| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhssabloi | Structured version Visualization version GIF version | ||
| Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Proof shortened by AV, 27-Aug-2021.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhssabl.1 | ⊢ 𝐻 ∈ Sℋ |
| Ref | Expression |
|---|---|
| hhssabloi | ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssabl.1 | . . . 4 ⊢ 𝐻 ∈ Sℋ | |
| 2 | 1 | hhssabloilem 31239 | . . 3 ⊢ ( +ℎ ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ) |
| 3 | 2 | simp2i 1140 | . 2 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ GrpOp |
| 4 | 1 | shssii 31191 | . . . . 5 ⊢ 𝐻 ⊆ ℋ |
| 5 | xpss12 5631 | . . . . 5 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) | |
| 6 | 4, 4, 5 | mp2an 692 | . . . 4 ⊢ (𝐻 × 𝐻) ⊆ ( ℋ × ℋ) |
| 7 | ax-hfvadd 30978 | . . . . 5 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 8 | 7 | fdmi 6662 | . . . 4 ⊢ dom +ℎ = ( ℋ × ℋ) |
| 9 | 6, 8 | sseqtrri 3984 | . . 3 ⊢ (𝐻 × 𝐻) ⊆ dom +ℎ |
| 10 | ssdmres 5962 | . . 3 ⊢ ((𝐻 × 𝐻) ⊆ dom +ℎ ↔ dom ( +ℎ ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)) | |
| 11 | 9, 10 | mpbi 230 | . 2 ⊢ dom ( +ℎ ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻) |
| 12 | 1 | sheli 31192 | . . . 4 ⊢ (𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ) |
| 13 | 1 | sheli 31192 | . . . 4 ⊢ (𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ) |
| 14 | ax-hvcom 30979 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) | |
| 15 | 12, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) |
| 16 | ovres 7512 | . . 3 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) = (𝑥 +ℎ 𝑦)) | |
| 17 | ovres 7512 | . . . 4 ⊢ ((𝑦 ∈ 𝐻 ∧ 𝑥 ∈ 𝐻) → (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑥) = (𝑦 +ℎ 𝑥)) | |
| 18 | 17 | ancoms 458 | . . 3 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑥) = (𝑦 +ℎ 𝑥)) |
| 19 | 15, 16, 18 | 3eqtr4d 2776 | . 2 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) = (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑥)) |
| 20 | 3, 11, 19 | isabloi 30529 | 1 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 × cxp 5614 dom cdm 5616 ↾ cres 5618 (class class class)co 7346 GrpOpcgr 30467 AbelOpcablo 30522 ℋchba 30897 +ℎ cva 30898 Sℋ csh 30906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-hilex 30977 ax-hfvadd 30978 ax-hvcom 30979 ax-hvass 30980 ax-hv0cl 30981 ax-hvaddid 30982 ax-hfvmul 30983 ax-hvmulid 30984 ax-hvmulass 30985 ax-hvdistr1 30986 ax-hvdistr2 30987 ax-hvmul0 30988 ax-hfi 31057 ax-his1 31060 ax-his2 31061 ax-his3 31062 ax-his4 31063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-grpo 30471 df-gid 30472 df-ginv 30473 df-ablo 30523 df-vc 30537 df-nv 30570 df-va 30573 df-ba 30574 df-sm 30575 df-0v 30576 df-nmcv 30578 df-hnorm 30946 df-hba 30947 df-hvsub 30949 df-sh 31185 |
| This theorem is referenced by: hhssablo 31241 hhssnv 31242 |
| Copyright terms: Public domain | W3C validator |