HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdii Structured version   Visualization version   GIF version

Theorem sumdmdii 32317
Description: If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in [MaedaMaeda] p. 139. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdii ((𝐴 + 𝐵) = (𝐴 𝐵) → 𝐴 𝑀* 𝐵)

Proof of Theorem sumdmdii
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq2 4173 . . . . . . 7 ((𝐴 + 𝐵) = (𝐴 𝐵) → (𝑥 ∩ (𝐴 + 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
21adantr 480 . . . . . 6 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 + 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
3 elin 3927 . . . . . . . . 9 (𝑦 ∈ (𝑥 ∩ (𝐴 + 𝐵)) ↔ (𝑦𝑥𝑦 ∈ (𝐴 + 𝐵)))
4 sumdmdi.1 . . . . . . . . . . . 12 𝐴C
5 sumdmdi.2 . . . . . . . . . . . 12 𝐵C
64, 5chseli 31361 . . . . . . . . . . 11 (𝑦 ∈ (𝐴 + 𝐵) ↔ ∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤))
7 ssel2 3938 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵𝑥𝑤𝐵) → 𝑤𝑥)
8 chsh 31126 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥C𝑥S )
9 shsubcl 31122 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥S𝑦𝑥𝑤𝑥) → (𝑦 𝑤) ∈ 𝑥)
1093exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥S → (𝑦𝑥 → (𝑤𝑥 → (𝑦 𝑤) ∈ 𝑥)))
118, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥C → (𝑦𝑥 → (𝑤𝑥 → (𝑦 𝑤) ∈ 𝑥)))
127, 11syl7 74 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥C → (𝑦𝑥 → ((𝐵𝑥𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)))
1312exp4a 431 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥C → (𝑦𝑥 → (𝐵𝑥 → (𝑤𝐵 → (𝑦 𝑤) ∈ 𝑥))))
1413com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥C → (𝐵𝑥 → (𝑦𝑥 → (𝑤𝐵 → (𝑦 𝑤) ∈ 𝑥))))
1514imp41 425 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)
1615adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)
1716adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝑦 𝑤) ∈ 𝑥)
18 chel 31132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥C𝑦𝑥) → 𝑦 ∈ ℋ)
1918adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → 𝑦 ∈ ℋ)
204cheli 31134 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝐴𝑧 ∈ ℋ)
215cheli 31134 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝐵𝑤 ∈ ℋ)
22 hvsubadd 30979 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 𝑤) = 𝑧 ↔ (𝑤 + 𝑧) = 𝑦))
23 ax-hvcom 30903 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
2423eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦 ↔ (𝑧 + 𝑤) = 𝑦))
25 eqcom 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 + 𝑤) = 𝑦𝑦 = (𝑧 + 𝑤))
2624, 25bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦𝑦 = (𝑧 + 𝑤)))
27263adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦𝑦 = (𝑧 + 𝑤)))
2822, 27bitrd 279 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
29283com23 1126 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
3019, 20, 21, 29syl3an 1160 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴𝑤𝐵) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
31303expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
32 eleq1 2816 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 𝑤) = 𝑧 → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥))
3331, 32biimtrrdi 254 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → (𝑦 = (𝑧 + 𝑤) → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥)))
3433imp 406 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥))
3517, 34mpbid 232 . . . . . . . . . . . . . . . . . 18 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → 𝑧𝑥)
36 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → 𝑦 = (𝑧 + 𝑤))
3735, 36jca 511 . . . . . . . . . . . . . . . . 17 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝑧𝑥𝑦 = (𝑧 + 𝑤)))
3837exp31 419 . . . . . . . . . . . . . . . 16 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (𝑤𝐵 → (𝑦 = (𝑧 + 𝑤) → (𝑧𝑥𝑦 = (𝑧 + 𝑤)))))
3938reximdvai 3144 . . . . . . . . . . . . . . 15 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑤𝐵 (𝑧𝑥𝑦 = (𝑧 + 𝑤))))
40 r19.42v 3167 . . . . . . . . . . . . . . 15 (∃𝑤𝐵 (𝑧𝑥𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
4139, 40imbitrdi 251 . . . . . . . . . . . . . 14 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) → (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4241reximdva 3146 . . . . . . . . . . . . 13 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑧𝐴 (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
43 elin 3927 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑥𝐴) ↔ (𝑧𝑥𝑧𝐴))
44 ancom 460 . . . . . . . . . . . . . . . . 17 ((𝑧𝑥𝑧𝐴) ↔ (𝑧𝐴𝑧𝑥))
4543, 44bitri 275 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑥𝐴) ↔ (𝑧𝐴𝑧𝑥))
4645anbi1i 624 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑥𝐴) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ ((𝑧𝐴𝑧𝑥) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
47 anass 468 . . . . . . . . . . . . . . 15 (((𝑧𝐴𝑧𝑥) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝐴 ∧ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4846, 47bitri 275 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑥𝐴) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝐴 ∧ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4948rexbii2 3072 . . . . . . . . . . . . 13 (∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) ↔ ∃𝑧𝐴 (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5042, 49imbitrrdi 252 . . . . . . . . . . . 12 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
514chshii 31129 . . . . . . . . . . . . . . 15 𝐴S
52 shincl 31283 . . . . . . . . . . . . . . 15 ((𝑥S𝐴S ) → (𝑥𝐴) ∈ S )
538, 51, 52sylancl 586 . . . . . . . . . . . . . 14 (𝑥C → (𝑥𝐴) ∈ S )
5453ad2antrr 726 . . . . . . . . . . . . 13 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑥𝐴) ∈ S )
555chshii 31129 . . . . . . . . . . . . 13 𝐵S
56 shsel 31216 . . . . . . . . . . . . 13 (((𝑥𝐴) ∈ S𝐵S ) → (𝑦 ∈ ((𝑥𝐴) + 𝐵) ↔ ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5754, 55, 56sylancl 586 . . . . . . . . . . . 12 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑦 ∈ ((𝑥𝐴) + 𝐵) ↔ ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5850, 57sylibrd 259 . . . . . . . . . . 11 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
596, 58biimtrid 242 . . . . . . . . . 10 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
6059expimpd 453 . . . . . . . . 9 ((𝑥C𝐵𝑥) → ((𝑦𝑥𝑦 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
613, 60biimtrid 242 . . . . . . . 8 ((𝑥C𝐵𝑥) → (𝑦 ∈ (𝑥 ∩ (𝐴 + 𝐵)) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
6261ssrdv 3949 . . . . . . 7 ((𝑥C𝐵𝑥) → (𝑥 ∩ (𝐴 + 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
6362adantl 481 . . . . . 6 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 + 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
642, 63eqsstrrd 3979 . . . . 5 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
65 chincl 31401 . . . . . . . 8 ((𝑥C𝐴C ) → (𝑥𝐴) ∈ C )
664, 65mpan2 691 . . . . . . 7 (𝑥C → (𝑥𝐴) ∈ C )
67 chslej 31400 . . . . . . 7 (((𝑥𝐴) ∈ C𝐵C ) → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
6866, 5, 67sylancl 586 . . . . . 6 (𝑥C → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
6968ad2antrl 728 . . . . 5 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
7064, 69sstrd 3954 . . . 4 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))
7170exp32 420 . . 3 ((𝐴 + 𝐵) = (𝐴 𝐵) → (𝑥C → (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
7271ralrimiv 3124 . 2 ((𝐴 + 𝐵) = (𝐴 𝐵) → ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
73 dmdbr2 32205 . . 3 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
744, 5, 73mp2an 692 . 2 (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
7572, 74sylibr 234 1 ((𝐴 + 𝐵) = (𝐴 𝐵) → 𝐴 𝑀* 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3910  wss 3911   class class class wbr 5102  (class class class)co 7369  chba 30821   + cva 30822   cmv 30827   S csh 30830   C cch 30831   + cph 30833   chj 30835   𝑀* cdmd 30869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124  ax-hilex 30901  ax-hfvadd 30902  ax-hvcom 30903  ax-hvass 30904  ax-hv0cl 30905  ax-hvaddid 30906  ax-hfvmul 30907  ax-hvmulid 30908  ax-hvmulass 30909  ax-hvdistr1 30910  ax-hvdistr2 30911  ax-hvmul0 30912  ax-hfi 30981  ax-his1 30984  ax-his2 30985  ax-his3 30986  ax-his4 30987  ax-hcompl 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-cn 23090  df-cnp 23091  df-lm 23092  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cfil 25131  df-cau 25132  df-cmet 25133  df-grpo 30395  df-gid 30396  df-ginv 30397  df-gdiv 30398  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-vs 30501  df-nmcv 30502  df-ims 30503  df-dip 30603  df-ssp 30624  df-ph 30715  df-cbn 30765  df-hnorm 30870  df-hba 30871  df-hvsub 30873  df-hlim 30874  df-hcau 30875  df-sh 31109  df-ch 31123  df-oc 31154  df-ch0 31155  df-shs 31210  df-chj 31212  df-dmd 32183
This theorem is referenced by:  cmmdi  32318  sumdmdi  32322
  Copyright terms: Public domain W3C validator