HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoaddcomi Structured version   Visualization version   GIF version

Theorem hoaddcomi 30134
Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoaddcomi (𝑆 +op 𝑇) = (𝑇 +op 𝑆)

Proof of Theorem hoaddcomi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hoeq.1 . . . . . 6 𝑆: ℋ⟶ ℋ
21ffvelrni 6960 . . . . 5 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
3 hoeq.2 . . . . . 6 𝑇: ℋ⟶ ℋ
43ffvelrni 6960 . . . . 5 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
5 ax-hvcom 29363 . . . . 5 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑆𝑥) + (𝑇𝑥)) = ((𝑇𝑥) + (𝑆𝑥)))
62, 4, 5syl2anc 584 . . . 4 (𝑥 ∈ ℋ → ((𝑆𝑥) + (𝑇𝑥)) = ((𝑇𝑥) + (𝑆𝑥)))
7 hosval 30102 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
81, 3, 7mp3an12 1450 . . . 4 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
9 hosval 30102 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑆)‘𝑥) = ((𝑇𝑥) + (𝑆𝑥)))
103, 1, 9mp3an12 1450 . . . 4 (𝑥 ∈ ℋ → ((𝑇 +op 𝑆)‘𝑥) = ((𝑇𝑥) + (𝑆𝑥)))
116, 8, 103eqtr4d 2788 . . 3 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥))
1211rgen 3074 . 2 𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥)
131, 3hoaddcli 30130 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
143, 1hoaddcli 30130 . . 3 (𝑇 +op 𝑆): ℋ⟶ ℋ
1513, 14hoeqi 30123 . 2 (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥) ↔ (𝑆 +op 𝑇) = (𝑇 +op 𝑆))
1612, 15mpbi 229 1 (𝑆 +op 𝑇) = (𝑇 +op 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wral 3064  wf 6429  cfv 6433  (class class class)co 7275  chba 29281   + cva 29282   +op chos 29300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-hosum 30092
This theorem is referenced by:  hoaddcom  30136  hoadd12i  30139  hoadd32i  30140  hoaddsubi  30183  hosd1i  30184  hosubeq0i  30188
  Copyright terms: Public domain W3C validator