HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem3 Structured version   Visualization version   GIF version

Theorem cdj3lem3 32457
Description: Lemma for cdj3i 32460. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem3.3 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤   𝑥,𝐷,𝑧,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem3
StepHypRef Expression
1 incom 4209 . . . 4 (𝐴𝐵) = (𝐵𝐴)
21eqeq1i 2742 . . 3 ((𝐴𝐵) = 0 ↔ (𝐵𝐴) = 0)
3 cdj3lem2.2 . . . . . . . 8 𝐵S
43sheli 31233 . . . . . . 7 (𝐷𝐵𝐷 ∈ ℋ)
5 cdj3lem2.1 . . . . . . . 8 𝐴S
65sheli 31233 . . . . . . 7 (𝐶𝐴𝐶 ∈ ℋ)
7 ax-hvcom 31020 . . . . . . 7 ((𝐷 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐷 + 𝐶) = (𝐶 + 𝐷))
84, 6, 7syl2an 596 . . . . . 6 ((𝐷𝐵𝐶𝐴) → (𝐷 + 𝐶) = (𝐶 + 𝐷))
98fveq2d 6910 . . . . 5 ((𝐷𝐵𝐶𝐴) → (𝑇‘(𝐷 + 𝐶)) = (𝑇‘(𝐶 + 𝐷)))
1093adant3 1133 . . . 4 ((𝐷𝐵𝐶𝐴 ∧ (𝐵𝐴) = 0) → (𝑇‘(𝐷 + 𝐶)) = (𝑇‘(𝐶 + 𝐷)))
11 cdj3lem3.3 . . . . . 6 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
123, 5shscomi 31382 . . . . . . 7 (𝐵 + 𝐴) = (𝐴 + 𝐵)
133sheli 31233 . . . . . . . . . . 11 (𝑤𝐵𝑤 ∈ ℋ)
145sheli 31233 . . . . . . . . . . 11 (𝑧𝐴𝑧 ∈ ℋ)
15 ax-hvcom 31020 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
1613, 14, 15syl2an 596 . . . . . . . . . 10 ((𝑤𝐵𝑧𝐴) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
1716eqeq2d 2748 . . . . . . . . 9 ((𝑤𝐵𝑧𝐴) → (𝑥 = (𝑤 + 𝑧) ↔ 𝑥 = (𝑧 + 𝑤)))
1817rexbidva 3177 . . . . . . . 8 (𝑤𝐵 → (∃𝑧𝐴 𝑥 = (𝑤 + 𝑧) ↔ ∃𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
1918riotabiia 7408 . . . . . . 7 (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)) = (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤))
2012, 19mpteq12i 5248 . . . . . 6 (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧))) = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
2111, 20eqtr4i 2768 . . . . 5 𝑇 = (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)))
223, 5, 21cdj3lem2 32454 . . . 4 ((𝐷𝐵𝐶𝐴 ∧ (𝐵𝐴) = 0) → (𝑇‘(𝐷 + 𝐶)) = 𝐷)
2310, 22eqtr3d 2779 . . 3 ((𝐷𝐵𝐶𝐴 ∧ (𝐵𝐴) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
242, 23syl3an3b 1407 . 2 ((𝐷𝐵𝐶𝐴 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
25243com12 1124 1 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  cin 3950  cmpt 5225  cfv 6561  crio 7387  (class class class)co 7431  chba 30938   + cva 30939   S csh 30947   + cph 30950  0c0h 30954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-grpo 30512  df-ablo 30564  df-hvsub 30990  df-sh 31226  df-ch0 31272  df-shs 31327
This theorem is referenced by:  cdj3lem3a  32458  cdj3i  32460
  Copyright terms: Public domain W3C validator