![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cdj3lem3 | Structured version Visualization version GIF version |
Description: Lemma for cdj3i 32473. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
cdj3lem3.3 | ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
Ref | Expression |
---|---|
cdj3lem3 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4230 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | 1 | eqeq1i 2745 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ ↔ (𝐵 ∩ 𝐴) = 0ℋ) |
3 | cdj3lem2.2 | . . . . . . . 8 ⊢ 𝐵 ∈ Sℋ | |
4 | 3 | sheli 31246 | . . . . . . 7 ⊢ (𝐷 ∈ 𝐵 → 𝐷 ∈ ℋ) |
5 | cdj3lem2.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Sℋ | |
6 | 5 | sheli 31246 | . . . . . . 7 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ ℋ) |
7 | ax-hvcom 31033 | . . . . . . 7 ⊢ ((𝐷 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐷 +ℎ 𝐶) = (𝐶 +ℎ 𝐷)) | |
8 | 4, 6, 7 | syl2an 595 | . . . . . 6 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐷 +ℎ 𝐶) = (𝐶 +ℎ 𝐷)) |
9 | 8 | fveq2d 6924 | . . . . 5 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝑇‘(𝐷 +ℎ 𝐶)) = (𝑇‘(𝐶 +ℎ 𝐷))) |
10 | 9 | 3adant3 1132 | . . . 4 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐵 ∩ 𝐴) = 0ℋ) → (𝑇‘(𝐷 +ℎ 𝐶)) = (𝑇‘(𝐶 +ℎ 𝐷))) |
11 | cdj3lem3.3 | . . . . . 6 ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) | |
12 | 3, 5 | shscomi 31395 | . . . . . . 7 ⊢ (𝐵 +ℋ 𝐴) = (𝐴 +ℋ 𝐵) |
13 | 3 | sheli 31246 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ ℋ) |
14 | 5 | sheli 31246 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ ℋ) |
15 | ax-hvcom 31033 | . . . . . . . . . . 11 ⊢ ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 +ℎ 𝑧) = (𝑧 +ℎ 𝑤)) | |
16 | 13, 14, 15 | syl2an 595 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑤 +ℎ 𝑧) = (𝑧 +ℎ 𝑤)) |
17 | 16 | eqeq2d 2751 | . . . . . . . . 9 ⊢ ((𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) → (𝑥 = (𝑤 +ℎ 𝑧) ↔ 𝑥 = (𝑧 +ℎ 𝑤))) |
18 | 17 | rexbidva 3183 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝐵 → (∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧) ↔ ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
19 | 18 | riotabiia 7425 | . . . . . . 7 ⊢ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧)) = (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤)) |
20 | 12, 19 | mpteq12i 5272 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 +ℋ 𝐴) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧))) = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
21 | 11, 20 | eqtr4i 2771 | . . . . 5 ⊢ 𝑇 = (𝑥 ∈ (𝐵 +ℋ 𝐴) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑤 +ℎ 𝑧))) |
22 | 3, 5, 21 | cdj3lem2 32467 | . . . 4 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐵 ∩ 𝐴) = 0ℋ) → (𝑇‘(𝐷 +ℎ 𝐶)) = 𝐷) |
23 | 10, 22 | eqtr3d 2782 | . . 3 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐵 ∩ 𝐴) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
24 | 2, 23 | syl3an3b 1405 | . 2 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
25 | 24 | 3com12 1123 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∩ cin 3975 ↦ cmpt 5249 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 ℋchba 30951 +ℎ cva 30952 Sℋ csh 30960 +ℋ cph 30963 0ℋc0h 30967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvdistr1 31040 ax-hvdistr2 31041 ax-hvmul0 31042 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-grpo 30525 df-ablo 30577 df-hvsub 31003 df-sh 31239 df-ch0 31285 df-shs 31340 |
This theorem is referenced by: cdj3lem3a 32471 cdj3i 32473 |
Copyright terms: Public domain | W3C validator |