HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscom Structured version   Visualization version   GIF version

Theorem shscom 29582
Description: Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shscom ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Proof of Theorem shscom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shel 29474 . . . . . . . . 9 ((𝐴S𝑦𝐴) → 𝑦 ∈ ℋ)
2 shel 29474 . . . . . . . . 9 ((𝐵S𝑧𝐵) → 𝑧 ∈ ℋ)
31, 2anim12i 612 . . . . . . . 8 (((𝐴S𝑦𝐴) ∧ (𝐵S𝑧𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ))
43an4s 656 . . . . . . 7 (((𝐴S𝐵S ) ∧ (𝑦𝐴𝑧𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ))
5 ax-hvcom 29264 . . . . . . 7 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
64, 5syl 17 . . . . . 6 (((𝐴S𝐵S ) ∧ (𝑦𝐴𝑧𝐵)) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
76eqeq2d 2749 . . . . 5 (((𝐴S𝐵S ) ∧ (𝑦𝐴𝑧𝐵)) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑧 + 𝑦)))
872rexbidva 3227 . . . 4 ((𝐴S𝐵S ) → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧) ↔ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑧 + 𝑦)))
9 rexcom 3281 . . . 4 (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑧 + 𝑦) ↔ ∃𝑧𝐵𝑦𝐴 𝑥 = (𝑧 + 𝑦))
108, 9bitrdi 286 . . 3 ((𝐴S𝐵S ) → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧) ↔ ∃𝑧𝐵𝑦𝐴 𝑥 = (𝑧 + 𝑦)))
11 shsel 29577 . . 3 ((𝐴S𝐵S ) → (𝑥 ∈ (𝐴 + 𝐵) ↔ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧)))
12 shsel 29577 . . . 4 ((𝐵S𝐴S ) → (𝑥 ∈ (𝐵 + 𝐴) ↔ ∃𝑧𝐵𝑦𝐴 𝑥 = (𝑧 + 𝑦)))
1312ancoms 458 . . 3 ((𝐴S𝐵S ) → (𝑥 ∈ (𝐵 + 𝐴) ↔ ∃𝑧𝐵𝑦𝐴 𝑥 = (𝑧 + 𝑦)))
1410, 11, 133bitr4d 310 . 2 ((𝐴S𝐵S ) → (𝑥 ∈ (𝐴 + 𝐵) ↔ 𝑥 ∈ (𝐵 + 𝐴)))
1514eqrdv 2736 1 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  (class class class)co 7255  chba 29182   + cva 29183   S csh 29191   + cph 29194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvdistr2 29272  ax-hvmul0 29273
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138  df-grpo 28756  df-ablo 28808  df-hvsub 29234  df-sh 29470  df-shs 29571
This theorem is referenced by:  shsel2  29585  shsub2  29588  shscomi  29626  pjpjpre  29682  chscllem1  29900  chscllem2  29901  chscllem3  29902  chscllem4  29903
  Copyright terms: Public domain W3C validator