HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoaddcomi Structured version   Visualization version   GIF version

Theorem hoaddcomi 31801
Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoaddcomi (𝑆 +op 𝑇) = (𝑇 +op 𝑆)

Proof of Theorem hoaddcomi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hoeq.1 . . . . . 6 𝑆: ℋ⟶ ℋ
21ffvelcdmi 7103 . . . . 5 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
3 hoeq.2 . . . . . 6 𝑇: ℋ⟶ ℋ
43ffvelcdmi 7103 . . . . 5 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
5 ax-hvcom 31030 . . . . 5 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑆𝑥) + (𝑇𝑥)) = ((𝑇𝑥) + (𝑆𝑥)))
62, 4, 5syl2anc 584 . . . 4 (𝑥 ∈ ℋ → ((𝑆𝑥) + (𝑇𝑥)) = ((𝑇𝑥) + (𝑆𝑥)))
7 hosval 31769 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
81, 3, 7mp3an12 1450 . . . 4 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
9 hosval 31769 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑆)‘𝑥) = ((𝑇𝑥) + (𝑆𝑥)))
103, 1, 9mp3an12 1450 . . . 4 (𝑥 ∈ ℋ → ((𝑇 +op 𝑆)‘𝑥) = ((𝑇𝑥) + (𝑆𝑥)))
116, 8, 103eqtr4d 2785 . . 3 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥))
1211rgen 3061 . 2 𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥)
131, 3hoaddcli 31797 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
143, 1hoaddcli 31797 . . 3 (𝑇 +op 𝑆): ℋ⟶ ℋ
1513, 14hoeqi 31790 . 2 (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥) ↔ (𝑆 +op 𝑇) = (𝑇 +op 𝑆))
1612, 15mpbi 230 1 (𝑆 +op 𝑇) = (𝑇 +op 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  wral 3059  wf 6559  cfv 6563  (class class class)co 7431  chba 30948   + cva 30949   +op chos 30967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-hosum 31759
This theorem is referenced by:  hoaddcom  31803  hoadd12i  31806  hoadd32i  31807  hoaddsubi  31850  hosd1i  31851  hosubeq0i  31855
  Copyright terms: Public domain W3C validator