Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhssabloi | Structured version Visualization version GIF version |
Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Proof shortened by AV, 27-Aug-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhssabl.1 | ⊢ 𝐻 ∈ Sℋ |
Ref | Expression |
---|---|
hhssabloi | ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssabl.1 | . . . 4 ⊢ 𝐻 ∈ Sℋ | |
2 | 1 | hhssabloilem 29524 | . . 3 ⊢ ( +ℎ ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ) |
3 | 2 | simp2i 1138 | . 2 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ GrpOp |
4 | 1 | shssii 29476 | . . . . 5 ⊢ 𝐻 ⊆ ℋ |
5 | xpss12 5595 | . . . . 5 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) | |
6 | 4, 4, 5 | mp2an 688 | . . . 4 ⊢ (𝐻 × 𝐻) ⊆ ( ℋ × ℋ) |
7 | ax-hfvadd 29263 | . . . . 5 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
8 | 7 | fdmi 6596 | . . . 4 ⊢ dom +ℎ = ( ℋ × ℋ) |
9 | 6, 8 | sseqtrri 3954 | . . 3 ⊢ (𝐻 × 𝐻) ⊆ dom +ℎ |
10 | ssdmres 5903 | . . 3 ⊢ ((𝐻 × 𝐻) ⊆ dom +ℎ ↔ dom ( +ℎ ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)) | |
11 | 9, 10 | mpbi 229 | . 2 ⊢ dom ( +ℎ ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻) |
12 | 1 | sheli 29477 | . . . 4 ⊢ (𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ) |
13 | 1 | sheli 29477 | . . . 4 ⊢ (𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ) |
14 | ax-hvcom 29264 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) | |
15 | 12, 13, 14 | syl2an 595 | . . 3 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) |
16 | ovres 7416 | . . 3 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) = (𝑥 +ℎ 𝑦)) | |
17 | ovres 7416 | . . . 4 ⊢ ((𝑦 ∈ 𝐻 ∧ 𝑥 ∈ 𝐻) → (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑥) = (𝑦 +ℎ 𝑥)) | |
18 | 17 | ancoms 458 | . . 3 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑥) = (𝑦 +ℎ 𝑥)) |
19 | 15, 16, 18 | 3eqtr4d 2788 | . 2 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +ℎ ↾ (𝐻 × 𝐻))𝑦) = (𝑦( +ℎ ↾ (𝐻 × 𝐻))𝑥)) |
20 | 3, 11, 19 | isabloi 28814 | 1 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ∈ AbelOp |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 × cxp 5578 dom cdm 5580 ↾ cres 5582 (class class class)co 7255 GrpOpcgr 28752 AbelOpcablo 28807 ℋchba 29182 +ℎ cva 29183 Sℋ csh 29191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 df-hnorm 29231 df-hba 29232 df-hvsub 29234 df-sh 29470 |
This theorem is referenced by: hhssablo 29526 hhssnv 29527 |
Copyright terms: Public domain | W3C validator |