![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cdj3lem3 | Structured version Visualization version GIF version |
Description: Lemma for cdj3i 32118. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
cdj3lem3.3 | ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
Ref | Expression |
---|---|
cdj3lem3 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4193 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | 1 | eqeq1i 2729 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ ↔ (𝐵 ∩ 𝐴) = 0ℋ) |
3 | cdj3lem2.2 | . . . . . . . 8 ⊢ 𝐵 ∈ Sℋ | |
4 | 3 | sheli 30891 | . . . . . . 7 ⊢ (𝐷 ∈ 𝐵 → 𝐷 ∈ ℋ) |
5 | cdj3lem2.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Sℋ | |
6 | 5 | sheli 30891 | . . . . . . 7 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ ℋ) |
7 | ax-hvcom 30678 | . . . . . . 7 ⊢ ((𝐷 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐷 +ℎ 𝐶) = (𝐶 +ℎ 𝐷)) | |
8 | 4, 6, 7 | syl2an 595 | . . . . . 6 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐷 +ℎ 𝐶) = (𝐶 +ℎ 𝐷)) |
9 | 8 | fveq2d 6885 | . . . . 5 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝑇‘(𝐷 +ℎ 𝐶)) = (𝑇‘(𝐶 +ℎ 𝐷))) |
10 | 9 | 3adant3 1129 | . . . 4 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐵 ∩ 𝐴) = 0ℋ) → (𝑇‘(𝐷 +ℎ 𝐶)) = (𝑇‘(𝐶 +ℎ 𝐷))) |
11 | cdj3lem3.3 | . . . . . 6 ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) | |
12 | 3, 5 | shscomi 31040 | . . . . . . 7 ⊢ (𝐵 +ℋ 𝐴) = (𝐴 +ℋ 𝐵) |
13 | 3 | sheli 30891 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ ℋ) |
14 | 5 | sheli 30891 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ ℋ) |
15 | ax-hvcom 30678 | . . . . . . . . . . 11 ⊢ ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 +ℎ 𝑧) = (𝑧 +ℎ 𝑤)) | |
16 | 13, 14, 15 | syl2an 595 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑤 +ℎ 𝑧) = (𝑧 +ℎ 𝑤)) |
17 | 16 | eqeq2d 2735 | . . . . . . . . 9 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑥 = (𝑤 +ℎ 𝑧) ↔ 𝑥 = (𝑧 +ℎ 𝑤))) |
18 | 17 | rexbidva 3168 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝐵 → (∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧) ↔ ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
19 | 18 | riotabiia 7378 | . . . . . . 7 ⊢ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧)) = (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤)) |
20 | 12, 19 | mpteq12i 5244 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 +ℋ 𝐴) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧))) = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
21 | 11, 20 | eqtr4i 2755 | . . . . 5 ⊢ 𝑇 = (𝑥 ∈ (𝐵 +ℋ 𝐴) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧))) |
22 | 3, 5, 21 | cdj3lem2 32112 | . . . 4 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐵 ∩ 𝐴) = 0ℋ) → (𝑇‘(𝐷 +ℎ 𝐶)) = 𝐷) |
23 | 10, 22 | eqtr3d 2766 | . . 3 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐵 ∩ 𝐴) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
24 | 2, 23 | syl3an3b 1402 | . 2 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
25 | 24 | 3com12 1120 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 ∩ cin 3939 ↦ cmpt 5221 ‘cfv 6533 ℩crio 7356 (class class class)co 7401 ℋchba 30596 +ℎ cva 30597 Sℋ csh 30605 +ℋ cph 30608 0ℋc0h 30612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-hilex 30676 ax-hfvadd 30677 ax-hvcom 30678 ax-hvass 30679 ax-hv0cl 30680 ax-hvaddid 30681 ax-hfvmul 30682 ax-hvmulid 30683 ax-hvmulass 30684 ax-hvdistr1 30685 ax-hvdistr2 30686 ax-hvmul0 30687 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-grpo 30170 df-ablo 30222 df-hvsub 30648 df-sh 30884 df-ch0 30930 df-shs 30985 |
This theorem is referenced by: cdj3lem3a 32116 cdj3i 32118 |
Copyright terms: Public domain | W3C validator |