![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhssabloi | Structured version Visualization version GIF version |
Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Proof shortened by AV, 27-Aug-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhssabl.1 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
hhssabloi | ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssabl.1 | . . . 4 ⊢ 𝐻 ∈ Sℋ | |
2 | 1 | hhssabloilem 30509 | . . 3 ⊢ ( +ℎ ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ) |
3 | 2 | simp2i 1140 | . 2 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ GrpOp |
4 | 1 | shssii 30461 | . . . . 5 ⊢ 𝐻 ⊆ ℋ |
5 | xpss12 5691 | . . . . 5 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) | |
6 | 4, 4, 5 | mp2an 690 | . . . 4 ⊢ (𝐻 × 𝐻) ⊆ ( ℋ × ℋ) |
7 | ax-hfvadd 30248 | . . . . 5 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
8 | 7 | fdmi 6729 | . . . 4 ⊢ dom +ℎ = ( ℋ × ℋ) |
9 | 6, 8 | sseqtrri 4019 | . . 3 ⊢ (𝐻 × 𝐻) ⊆ dom +ℎ |
10 | ssdmres 6004 | . . 3 ⊢ ((𝐻 × 𝐻) ⊆ dom +ℎ ↔ dom ( +ℎ ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)) | |
11 | 9, 10 | mpbi 229 | . 2 ⊢ dom ( +ℎ ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻) |
12 | 1 | sheli 30462 | . . . 4 ⊢ (𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ) |
13 | 1 | sheli 30462 | . . . 4 ⊢ (𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ) |
14 | ax-hvcom 30249 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) | |
15 | 12, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) |
16 | ovres 7572 | . . 3 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) = (𝑥 +ℎ 𝑦)) | |
17 | ovres 7572 | . . . 4 ⊢ ((𝑦 ∈ 𝐻 ∧ 𝑥 ∈ 𝐻) → (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑥) = (𝑦 +ℎ 𝑥)) | |
18 | 17 | ancoms 459 | . . 3 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑥) = (𝑦 +ℎ 𝑥)) |
19 | 15, 16, 18 | 3eqtr4d 2782 | . 2 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) = (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑥)) |
20 | 3, 11, 19 | isabloi 29799 | 1 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 × cxp 5674 dom cdm 5676 ↾ cres 5678 (class class class)co 7408 GrpOpcgr 29737 AbelOpcablo 29792 ℋchba 30167 +ℎ cva 30168 Sℋ csh 30176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-hilex 30247 ax-hfvadd 30248 ax-hvcom 30249 ax-hvass 30250 ax-hv0cl 30251 ax-hvaddid 30252 ax-hfvmul 30253 ax-hvmulid 30254 ax-hvmulass 30255 ax-hvdistr1 30256 ax-hvdistr2 30257 ax-hvmul0 30258 ax-hfi 30327 ax-his1 30330 ax-his2 30331 ax-his3 30332 ax-his4 30333 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-grpo 29741 df-gid 29742 df-ginv 29743 df-ablo 29793 df-vc 29807 df-nv 29840 df-va 29843 df-ba 29844 df-sm 29845 df-0v 29846 df-nmcv 29848 df-hnorm 30216 df-hba 30217 df-hvsub 30219 df-sh 30455 |
This theorem is referenced by: hhssablo 30511 hhssnv 30512 |
Copyright terms: Public domain | W3C validator |