![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shscom | Structured version Visualization version GIF version |
Description: Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shscom | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shel 31034 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℋ) | |
2 | shel 31034 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ ℋ) | |
3 | 1, 2 | anim12i 612 | . . . . . . . 8 ⊢ (((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴) ∧ (𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) |
4 | 3 | an4s 659 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) |
5 | ax-hvcom 30824 | . . . . . . 7 ⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 +ℎ 𝑧) = (𝑧 +ℎ 𝑦)) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑦 +ℎ 𝑧) = (𝑧 +ℎ 𝑦)) |
7 | 6 | eqeq2d 2739 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑥 = (𝑦 +ℎ 𝑧) ↔ 𝑥 = (𝑧 +ℎ 𝑦))) |
8 | 7 | 2rexbidva 3214 | . . . 4 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑦))) |
9 | rexcom 3284 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑦) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦)) | |
10 | 8, 9 | bitrdi 287 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦))) |
11 | shsel 31137 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧))) | |
12 | shsel 31137 | . . . 4 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → (𝑥 ∈ (𝐵 +ℋ 𝐴) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦))) | |
13 | 12 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ (𝐵 +ℋ 𝐴) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦))) |
14 | 10, 11, 13 | 3bitr4d 311 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ (𝐴 +ℋ 𝐵) ↔ 𝑥 ∈ (𝐵 +ℋ 𝐴))) |
15 | 14 | eqrdv 2726 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 (class class class)co 7420 ℋchba 30742 +ℎ cva 30743 Sℋ csh 30751 +ℋ cph 30754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-hilex 30822 ax-hfvadd 30823 ax-hvcom 30824 ax-hvass 30825 ax-hv0cl 30826 ax-hvaddid 30827 ax-hfvmul 30828 ax-hvmulid 30829 ax-hvdistr2 30832 ax-hvmul0 30833 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-ltxr 11284 df-sub 11477 df-neg 11478 df-grpo 30316 df-ablo 30368 df-hvsub 30794 df-sh 31030 df-shs 31131 |
This theorem is referenced by: shsel2 31145 shsub2 31148 shscomi 31186 pjpjpre 31242 chscllem1 31460 chscllem2 31461 chscllem3 31462 chscllem4 31463 |
Copyright terms: Public domain | W3C validator |