| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shscom | Structured version Visualization version GIF version | ||
| Description: Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shscom | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shel 31190 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℋ) | |
| 2 | shel 31190 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ ℋ) | |
| 3 | 1, 2 | anim12i 613 | . . . . . . . 8 ⊢ (((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴) ∧ (𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) |
| 4 | 3 | an4s 660 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) |
| 5 | ax-hvcom 30980 | . . . . . . 7 ⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 +ℎ 𝑧) = (𝑧 +ℎ 𝑦)) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑦 +ℎ 𝑧) = (𝑧 +ℎ 𝑦)) |
| 7 | 6 | eqeq2d 2740 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑥 = (𝑦 +ℎ 𝑧) ↔ 𝑥 = (𝑧 +ℎ 𝑦))) |
| 8 | 7 | 2rexbidva 3198 | . . . 4 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑦))) |
| 9 | rexcom 3264 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑦) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦)) | |
| 10 | 8, 9 | bitrdi 287 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦))) |
| 11 | shsel 31293 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧))) | |
| 12 | shsel 31293 | . . . 4 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → (𝑥 ∈ (𝐵 +ℋ 𝐴) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦))) | |
| 13 | 12 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ (𝐵 +ℋ 𝐴) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦))) |
| 14 | 10, 11, 13 | 3bitr4d 311 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ (𝐴 +ℋ 𝐵) ↔ 𝑥 ∈ (𝐵 +ℋ 𝐴))) |
| 15 | 14 | eqrdv 2727 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 (class class class)co 7369 ℋchba 30898 +ℎ cva 30899 Sℋ csh 30907 +ℋ cph 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-hilex 30978 ax-hfvadd 30979 ax-hvcom 30980 ax-hvass 30981 ax-hv0cl 30982 ax-hvaddid 30983 ax-hfvmul 30984 ax-hvmulid 30985 ax-hvdistr2 30988 ax-hvmul0 30989 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 df-grpo 30472 df-ablo 30524 df-hvsub 30950 df-sh 31186 df-shs 31287 |
| This theorem is referenced by: shsel2 31301 shsub2 31304 shscomi 31342 pjpjpre 31398 chscllem1 31616 chscllem2 31617 chscllem3 31618 chscllem4 31619 |
| Copyright terms: Public domain | W3C validator |