| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cdj3lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for cdj3i 32421. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
| cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
| cdj3lem3.3 | ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
| Ref | Expression |
|---|---|
| cdj3lem3 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4156 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 2 | 1 | eqeq1i 2736 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ ↔ (𝐵 ∩ 𝐴) = 0ℋ) |
| 3 | cdj3lem2.2 | . . . . . . . 8 ⊢ 𝐵 ∈ Sℋ | |
| 4 | 3 | sheli 31194 | . . . . . . 7 ⊢ (𝐷 ∈ 𝐵 → 𝐷 ∈ ℋ) |
| 5 | cdj3lem2.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Sℋ | |
| 6 | 5 | sheli 31194 | . . . . . . 7 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ ℋ) |
| 7 | ax-hvcom 30981 | . . . . . . 7 ⊢ ((𝐷 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐷 +ℎ 𝐶) = (𝐶 +ℎ 𝐷)) | |
| 8 | 4, 6, 7 | syl2an 596 | . . . . . 6 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐷 +ℎ 𝐶) = (𝐶 +ℎ 𝐷)) |
| 9 | 8 | fveq2d 6826 | . . . . 5 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝑇‘(𝐷 +ℎ 𝐶)) = (𝑇‘(𝐶 +ℎ 𝐷))) |
| 10 | 9 | 3adant3 1132 | . . . 4 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐵 ∩ 𝐴) = 0ℋ) → (𝑇‘(𝐷 +ℎ 𝐶)) = (𝑇‘(𝐶 +ℎ 𝐷))) |
| 11 | cdj3lem3.3 | . . . . . 6 ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) | |
| 12 | 3, 5 | shscomi 31343 | . . . . . . 7 ⊢ (𝐵 +ℋ 𝐴) = (𝐴 +ℋ 𝐵) |
| 13 | 3 | sheli 31194 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ ℋ) |
| 14 | 5 | sheli 31194 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ ℋ) |
| 15 | ax-hvcom 30981 | . . . . . . . . . . 11 ⊢ ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 +ℎ 𝑧) = (𝑧 +ℎ 𝑤)) | |
| 16 | 13, 14, 15 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑤 +ℎ 𝑧) = (𝑧 +ℎ 𝑤)) |
| 17 | 16 | eqeq2d 2742 | . . . . . . . . 9 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑥 = (𝑤 +ℎ 𝑧) ↔ 𝑥 = (𝑧 +ℎ 𝑤))) |
| 18 | 17 | rexbidva 3154 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝐵 → (∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧) ↔ ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
| 19 | 18 | riotabiia 7323 | . . . . . . 7 ⊢ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧)) = (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤)) |
| 20 | 12, 19 | mpteq12i 5186 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 +ℋ 𝐴) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧))) = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
| 21 | 11, 20 | eqtr4i 2757 | . . . . 5 ⊢ 𝑇 = (𝑥 ∈ (𝐵 +ℋ 𝐴) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧))) |
| 22 | 3, 5, 21 | cdj3lem2 32415 | . . . 4 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐵 ∩ 𝐴) = 0ℋ) → (𝑇‘(𝐷 +ℎ 𝐶)) = 𝐷) |
| 23 | 10, 22 | eqtr3d 2768 | . . 3 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐵 ∩ 𝐴) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
| 24 | 2, 23 | syl3an3b 1407 | . 2 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
| 25 | 24 | 3com12 1123 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∩ cin 3896 ↦ cmpt 5170 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 ℋchba 30899 +ℎ cva 30900 Sℋ csh 30908 +ℋ cph 30911 0ℋc0h 30915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvmulass 30987 ax-hvdistr1 30988 ax-hvdistr2 30989 ax-hvmul0 30990 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-grpo 30473 df-ablo 30525 df-hvsub 30951 df-sh 31187 df-ch0 31233 df-shs 31288 |
| This theorem is referenced by: cdj3lem3a 32419 cdj3i 32421 |
| Copyright terms: Public domain | W3C validator |