| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoaddcomi | Structured version Visualization version GIF version | ||
| Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
| hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hoaddcomi | ⊢ (𝑆 +op 𝑇) = (𝑇 +op 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoeq.1 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
| 2 | 1 | ffvelcdmi 7057 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
| 3 | hoeq.2 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ | |
| 4 | 3 | ffvelcdmi 7057 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 5 | ax-hvcom 30936 | . . . . 5 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = ((𝑇‘𝑥) +ℎ (𝑆‘𝑥))) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = ((𝑇‘𝑥) +ℎ (𝑆‘𝑥))) |
| 7 | hosval 31675 | . . . . 5 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) | |
| 8 | 1, 3, 7 | mp3an12 1453 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
| 9 | hosval 31675 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑆)‘𝑥) = ((𝑇‘𝑥) +ℎ (𝑆‘𝑥))) | |
| 10 | 3, 1, 9 | mp3an12 1453 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑇 +op 𝑆)‘𝑥) = ((𝑇‘𝑥) +ℎ (𝑆‘𝑥))) |
| 11 | 6, 8, 10 | 3eqtr4d 2775 | . . 3 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥)) |
| 12 | 11 | rgen 3047 | . 2 ⊢ ∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥) |
| 13 | 1, 3 | hoaddcli 31703 | . . 3 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
| 14 | 3, 1 | hoaddcli 31703 | . . 3 ⊢ (𝑇 +op 𝑆): ℋ⟶ ℋ |
| 15 | 13, 14 | hoeqi 31696 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥) ↔ (𝑆 +op 𝑇) = (𝑇 +op 𝑆)) |
| 16 | 12, 15 | mpbi 230 | 1 ⊢ (𝑆 +op 𝑇) = (𝑇 +op 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ℋchba 30854 +ℎ cva 30855 +op chos 30873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-hilex 30934 ax-hfvadd 30935 ax-hvcom 30936 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 df-hosum 31665 |
| This theorem is referenced by: hoaddcom 31709 hoadd12i 31712 hoadd32i 31713 hoaddsubi 31756 hosd1i 31757 hosubeq0i 31761 |
| Copyright terms: Public domain | W3C validator |