HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoaddcomi Structured version   Visualization version   GIF version

Theorem hoaddcomi 29853
Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoaddcomi (𝑆 +op 𝑇) = (𝑇 +op 𝑆)

Proof of Theorem hoaddcomi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hoeq.1 . . . . . 6 𝑆: ℋ⟶ ℋ
21ffvelrni 6903 . . . . 5 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
3 hoeq.2 . . . . . 6 𝑇: ℋ⟶ ℋ
43ffvelrni 6903 . . . . 5 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
5 ax-hvcom 29082 . . . . 5 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑆𝑥) + (𝑇𝑥)) = ((𝑇𝑥) + (𝑆𝑥)))
62, 4, 5syl2anc 587 . . . 4 (𝑥 ∈ ℋ → ((𝑆𝑥) + (𝑇𝑥)) = ((𝑇𝑥) + (𝑆𝑥)))
7 hosval 29821 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
81, 3, 7mp3an12 1453 . . . 4 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
9 hosval 29821 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑆)‘𝑥) = ((𝑇𝑥) + (𝑆𝑥)))
103, 1, 9mp3an12 1453 . . . 4 (𝑥 ∈ ℋ → ((𝑇 +op 𝑆)‘𝑥) = ((𝑇𝑥) + (𝑆𝑥)))
116, 8, 103eqtr4d 2787 . . 3 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥))
1211rgen 3071 . 2 𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥)
131, 3hoaddcli 29849 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
143, 1hoaddcli 29849 . . 3 (𝑇 +op 𝑆): ℋ⟶ ℋ
1513, 14hoeqi 29842 . 2 (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥) ↔ (𝑆 +op 𝑇) = (𝑇 +op 𝑆))
1612, 15mpbi 233 1 (𝑆 +op 𝑇) = (𝑇 +op 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  wral 3061  wf 6376  cfv 6380  (class class class)co 7213  chba 29000   + cva 29001   +op chos 29019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-hilex 29080  ax-hfvadd 29081  ax-hvcom 29082
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-hosum 29811
This theorem is referenced by:  hoaddcom  29855  hoadd12i  29858  hoadd32i  29859  hoaddsubi  29902  hosd1i  29903  hosubeq0i  29907
  Copyright terms: Public domain W3C validator