| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoaddcomi | Structured version Visualization version GIF version | ||
| Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoeq.1 | ⊢ 𝑆: ℋ⟶ ℋ |
| hoeq.2 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hoaddcomi | ⊢ (𝑆 +op 𝑇) = (𝑇 +op 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoeq.1 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
| 2 | 1 | ffvelcdmi 7022 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
| 3 | hoeq.2 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ | |
| 4 | 3 | ffvelcdmi 7022 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 5 | ax-hvcom 30983 | . . . . 5 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = ((𝑇‘𝑥) +ℎ (𝑆‘𝑥))) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = ((𝑇‘𝑥) +ℎ (𝑆‘𝑥))) |
| 7 | hosval 31722 | . . . . 5 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) | |
| 8 | 1, 3, 7 | mp3an12 1453 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
| 9 | hosval 31722 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑆)‘𝑥) = ((𝑇‘𝑥) +ℎ (𝑆‘𝑥))) | |
| 10 | 3, 1, 9 | mp3an12 1453 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑇 +op 𝑆)‘𝑥) = ((𝑇‘𝑥) +ℎ (𝑆‘𝑥))) |
| 11 | 6, 8, 10 | 3eqtr4d 2778 | . . 3 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥)) |
| 12 | 11 | rgen 3050 | . 2 ⊢ ∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥) |
| 13 | 1, 3 | hoaddcli 31750 | . . 3 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
| 14 | 3, 1 | hoaddcli 31750 | . . 3 ⊢ (𝑇 +op 𝑆): ℋ⟶ ℋ |
| 15 | 13, 14 | hoeqi 31743 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥) ↔ (𝑆 +op 𝑇) = (𝑇 +op 𝑆)) |
| 16 | 12, 15 | mpbi 230 | 1 ⊢ (𝑆 +op 𝑇) = (𝑇 +op 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℋchba 30901 +ℎ cva 30902 +op chos 30920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-hilex 30981 ax-hfvadd 30982 ax-hvcom 30983 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-hosum 31712 |
| This theorem is referenced by: hoaddcom 31756 hoadd12i 31759 hoadd32i 31760 hoaddsubi 31803 hosd1i 31804 hosubeq0i 31808 |
| Copyright terms: Public domain | W3C validator |