| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cdj3lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for cdj3i 32385. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
| cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
| cdj3lem3.3 | ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
| Ref | Expression |
|---|---|
| cdj3lem3 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4160 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 2 | 1 | eqeq1i 2734 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ ↔ (𝐵 ∩ 𝐴) = 0ℋ) |
| 3 | cdj3lem2.2 | . . . . . . . 8 ⊢ 𝐵 ∈ Sℋ | |
| 4 | 3 | sheli 31158 | . . . . . . 7 ⊢ (𝐷 ∈ 𝐵 → 𝐷 ∈ ℋ) |
| 5 | cdj3lem2.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Sℋ | |
| 6 | 5 | sheli 31158 | . . . . . . 7 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ ℋ) |
| 7 | ax-hvcom 30945 | . . . . . . 7 ⊢ ((𝐷 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐷 +ℎ 𝐶) = (𝐶 +ℎ 𝐷)) | |
| 8 | 4, 6, 7 | syl2an 596 | . . . . . 6 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐷 +ℎ 𝐶) = (𝐶 +ℎ 𝐷)) |
| 9 | 8 | fveq2d 6826 | . . . . 5 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝑇‘(𝐷 +ℎ 𝐶)) = (𝑇‘(𝐶 +ℎ 𝐷))) |
| 10 | 9 | 3adant3 1132 | . . . 4 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐵 ∩ 𝐴) = 0ℋ) → (𝑇‘(𝐷 +ℎ 𝐶)) = (𝑇‘(𝐶 +ℎ 𝐷))) |
| 11 | cdj3lem3.3 | . . . . . 6 ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) | |
| 12 | 3, 5 | shscomi 31307 | . . . . . . 7 ⊢ (𝐵 +ℋ 𝐴) = (𝐴 +ℋ 𝐵) |
| 13 | 3 | sheli 31158 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ ℋ) |
| 14 | 5 | sheli 31158 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ ℋ) |
| 15 | ax-hvcom 30945 | . . . . . . . . . . 11 ⊢ ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 +ℎ 𝑧) = (𝑧 +ℎ 𝑤)) | |
| 16 | 13, 14, 15 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑤 +ℎ 𝑧) = (𝑧 +ℎ 𝑤)) |
| 17 | 16 | eqeq2d 2740 | . . . . . . . . 9 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑥 = (𝑤 +ℎ 𝑧) ↔ 𝑥 = (𝑧 +ℎ 𝑤))) |
| 18 | 17 | rexbidva 3151 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝐵 → (∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧) ↔ ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
| 19 | 18 | riotabiia 7326 | . . . . . . 7 ⊢ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧)) = (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤)) |
| 20 | 12, 19 | mpteq12i 5189 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 +ℋ 𝐴) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧))) = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
| 21 | 11, 20 | eqtr4i 2755 | . . . . 5 ⊢ 𝑇 = (𝑥 ∈ (𝐵 +ℋ 𝐴) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧))) |
| 22 | 3, 5, 21 | cdj3lem2 32379 | . . . 4 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐵 ∩ 𝐴) = 0ℋ) → (𝑇‘(𝐷 +ℎ 𝐶)) = 𝐷) |
| 23 | 10, 22 | eqtr3d 2766 | . . 3 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐵 ∩ 𝐴) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
| 24 | 2, 23 | syl3an3b 1407 | . 2 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
| 25 | 24 | 3com12 1123 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3902 ↦ cmpt 5173 ‘cfv 6482 ℩crio 7305 (class class class)co 7349 ℋchba 30863 +ℎ cva 30864 Sℋ csh 30872 +ℋ cph 30875 0ℋc0h 30879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-hilex 30943 ax-hfvadd 30944 ax-hvcom 30945 ax-hvass 30946 ax-hv0cl 30947 ax-hvaddid 30948 ax-hfvmul 30949 ax-hvmulid 30950 ax-hvmulass 30951 ax-hvdistr1 30952 ax-hvdistr2 30953 ax-hvmul0 30954 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-grpo 30437 df-ablo 30489 df-hvsub 30915 df-sh 31151 df-ch0 31197 df-shs 31252 |
| This theorem is referenced by: cdj3lem3a 32383 cdj3i 32385 |
| Copyright terms: Public domain | W3C validator |