HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscom Structured version   Visualization version   GIF version

Theorem shscom 31142
Description: Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shscom ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Proof of Theorem shscom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shel 31034 . . . . . . . . 9 ((𝐴S𝑦𝐴) → 𝑦 ∈ ℋ)
2 shel 31034 . . . . . . . . 9 ((𝐵S𝑧𝐵) → 𝑧 ∈ ℋ)
31, 2anim12i 612 . . . . . . . 8 (((𝐴S𝑦𝐴) ∧ (𝐵S𝑧𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ))
43an4s 659 . . . . . . 7 (((𝐴S𝐵S ) ∧ (𝑦𝐴𝑧𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ))
5 ax-hvcom 30824 . . . . . . 7 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
64, 5syl 17 . . . . . 6 (((𝐴S𝐵S ) ∧ (𝑦𝐴𝑧𝐵)) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
76eqeq2d 2739 . . . . 5 (((𝐴S𝐵S ) ∧ (𝑦𝐴𝑧𝐵)) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑧 + 𝑦)))
872rexbidva 3214 . . . 4 ((𝐴S𝐵S ) → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧) ↔ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑧 + 𝑦)))
9 rexcom 3284 . . . 4 (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑧 + 𝑦) ↔ ∃𝑧𝐵𝑦𝐴 𝑥 = (𝑧 + 𝑦))
108, 9bitrdi 287 . . 3 ((𝐴S𝐵S ) → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧) ↔ ∃𝑧𝐵𝑦𝐴 𝑥 = (𝑧 + 𝑦)))
11 shsel 31137 . . 3 ((𝐴S𝐵S ) → (𝑥 ∈ (𝐴 + 𝐵) ↔ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧)))
12 shsel 31137 . . . 4 ((𝐵S𝐴S ) → (𝑥 ∈ (𝐵 + 𝐴) ↔ ∃𝑧𝐵𝑦𝐴 𝑥 = (𝑧 + 𝑦)))
1312ancoms 458 . . 3 ((𝐴S𝐵S ) → (𝑥 ∈ (𝐵 + 𝐴) ↔ ∃𝑧𝐵𝑦𝐴 𝑥 = (𝑧 + 𝑦)))
1410, 11, 133bitr4d 311 . 2 ((𝐴S𝐵S ) → (𝑥 ∈ (𝐴 + 𝐵) ↔ 𝑥 ∈ (𝐵 + 𝐴)))
1514eqrdv 2726 1 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wrex 3067  (class class class)co 7420  chba 30742   + cva 30743   S csh 30751   + cph 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-hilex 30822  ax-hfvadd 30823  ax-hvcom 30824  ax-hvass 30825  ax-hv0cl 30826  ax-hvaddid 30827  ax-hfvmul 30828  ax-hvmulid 30829  ax-hvdistr2 30832  ax-hvmul0 30833
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-ltxr 11284  df-sub 11477  df-neg 11478  df-grpo 30316  df-ablo 30368  df-hvsub 30794  df-sh 31030  df-shs 31131
This theorem is referenced by:  shsel2  31145  shsub2  31148  shscomi  31186  pjpjpre  31242  chscllem1  31460  chscllem2  31461  chscllem3  31462  chscllem4  31463
  Copyright terms: Public domain W3C validator