, 37 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(⊥‘(⊥‘𝐻)) ∈ Sℋ
) |
| 39 | | shless 31345 |
. . . . . . . . . . . 12
⊢ (((𝐻 ∈
Sℋ ∧ (⊥‘(⊥‘𝐻)) ∈
Sℋ ∧ (⊥‘𝐻) ∈ Sℋ )
∧ 𝐻 ⊆
(⊥‘(⊥‘𝐻))) → (𝐻 +ℋ (⊥‘𝐻)) ⊆
((⊥‘(⊥‘𝐻)) +ℋ (⊥‘𝐻))) |
| 40 | 4, 38, 6, 20, 39 | syl31anc 1375 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐻 +ℋ (⊥‘𝐻)) ⊆
((⊥‘(⊥‘𝐻)) +ℋ (⊥‘𝐻))) |
| 41 | | shscom 31305 |
. . . . . . . . . . . 12
⊢
(((⊥‘𝐻)
∈ Sℋ ∧
(⊥‘(⊥‘𝐻)) ∈ Sℋ
) → ((⊥‘𝐻)
+ℋ (⊥‘(⊥‘𝐻))) = ((⊥‘(⊥‘𝐻)) +ℋ
(⊥‘𝐻))) |
| 42 | 6, 38, 41 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((⊥‘𝐻) +ℋ
(⊥‘(⊥‘𝐻))) = ((⊥‘(⊥‘𝐻)) +ℋ
(⊥‘𝐻))) |
| 43 | 40, 42 | sseqtrrd 4001 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐻 +ℋ (⊥‘𝐻)) ⊆ ((⊥‘𝐻) +ℋ
(⊥‘(⊥‘𝐻)))) |
| 44 | 43, 1 | sseldd 3964 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ((⊥‘𝐻) +ℋ
(⊥‘(⊥‘𝐻)))) |
| 45 | | pjpreeq 31384 |
. . . . . . . . 9
⊢
(((⊥‘𝐻)
∈ Cℋ ∧ 𝐴 ∈ ((⊥‘𝐻) +ℋ
(⊥‘(⊥‘𝐻)))) →
(((projℎ‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 +ℎ 𝑥)))) |
| 46 | 36, 44, 45 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 →
(((projℎ‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 +ℎ 𝑥)))) |
| 47 | 46 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) →
(((projℎ‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 +ℎ 𝑥)))) |
| 48 | 12, 34, 47 | mpbir2and 713 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) →
((projℎ‘(⊥‘𝐻))‘𝐴) = 𝑦) |
| 49 | 18, 48 | oveq12d 7428 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) →
(((projℎ‘𝐻)‘𝐴) +ℎ
((projℎ‘(⊥‘𝐻))‘𝐴)) = (𝑥 +ℎ 𝑦)) |
| 50 | 10, 49 | eqtr4d 2774 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 +ℎ 𝑦))) → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ
((projℎ‘(⊥‘𝐻))‘𝐴))) |
| 51 | 50 | exp32 420 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ (⊥‘𝐻)) → (𝐴 = (𝑥 +ℎ 𝑦) → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ
((projℎ‘(⊥‘𝐻))‘𝐴))))) |
| 52 | 51 | rexlimdvv 3201 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ
((projℎ‘(⊥‘𝐻))‘𝐴)))) |
| 53 | 9, 52 | mpd 15 |
1
⊢ (𝜑 → 𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ
((projℎ‘(⊥‘𝐻))‘𝐴))) |