![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shscom | Structured version Visualization version GIF version |
Description: Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shscom | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shel 30451 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℋ) | |
2 | shel 30451 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ ℋ) | |
3 | 1, 2 | anim12i 613 | . . . . . . . 8 ⊢ (((𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴) ∧ (𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) |
4 | 3 | an4s 658 | . . . . . . 7 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ)) |
5 | ax-hvcom 30241 | . . . . . . 7 ⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 +ℎ 𝑧) = (𝑧 +ℎ 𝑦)) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑦 +ℎ 𝑧) = (𝑧 +ℎ 𝑦)) |
7 | 6 | eqeq2d 2743 | . . . . 5 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑥 = (𝑦 +ℎ 𝑧) ↔ 𝑥 = (𝑧 +ℎ 𝑦))) |
8 | 7 | 2rexbidva 3217 | . . . 4 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑦))) |
9 | rexcom 3287 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑦) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦)) | |
10 | 8, 9 | bitrdi 286 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦))) |
11 | shsel 30554 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧))) | |
12 | shsel 30554 | . . . 4 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → (𝑥 ∈ (𝐵 +ℋ 𝐴) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦))) | |
13 | 12 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ (𝐵 +ℋ 𝐴) ↔ ∃𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑦))) |
14 | 10, 11, 13 | 3bitr4d 310 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝑥 ∈ (𝐴 +ℋ 𝐵) ↔ 𝑥 ∈ (𝐵 +ℋ 𝐴))) |
15 | 14 | eqrdv 2730 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = (𝐵 +ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 (class class class)co 7405 ℋchba 30159 +ℎ cva 30160 Sℋ csh 30168 +ℋ cph 30171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-hilex 30239 ax-hfvadd 30240 ax-hvcom 30241 ax-hvass 30242 ax-hv0cl 30243 ax-hvaddid 30244 ax-hfvmul 30245 ax-hvmulid 30246 ax-hvdistr2 30249 ax-hvmul0 30250 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-neg 11443 df-grpo 29733 df-ablo 29785 df-hvsub 30211 df-sh 30447 df-shs 30548 |
This theorem is referenced by: shsel2 30562 shsub2 30565 shscomi 30603 pjpjpre 30659 chscllem1 30877 chscllem2 30878 chscllem3 30879 chscllem4 30880 |
Copyright terms: Public domain | W3C validator |