| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shscom | Structured version Visualization version GIF version | ||
| Description: Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shscom | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shel 31147 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℋ) | |
| 2 | shel 31147 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ ℋ) | |
| 3 | 1, 2 | anim12i 613 | . . . . . . . 8 ⊢ (((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴) ∧ (𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) |
| 4 | 3 | an4s 660 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) |
| 5 | ax-hvcom 30937 | . . . . . . 7 ⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 +ℎ 𝑧) = (𝑧 +ℎ 𝑦)) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑦 +ℎ 𝑧) = (𝑧 +ℎ 𝑦)) |
| 7 | 6 | eqeq2d 2741 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑥 = (𝑦 +ℎ 𝑧) ↔ 𝑥 = (𝑧 +ℎ 𝑦))) |
| 8 | 7 | 2rexbidva 3201 | . . . 4 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑦))) |
| 9 | rexcom 3267 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑦) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦)) | |
| 10 | 8, 9 | bitrdi 287 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦))) |
| 11 | shsel 31250 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧))) | |
| 12 | shsel 31250 | . . . 4 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → (𝑥 ∈ (𝐵 +ℋ 𝐴) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦))) | |
| 13 | 12 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ (𝐵 +ℋ 𝐴) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦))) |
| 14 | 10, 11, 13 | 3bitr4d 311 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ (𝐴 +ℋ 𝐵) ↔ 𝑥 ∈ (𝐵 +ℋ 𝐴))) |
| 15 | 14 | eqrdv 2728 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 (class class class)co 7390 ℋchba 30855 +ℎ cva 30856 Sℋ csh 30864 +ℋ cph 30867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvdistr2 30945 ax-hvmul0 30946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 df-grpo 30429 df-ablo 30481 df-hvsub 30907 df-sh 31143 df-shs 31244 |
| This theorem is referenced by: shsel2 31258 shsub2 31261 shscomi 31299 pjpjpre 31355 chscllem1 31573 chscllem2 31574 chscllem3 31575 chscllem4 31576 |
| Copyright terms: Public domain | W3C validator |