HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssabloi Structured version   Visualization version   GIF version

Theorem hhssabloi 31198
Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Proof shortened by AV, 27-Aug-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhssabl.1 𝐻S
Assertion
Ref Expression
hhssabloi ( + ↾ (𝐻 × 𝐻)) ∈ AbelOp

Proof of Theorem hhssabloi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hhssabl.1 . . . 4 𝐻S
21hhssabloilem 31197 . . 3 ( + ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ⊆ + )
32simp2i 1140 . 2 ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp
41shssii 31149 . . . . 5 𝐻 ⊆ ℋ
5 xpss12 5656 . . . . 5 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
64, 4, 5mp2an 692 . . . 4 (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)
7 ax-hfvadd 30936 . . . . 5 + :( ℋ × ℋ)⟶ ℋ
87fdmi 6702 . . . 4 dom + = ( ℋ × ℋ)
96, 8sseqtrri 3999 . . 3 (𝐻 × 𝐻) ⊆ dom +
10 ssdmres 5987 . . 3 ((𝐻 × 𝐻) ⊆ dom + ↔ dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻))
119, 10mpbi 230 . 2 dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)
121sheli 31150 . . . 4 (𝑥𝐻𝑥 ∈ ℋ)
131sheli 31150 . . . 4 (𝑦𝐻𝑦 ∈ ℋ)
14 ax-hvcom 30937 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1512, 13, 14syl2an 596 . . 3 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
16 ovres 7558 . . 3 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) = (𝑥 + 𝑦))
17 ovres 7558 . . . 4 ((𝑦𝐻𝑥𝐻) → (𝑦( + ↾ (𝐻 × 𝐻))𝑥) = (𝑦 + 𝑥))
1817ancoms 458 . . 3 ((𝑥𝐻𝑦𝐻) → (𝑦( + ↾ (𝐻 × 𝐻))𝑥) = (𝑦 + 𝑥))
1915, 16, 183eqtr4d 2775 . 2 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) = (𝑦( + ↾ (𝐻 × 𝐻))𝑥))
203, 11, 19isabloi 30487 1 ( + ↾ (𝐻 × 𝐻)) ∈ AbelOp
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wss 3917   × cxp 5639  dom cdm 5641  cres 5643  (class class class)co 7390  GrpOpcgr 30425  AbelOpcablo 30480  chba 30855   + cva 30856   S csh 30864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-grpo 30429  df-gid 30430  df-ginv 30431  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536  df-hnorm 30904  df-hba 30905  df-hvsub 30907  df-sh 31143
This theorem is referenced by:  hhssablo  31199  hhssnv  31200
  Copyright terms: Public domain W3C validator