HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem3 Structured version   Visualization version   GIF version

Theorem cdj3lem3 32115
Description: Lemma for cdj3i 32118. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem3.3 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤   𝑥,𝐷,𝑧,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem3
StepHypRef Expression
1 incom 4193 . . . 4 (𝐴𝐵) = (𝐵𝐴)
21eqeq1i 2729 . . 3 ((𝐴𝐵) = 0 ↔ (𝐵𝐴) = 0)
3 cdj3lem2.2 . . . . . . . 8 𝐵S
43sheli 30891 . . . . . . 7 (𝐷𝐵𝐷 ∈ ℋ)
5 cdj3lem2.1 . . . . . . . 8 𝐴S
65sheli 30891 . . . . . . 7 (𝐶𝐴𝐶 ∈ ℋ)
7 ax-hvcom 30678 . . . . . . 7 ((𝐷 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐷 + 𝐶) = (𝐶 + 𝐷))
84, 6, 7syl2an 595 . . . . . 6 ((𝐷𝐵𝐶𝐴) → (𝐷 + 𝐶) = (𝐶 + 𝐷))
98fveq2d 6885 . . . . 5 ((𝐷𝐵𝐶𝐴) → (𝑇‘(𝐷 + 𝐶)) = (𝑇‘(𝐶 + 𝐷)))
1093adant3 1129 . . . 4 ((𝐷𝐵𝐶𝐴 ∧ (𝐵𝐴) = 0) → (𝑇‘(𝐷 + 𝐶)) = (𝑇‘(𝐶 + 𝐷)))
11 cdj3lem3.3 . . . . . 6 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
123, 5shscomi 31040 . . . . . . 7 (𝐵 + 𝐴) = (𝐴 + 𝐵)
133sheli 30891 . . . . . . . . . . 11 (𝑤𝐵𝑤 ∈ ℋ)
145sheli 30891 . . . . . . . . . . 11 (𝑧𝐴𝑧 ∈ ℋ)
15 ax-hvcom 30678 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
1613, 14, 15syl2an 595 . . . . . . . . . 10 ((𝑤𝐵𝑧𝐴) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
1716eqeq2d 2735 . . . . . . . . 9 ((𝑤𝐵𝑧𝐴) → (𝑥 = (𝑤 + 𝑧) ↔ 𝑥 = (𝑧 + 𝑤)))
1817rexbidva 3168 . . . . . . . 8 (𝑤𝐵 → (∃𝑧𝐴 𝑥 = (𝑤 + 𝑧) ↔ ∃𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
1918riotabiia 7378 . . . . . . 7 (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)) = (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤))
2012, 19mpteq12i 5244 . . . . . 6 (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧))) = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
2111, 20eqtr4i 2755 . . . . 5 𝑇 = (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)))
223, 5, 21cdj3lem2 32112 . . . 4 ((𝐷𝐵𝐶𝐴 ∧ (𝐵𝐴) = 0) → (𝑇‘(𝐷 + 𝐶)) = 𝐷)
2310, 22eqtr3d 2766 . . 3 ((𝐷𝐵𝐶𝐴 ∧ (𝐵𝐴) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
242, 23syl3an3b 1402 . 2 ((𝐷𝐵𝐶𝐴 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
25243com12 1120 1 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wrex 3062  cin 3939  cmpt 5221  cfv 6533  crio 7356  (class class class)co 7401  chba 30596   + cva 30597   S csh 30605   + cph 30608  0c0h 30612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-hilex 30676  ax-hfvadd 30677  ax-hvcom 30678  ax-hvass 30679  ax-hv0cl 30680  ax-hvaddid 30681  ax-hfvmul 30682  ax-hvmulid 30683  ax-hvmulass 30684  ax-hvdistr1 30685  ax-hvdistr2 30686  ax-hvmul0 30687
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-grpo 30170  df-ablo 30222  df-hvsub 30648  df-sh 30884  df-ch0 30930  df-shs 30985
This theorem is referenced by:  cdj3lem3a  32116  cdj3i  32118
  Copyright terms: Public domain W3C validator