HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscom Structured version   Visualization version   GIF version

Theorem shscom 31338
Description: Commutative law for subspace sum. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shscom ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Proof of Theorem shscom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shel 31230 . . . . . . . . 9 ((𝐴S𝑦𝐴) → 𝑦 ∈ ℋ)
2 shel 31230 . . . . . . . . 9 ((𝐵S𝑧𝐵) → 𝑧 ∈ ℋ)
31, 2anim12i 613 . . . . . . . 8 (((𝐴S𝑦𝐴) ∧ (𝐵S𝑧𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ))
43an4s 660 . . . . . . 7 (((𝐴S𝐵S ) ∧ (𝑦𝐴𝑧𝐵)) → (𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ))
5 ax-hvcom 31020 . . . . . . 7 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
64, 5syl 17 . . . . . 6 (((𝐴S𝐵S ) ∧ (𝑦𝐴𝑧𝐵)) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
76eqeq2d 2748 . . . . 5 (((𝐴S𝐵S ) ∧ (𝑦𝐴𝑧𝐵)) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑧 + 𝑦)))
872rexbidva 3220 . . . 4 ((𝐴S𝐵S ) → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧) ↔ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑧 + 𝑦)))
9 rexcom 3290 . . . 4 (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑧 + 𝑦) ↔ ∃𝑧𝐵𝑦𝐴 𝑥 = (𝑧 + 𝑦))
108, 9bitrdi 287 . . 3 ((𝐴S𝐵S ) → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧) ↔ ∃𝑧𝐵𝑦𝐴 𝑥 = (𝑧 + 𝑦)))
11 shsel 31333 . . 3 ((𝐴S𝐵S ) → (𝑥 ∈ (𝐴 + 𝐵) ↔ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧)))
12 shsel 31333 . . . 4 ((𝐵S𝐴S ) → (𝑥 ∈ (𝐵 + 𝐴) ↔ ∃𝑧𝐵𝑦𝐴 𝑥 = (𝑧 + 𝑦)))
1312ancoms 458 . . 3 ((𝐴S𝐵S ) → (𝑥 ∈ (𝐵 + 𝐴) ↔ ∃𝑧𝐵𝑦𝐴 𝑥 = (𝑧 + 𝑦)))
1410, 11, 133bitr4d 311 . 2 ((𝐴S𝐵S ) → (𝑥 ∈ (𝐴 + 𝐵) ↔ 𝑥 ∈ (𝐵 + 𝐴)))
1514eqrdv 2735 1 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  (class class class)co 7431  chba 30938   + cva 30939   S csh 30947   + cph 30950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvdistr2 31028  ax-hvmul0 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-grpo 30512  df-ablo 30564  df-hvsub 30990  df-sh 31226  df-shs 31327
This theorem is referenced by:  shsel2  31341  shsub2  31344  shscomi  31382  pjpjpre  31438  chscllem1  31656  chscllem2  31657  chscllem3  31658  chscllem4  31659
  Copyright terms: Public domain W3C validator