HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdii Structured version   Visualization version   GIF version

Theorem sumdmdii 30106
Description: If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in [MaedaMaeda] p. 139. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdii ((𝐴 + 𝐵) = (𝐴 𝐵) → 𝐴 𝑀* 𝐵)

Proof of Theorem sumdmdii
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq2 4187 . . . . . . 7 ((𝐴 + 𝐵) = (𝐴 𝐵) → (𝑥 ∩ (𝐴 + 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
21adantr 481 . . . . . 6 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 + 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
3 elin 4173 . . . . . . . . 9 (𝑦 ∈ (𝑥 ∩ (𝐴 + 𝐵)) ↔ (𝑦𝑥𝑦 ∈ (𝐴 + 𝐵)))
4 sumdmdi.1 . . . . . . . . . . . 12 𝐴C
5 sumdmdi.2 . . . . . . . . . . . 12 𝐵C
64, 5chseli 29150 . . . . . . . . . . 11 (𝑦 ∈ (𝐴 + 𝐵) ↔ ∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤))
7 ssel2 3966 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵𝑥𝑤𝐵) → 𝑤𝑥)
8 chsh 28915 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥C𝑥S )
9 shsubcl 28911 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥S𝑦𝑥𝑤𝑥) → (𝑦 𝑤) ∈ 𝑥)
1093exp 1113 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥S → (𝑦𝑥 → (𝑤𝑥 → (𝑦 𝑤) ∈ 𝑥)))
118, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥C → (𝑦𝑥 → (𝑤𝑥 → (𝑦 𝑤) ∈ 𝑥)))
127, 11syl7 74 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥C → (𝑦𝑥 → ((𝐵𝑥𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)))
1312exp4a 432 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥C → (𝑦𝑥 → (𝐵𝑥 → (𝑤𝐵 → (𝑦 𝑤) ∈ 𝑥))))
1413com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥C → (𝐵𝑥 → (𝑦𝑥 → (𝑤𝐵 → (𝑦 𝑤) ∈ 𝑥))))
1514imp41 426 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)
1615adantlr 711 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)
1716adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝑦 𝑤) ∈ 𝑥)
18 chel 28921 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥C𝑦𝑥) → 𝑦 ∈ ℋ)
1918adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → 𝑦 ∈ ℋ)
204cheli 28923 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝐴𝑧 ∈ ℋ)
215cheli 28923 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝐵𝑤 ∈ ℋ)
22 hvsubadd 28768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 𝑤) = 𝑧 ↔ (𝑤 + 𝑧) = 𝑦))
23 ax-hvcom 28692 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
2423eqeq1d 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦 ↔ (𝑧 + 𝑤) = 𝑦))
25 eqcom 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 + 𝑤) = 𝑦𝑦 = (𝑧 + 𝑤))
2624, 25syl6bb 288 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦𝑦 = (𝑧 + 𝑤)))
27263adant1 1124 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦𝑦 = (𝑧 + 𝑤)))
2822, 27bitrd 280 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
29283com23 1120 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
3019, 20, 21, 29syl3an 1154 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴𝑤𝐵) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
31303expa 1112 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
32 eleq1 2905 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 𝑤) = 𝑧 → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥))
3331, 32syl6bir 255 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → (𝑦 = (𝑧 + 𝑤) → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥)))
3433imp 407 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥))
3517, 34mpbid 233 . . . . . . . . . . . . . . . . . 18 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → 𝑧𝑥)
36 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → 𝑦 = (𝑧 + 𝑤))
3735, 36jca 512 . . . . . . . . . . . . . . . . 17 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝑧𝑥𝑦 = (𝑧 + 𝑤)))
3837exp31 420 . . . . . . . . . . . . . . . 16 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (𝑤𝐵 → (𝑦 = (𝑧 + 𝑤) → (𝑧𝑥𝑦 = (𝑧 + 𝑤)))))
3938reximdvai 3277 . . . . . . . . . . . . . . 15 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑤𝐵 (𝑧𝑥𝑦 = (𝑧 + 𝑤))))
40 r19.42v 3355 . . . . . . . . . . . . . . 15 (∃𝑤𝐵 (𝑧𝑥𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
4139, 40syl6ib 252 . . . . . . . . . . . . . 14 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) → (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4241reximdva 3279 . . . . . . . . . . . . 13 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑧𝐴 (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
43 elin 4173 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑥𝐴) ↔ (𝑧𝑥𝑧𝐴))
44 ancom 461 . . . . . . . . . . . . . . . . 17 ((𝑧𝑥𝑧𝐴) ↔ (𝑧𝐴𝑧𝑥))
4543, 44bitri 276 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑥𝐴) ↔ (𝑧𝐴𝑧𝑥))
4645anbi1i 623 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑥𝐴) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ ((𝑧𝐴𝑧𝑥) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
47 anass 469 . . . . . . . . . . . . . . 15 (((𝑧𝐴𝑧𝑥) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝐴 ∧ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4846, 47bitri 276 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑥𝐴) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝐴 ∧ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4948rexbii2 3250 . . . . . . . . . . . . 13 (∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) ↔ ∃𝑧𝐴 (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5042, 49syl6ibr 253 . . . . . . . . . . . 12 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
514chshii 28918 . . . . . . . . . . . . . . 15 𝐴S
52 shincl 29072 . . . . . . . . . . . . . . 15 ((𝑥S𝐴S ) → (𝑥𝐴) ∈ S )
538, 51, 52sylancl 586 . . . . . . . . . . . . . 14 (𝑥C → (𝑥𝐴) ∈ S )
5453ad2antrr 722 . . . . . . . . . . . . 13 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑥𝐴) ∈ S )
555chshii 28918 . . . . . . . . . . . . 13 𝐵S
56 shsel 29005 . . . . . . . . . . . . 13 (((𝑥𝐴) ∈ S𝐵S ) → (𝑦 ∈ ((𝑥𝐴) + 𝐵) ↔ ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5754, 55, 56sylancl 586 . . . . . . . . . . . 12 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑦 ∈ ((𝑥𝐴) + 𝐵) ↔ ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5850, 57sylibrd 260 . . . . . . . . . . 11 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
596, 58syl5bi 243 . . . . . . . . . 10 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
6059expimpd 454 . . . . . . . . 9 ((𝑥C𝐵𝑥) → ((𝑦𝑥𝑦 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
613, 60syl5bi 243 . . . . . . . 8 ((𝑥C𝐵𝑥) → (𝑦 ∈ (𝑥 ∩ (𝐴 + 𝐵)) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
6261ssrdv 3977 . . . . . . 7 ((𝑥C𝐵𝑥) → (𝑥 ∩ (𝐴 + 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
6362adantl 482 . . . . . 6 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 + 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
642, 63eqsstrrd 4010 . . . . 5 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
65 chincl 29190 . . . . . . . 8 ((𝑥C𝐴C ) → (𝑥𝐴) ∈ C )
664, 65mpan2 687 . . . . . . 7 (𝑥C → (𝑥𝐴) ∈ C )
67 chslej 29189 . . . . . . 7 (((𝑥𝐴) ∈ C𝐵C ) → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
6866, 5, 67sylancl 586 . . . . . 6 (𝑥C → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
6968ad2antrl 724 . . . . 5 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
7064, 69sstrd 3981 . . . 4 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))
7170exp32 421 . . 3 ((𝐴 + 𝐵) = (𝐴 𝐵) → (𝑥C → (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
7271ralrimiv 3186 . 2 ((𝐴 + 𝐵) = (𝐴 𝐵) → ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
73 dmdbr2 29994 . . 3 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
744, 5, 73mp2an 688 . 2 (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
7572, 74sylibr 235 1 ((𝐴 + 𝐵) = (𝐴 𝐵) → 𝐴 𝑀* 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3143  wrex 3144  cin 3939  wss 3940   class class class wbr 5063  (class class class)co 7148  chba 28610   + cva 28611   cmv 28616   S csh 28619   C cch 28620   + cph 28622   chj 28624   𝑀* cdmd 28658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606  ax-hilex 28690  ax-hfvadd 28691  ax-hvcom 28692  ax-hvass 28693  ax-hv0cl 28694  ax-hvaddid 28695  ax-hfvmul 28696  ax-hvmulid 28697  ax-hvmulass 28698  ax-hvdistr1 28699  ax-hvdistr2 28700  ax-hvmul0 28701  ax-hfi 28770  ax-his1 28773  ax-his2 28774  ax-his3 28775  ax-his4 28776  ax-hcompl 28893
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-omul 8098  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-acn 9360  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-rlim 14836  df-sum 15033  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-mulg 18155  df-cntz 18377  df-cmn 18828  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-fbas 20458  df-fg 20459  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-ntr 21544  df-cls 21545  df-nei 21622  df-cn 21751  df-cnp 21752  df-lm 21753  df-haus 21839  df-tx 22086  df-hmeo 22279  df-fil 22370  df-fm 22462  df-flim 22463  df-flf 22464  df-xms 22845  df-ms 22846  df-tms 22847  df-cfil 23773  df-cau 23774  df-cmet 23775  df-grpo 28184  df-gid 28185  df-ginv 28186  df-gdiv 28187  df-ablo 28236  df-vc 28250  df-nv 28283  df-va 28286  df-ba 28287  df-sm 28288  df-0v 28289  df-vs 28290  df-nmcv 28291  df-ims 28292  df-dip 28392  df-ssp 28413  df-ph 28504  df-cbn 28554  df-hnorm 28659  df-hba 28660  df-hvsub 28662  df-hlim 28663  df-hcau 28664  df-sh 28898  df-ch 28912  df-oc 28943  df-ch0 28944  df-shs 28999  df-chj 29001  df-dmd 29972
This theorem is referenced by:  cmmdi  30107  sumdmdi  30111
  Copyright terms: Public domain W3C validator