HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoaddcomi Structured version   Visualization version   GIF version

Theorem hoaddcomi 31734
Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoaddcomi (𝑆 +op 𝑇) = (𝑇 +op 𝑆)

Proof of Theorem hoaddcomi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hoeq.1 . . . . . 6 𝑆: ℋ⟶ ℋ
21ffvelcdmi 7021 . . . . 5 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
3 hoeq.2 . . . . . 6 𝑇: ℋ⟶ ℋ
43ffvelcdmi 7021 . . . . 5 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
5 ax-hvcom 30963 . . . . 5 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑆𝑥) + (𝑇𝑥)) = ((𝑇𝑥) + (𝑆𝑥)))
62, 4, 5syl2anc 584 . . . 4 (𝑥 ∈ ℋ → ((𝑆𝑥) + (𝑇𝑥)) = ((𝑇𝑥) + (𝑆𝑥)))
7 hosval 31702 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
81, 3, 7mp3an12 1453 . . . 4 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
9 hosval 31702 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑆)‘𝑥) = ((𝑇𝑥) + (𝑆𝑥)))
103, 1, 9mp3an12 1453 . . . 4 (𝑥 ∈ ℋ → ((𝑇 +op 𝑆)‘𝑥) = ((𝑇𝑥) + (𝑆𝑥)))
116, 8, 103eqtr4d 2774 . . 3 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥))
1211rgen 3046 . 2 𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥)
131, 3hoaddcli 31730 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
143, 1hoaddcli 31730 . . 3 (𝑇 +op 𝑆): ℋ⟶ ℋ
1513, 14hoeqi 31723 . 2 (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = ((𝑇 +op 𝑆)‘𝑥) ↔ (𝑆 +op 𝑇) = (𝑇 +op 𝑆))
1612, 15mpbi 230 1 (𝑆 +op 𝑇) = (𝑇 +op 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3044  wf 6482  cfv 6486  (class class class)co 7353  chba 30881   + cva 30882   +op chos 30900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-hilex 30961  ax-hfvadd 30962  ax-hvcom 30963
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-hosum 31692
This theorem is referenced by:  hoaddcom  31736  hoadd12i  31739  hoadd32i  31740  hoaddsubi  31783  hosd1i  31784  hosubeq0i  31788
  Copyright terms: Public domain W3C validator