HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem3 Structured version   Visualization version   GIF version

Theorem cdj3lem3 31554
Description: Lemma for cdj3i 31557. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem3.3 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤   𝑥,𝐷,𝑧,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem3
StepHypRef Expression
1 incom 4197 . . . 4 (𝐴𝐵) = (𝐵𝐴)
21eqeq1i 2736 . . 3 ((𝐴𝐵) = 0 ↔ (𝐵𝐴) = 0)
3 cdj3lem2.2 . . . . . . . 8 𝐵S
43sheli 30330 . . . . . . 7 (𝐷𝐵𝐷 ∈ ℋ)
5 cdj3lem2.1 . . . . . . . 8 𝐴S
65sheli 30330 . . . . . . 7 (𝐶𝐴𝐶 ∈ ℋ)
7 ax-hvcom 30117 . . . . . . 7 ((𝐷 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐷 + 𝐶) = (𝐶 + 𝐷))
84, 6, 7syl2an 596 . . . . . 6 ((𝐷𝐵𝐶𝐴) → (𝐷 + 𝐶) = (𝐶 + 𝐷))
98fveq2d 6882 . . . . 5 ((𝐷𝐵𝐶𝐴) → (𝑇‘(𝐷 + 𝐶)) = (𝑇‘(𝐶 + 𝐷)))
1093adant3 1132 . . . 4 ((𝐷𝐵𝐶𝐴 ∧ (𝐵𝐴) = 0) → (𝑇‘(𝐷 + 𝐶)) = (𝑇‘(𝐶 + 𝐷)))
11 cdj3lem3.3 . . . . . 6 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
123, 5shscomi 30479 . . . . . . 7 (𝐵 + 𝐴) = (𝐴 + 𝐵)
133sheli 30330 . . . . . . . . . . 11 (𝑤𝐵𝑤 ∈ ℋ)
145sheli 30330 . . . . . . . . . . 11 (𝑧𝐴𝑧 ∈ ℋ)
15 ax-hvcom 30117 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
1613, 14, 15syl2an 596 . . . . . . . . . 10 ((𝑤𝐵𝑧𝐴) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
1716eqeq2d 2742 . . . . . . . . 9 ((𝑤𝐵𝑧𝐴) → (𝑥 = (𝑤 + 𝑧) ↔ 𝑥 = (𝑧 + 𝑤)))
1817rexbidva 3175 . . . . . . . 8 (𝑤𝐵 → (∃𝑧𝐴 𝑥 = (𝑤 + 𝑧) ↔ ∃𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
1918riotabiia 7370 . . . . . . 7 (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)) = (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤))
2012, 19mpteq12i 5247 . . . . . 6 (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧))) = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
2111, 20eqtr4i 2762 . . . . 5 𝑇 = (𝑥 ∈ (𝐵 + 𝐴) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑤 + 𝑧)))
223, 5, 21cdj3lem2 31551 . . . 4 ((𝐷𝐵𝐶𝐴 ∧ (𝐵𝐴) = 0) → (𝑇‘(𝐷 + 𝐶)) = 𝐷)
2310, 22eqtr3d 2773 . . 3 ((𝐷𝐵𝐶𝐴 ∧ (𝐵𝐴) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
242, 23syl3an3b 1405 . 2 ((𝐷𝐵𝐶𝐴 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
25243com12 1123 1 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝐶 + 𝐷)) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3069  cin 3943  cmpt 5224  cfv 6532  crio 7348  (class class class)co 7393  chba 30035   + cva 30036   S csh 30044   + cph 30047  0c0h 30051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-hilex 30115  ax-hfvadd 30116  ax-hvcom 30117  ax-hvass 30118  ax-hv0cl 30119  ax-hvaddid 30120  ax-hfvmul 30121  ax-hvmulid 30122  ax-hvmulass 30123  ax-hvdistr1 30124  ax-hvdistr2 30125  ax-hvmul0 30126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-grpo 29609  df-ablo 29661  df-hvsub 30087  df-sh 30323  df-ch0 30369  df-shs 30424
This theorem is referenced by:  cdj3lem3a  31555  cdj3i  31557
  Copyright terms: Public domain W3C validator