HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdii Structured version   Visualization version   GIF version

Theorem sumdmdii 30527
Description: If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in [MaedaMaeda] p. 139. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdii ((𝐴 + 𝐵) = (𝐴 𝐵) → 𝐴 𝑀* 𝐵)

Proof of Theorem sumdmdii
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq2 4137 . . . . . . 7 ((𝐴 + 𝐵) = (𝐴 𝐵) → (𝑥 ∩ (𝐴 + 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
21adantr 484 . . . . . 6 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 + 𝐵)) = (𝑥 ∩ (𝐴 𝐵)))
3 elin 3899 . . . . . . . . 9 (𝑦 ∈ (𝑥 ∩ (𝐴 + 𝐵)) ↔ (𝑦𝑥𝑦 ∈ (𝐴 + 𝐵)))
4 sumdmdi.1 . . . . . . . . . . . 12 𝐴C
5 sumdmdi.2 . . . . . . . . . . . 12 𝐵C
64, 5chseli 29571 . . . . . . . . . . 11 (𝑦 ∈ (𝐴 + 𝐵) ↔ ∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤))
7 ssel2 3912 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵𝑥𝑤𝐵) → 𝑤𝑥)
8 chsh 29336 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥C𝑥S )
9 shsubcl 29332 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥S𝑦𝑥𝑤𝑥) → (𝑦 𝑤) ∈ 𝑥)
1093exp 1121 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥S → (𝑦𝑥 → (𝑤𝑥 → (𝑦 𝑤) ∈ 𝑥)))
118, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥C → (𝑦𝑥 → (𝑤𝑥 → (𝑦 𝑤) ∈ 𝑥)))
127, 11syl7 74 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥C → (𝑦𝑥 → ((𝐵𝑥𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)))
1312exp4a 435 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥C → (𝑦𝑥 → (𝐵𝑥 → (𝑤𝐵 → (𝑦 𝑤) ∈ 𝑥))))
1413com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥C → (𝐵𝑥 → (𝑦𝑥 → (𝑤𝐵 → (𝑦 𝑤) ∈ 𝑥))))
1514imp41 429 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)
1615adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → (𝑦 𝑤) ∈ 𝑥)
1716adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝑦 𝑤) ∈ 𝑥)
18 chel 29342 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥C𝑦𝑥) → 𝑦 ∈ ℋ)
1918adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → 𝑦 ∈ ℋ)
204cheli 29344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝐴𝑧 ∈ ℋ)
215cheli 29344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝐵𝑤 ∈ ℋ)
22 hvsubadd 29189 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 𝑤) = 𝑧 ↔ (𝑤 + 𝑧) = 𝑦))
23 ax-hvcom 29113 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑤 + 𝑧) = (𝑧 + 𝑤))
2423eqeq1d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦 ↔ (𝑧 + 𝑤) = 𝑦))
25 eqcom 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 + 𝑤) = 𝑦𝑦 = (𝑧 + 𝑤))
2624, 25bitrdi 290 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦𝑦 = (𝑧 + 𝑤)))
27263adant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑤 + 𝑧) = 𝑦𝑦 = (𝑧 + 𝑤)))
2822, 27bitrd 282 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
29283com23 1128 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
3019, 20, 21, 29syl3an 1162 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴𝑤𝐵) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
31303expa 1120 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → ((𝑦 𝑤) = 𝑧𝑦 = (𝑧 + 𝑤)))
32 eleq1 2827 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 𝑤) = 𝑧 → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥))
3331, 32syl6bir 257 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) → (𝑦 = (𝑧 + 𝑤) → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥)))
3433imp 410 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → ((𝑦 𝑤) ∈ 𝑥𝑧𝑥))
3517, 34mpbid 235 . . . . . . . . . . . . . . . . . 18 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → 𝑧𝑥)
36 simpr 488 . . . . . . . . . . . . . . . . . 18 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → 𝑦 = (𝑧 + 𝑤))
3735, 36jca 515 . . . . . . . . . . . . . . . . 17 ((((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝑧𝑥𝑦 = (𝑧 + 𝑤)))
3837exp31 423 . . . . . . . . . . . . . . . 16 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (𝑤𝐵 → (𝑦 = (𝑧 + 𝑤) → (𝑧𝑥𝑦 = (𝑧 + 𝑤)))))
3938reximdvai 3200 . . . . . . . . . . . . . . 15 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑤𝐵 (𝑧𝑥𝑦 = (𝑧 + 𝑤))))
40 r19.42v 3278 . . . . . . . . . . . . . . 15 (∃𝑤𝐵 (𝑧𝑥𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
4139, 40syl6ib 254 . . . . . . . . . . . . . 14 ((((𝑥C𝐵𝑥) ∧ 𝑦𝑥) ∧ 𝑧𝐴) → (∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) → (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4241reximdva 3203 . . . . . . . . . . . . 13 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑧𝐴 (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
43 elin 3899 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑥𝐴) ↔ (𝑧𝑥𝑧𝐴))
44 ancom 464 . . . . . . . . . . . . . . . . 17 ((𝑧𝑥𝑧𝐴) ↔ (𝑧𝐴𝑧𝑥))
4543, 44bitri 278 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑥𝐴) ↔ (𝑧𝐴𝑧𝑥))
4645anbi1i 627 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑥𝐴) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ ((𝑧𝐴𝑧𝑥) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
47 anass 472 . . . . . . . . . . . . . . 15 (((𝑧𝐴𝑧𝑥) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝐴 ∧ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4846, 47bitri 278 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑥𝐴) ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)) ↔ (𝑧𝐴 ∧ (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤))))
4948rexbii2 3176 . . . . . . . . . . . . 13 (∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤) ↔ ∃𝑧𝐴 (𝑧𝑥 ∧ ∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5042, 49syl6ibr 255 . . . . . . . . . . . 12 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
514chshii 29339 . . . . . . . . . . . . . . 15 𝐴S
52 shincl 29493 . . . . . . . . . . . . . . 15 ((𝑥S𝐴S ) → (𝑥𝐴) ∈ S )
538, 51, 52sylancl 589 . . . . . . . . . . . . . 14 (𝑥C → (𝑥𝐴) ∈ S )
5453ad2antrr 726 . . . . . . . . . . . . 13 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑥𝐴) ∈ S )
555chshii 29339 . . . . . . . . . . . . 13 𝐵S
56 shsel 29426 . . . . . . . . . . . . 13 (((𝑥𝐴) ∈ S𝐵S ) → (𝑦 ∈ ((𝑥𝐴) + 𝐵) ↔ ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5754, 55, 56sylancl 589 . . . . . . . . . . . 12 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑦 ∈ ((𝑥𝐴) + 𝐵) ↔ ∃𝑧 ∈ (𝑥𝐴)∃𝑤𝐵 𝑦 = (𝑧 + 𝑤)))
5850, 57sylibrd 262 . . . . . . . . . . 11 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (∃𝑧𝐴𝑤𝐵 𝑦 = (𝑧 + 𝑤) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
596, 58syl5bi 245 . . . . . . . . . 10 (((𝑥C𝐵𝑥) ∧ 𝑦𝑥) → (𝑦 ∈ (𝐴 + 𝐵) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
6059expimpd 457 . . . . . . . . 9 ((𝑥C𝐵𝑥) → ((𝑦𝑥𝑦 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
613, 60syl5bi 245 . . . . . . . 8 ((𝑥C𝐵𝑥) → (𝑦 ∈ (𝑥 ∩ (𝐴 + 𝐵)) → 𝑦 ∈ ((𝑥𝐴) + 𝐵)))
6261ssrdv 3923 . . . . . . 7 ((𝑥C𝐵𝑥) → (𝑥 ∩ (𝐴 + 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
6362adantl 485 . . . . . 6 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 + 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
642, 63eqsstrrd 3956 . . . . 5 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) + 𝐵))
65 chincl 29611 . . . . . . . 8 ((𝑥C𝐴C ) → (𝑥𝐴) ∈ C )
664, 65mpan2 691 . . . . . . 7 (𝑥C → (𝑥𝐴) ∈ C )
67 chslej 29610 . . . . . . 7 (((𝑥𝐴) ∈ C𝐵C ) → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
6866, 5, 67sylancl 589 . . . . . 6 (𝑥C → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
6968ad2antrl 728 . . . . 5 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → ((𝑥𝐴) + 𝐵) ⊆ ((𝑥𝐴) ∨ 𝐵))
7064, 69sstrd 3927 . . . 4 (((𝐴 + 𝐵) = (𝐴 𝐵) ∧ (𝑥C𝐵𝑥)) → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))
7170exp32 424 . . 3 ((𝐴 + 𝐵) = (𝐴 𝐵) → (𝑥C → (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
7271ralrimiv 3107 . 2 ((𝐴 + 𝐵) = (𝐴 𝐵) → ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
73 dmdbr2 30415 . . 3 ((𝐴C𝐵C ) → (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵))))
744, 5, 73mp2an 692 . 2 (𝐴 𝑀* 𝐵 ↔ ∀𝑥C (𝐵𝑥 → (𝑥 ∩ (𝐴 𝐵)) ⊆ ((𝑥𝐴) ∨ 𝐵)))
7572, 74sylibr 237 1 ((𝐴 + 𝐵) = (𝐴 𝐵) → 𝐴 𝑀* 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3064  wrex 3065  cin 3882  wss 3883   class class class wbr 5069  (class class class)co 7234  chba 29031   + cva 29032   cmv 29037   S csh 29040   C cch 29041   + cph 29043   chj 29045   𝑀* cdmd 29079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-inf2 9285  ax-cc 10078  ax-cnex 10814  ax-resscn 10815  ax-1cn 10816  ax-icn 10817  ax-addcl 10818  ax-addrcl 10819  ax-mulcl 10820  ax-mulrcl 10821  ax-mulcom 10822  ax-addass 10823  ax-mulass 10824  ax-distr 10825  ax-i2m1 10826  ax-1ne0 10827  ax-1rid 10828  ax-rnegex 10829  ax-rrecex 10830  ax-cnre 10831  ax-pre-lttri 10832  ax-pre-lttrn 10833  ax-pre-ltadd 10834  ax-pre-mulgt0 10835  ax-pre-sup 10836  ax-addf 10837  ax-mulf 10838  ax-hilex 29111  ax-hfvadd 29112  ax-hvcom 29113  ax-hvass 29114  ax-hv0cl 29115  ax-hvaddid 29116  ax-hfvmul 29117  ax-hvmulid 29118  ax-hvmulass 29119  ax-hvdistr1 29120  ax-hvdistr2 29121  ax-hvmul0 29122  ax-hfi 29191  ax-his1 29194  ax-his2 29195  ax-his3 29196  ax-his4 29197  ax-hcompl 29314
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-int 4876  df-iun 4922  df-iin 4923  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-se 5527  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-isom 6409  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-of 7490  df-om 7666  df-1st 7782  df-2nd 7783  df-supp 7927  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-2o 8226  df-oadd 8229  df-omul 8230  df-er 8414  df-map 8533  df-pm 8534  df-ixp 8602  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-fsupp 9015  df-fi 9056  df-sup 9087  df-inf 9088  df-oi 9155  df-card 9584  df-acn 9587  df-pnf 10898  df-mnf 10899  df-xr 10900  df-ltxr 10901  df-le 10902  df-sub 11093  df-neg 11094  df-div 11519  df-nn 11860  df-2 11922  df-3 11923  df-4 11924  df-5 11925  df-6 11926  df-7 11927  df-8 11928  df-9 11929  df-n0 12120  df-z 12206  df-dec 12323  df-uz 12468  df-q 12574  df-rp 12616  df-xneg 12733  df-xadd 12734  df-xmul 12735  df-ioo 12968  df-ico 12970  df-icc 12971  df-fz 13125  df-fzo 13268  df-fl 13396  df-seq 13606  df-exp 13667  df-hash 13929  df-cj 14694  df-re 14695  df-im 14696  df-sqrt 14830  df-abs 14831  df-clim 15081  df-rlim 15082  df-sum 15282  df-struct 16732  df-sets 16749  df-slot 16767  df-ndx 16777  df-base 16793  df-ress 16817  df-plusg 16847  df-mulr 16848  df-starv 16849  df-sca 16850  df-vsca 16851  df-ip 16852  df-tset 16853  df-ple 16854  df-ds 16856  df-unif 16857  df-hom 16858  df-cco 16859  df-rest 16959  df-topn 16960  df-0g 16978  df-gsum 16979  df-topgen 16980  df-pt 16981  df-prds 16984  df-xrs 17039  df-qtop 17044  df-imas 17045  df-xps 17047  df-mre 17121  df-mrc 17122  df-acs 17124  df-mgm 18146  df-sgrp 18195  df-mnd 18206  df-submnd 18251  df-mulg 18521  df-cntz 18743  df-cmn 19204  df-psmet 20387  df-xmet 20388  df-met 20389  df-bl 20390  df-mopn 20391  df-fbas 20392  df-fg 20393  df-cnfld 20396  df-top 21822  df-topon 21839  df-topsp 21861  df-bases 21874  df-cld 21947  df-ntr 21948  df-cls 21949  df-nei 22026  df-cn 22155  df-cnp 22156  df-lm 22157  df-haus 22243  df-tx 22490  df-hmeo 22683  df-fil 22774  df-fm 22866  df-flim 22867  df-flf 22868  df-xms 23249  df-ms 23250  df-tms 23251  df-cfil 24183  df-cau 24184  df-cmet 24185  df-grpo 28605  df-gid 28606  df-ginv 28607  df-gdiv 28608  df-ablo 28657  df-vc 28671  df-nv 28704  df-va 28707  df-ba 28708  df-sm 28709  df-0v 28710  df-vs 28711  df-nmcv 28712  df-ims 28713  df-dip 28813  df-ssp 28834  df-ph 28925  df-cbn 28975  df-hnorm 29080  df-hba 29081  df-hvsub 29083  df-hlim 29084  df-hcau 29085  df-sh 29319  df-ch 29333  df-oc 29364  df-ch0 29365  df-shs 29420  df-chj 29422  df-dmd 30393
This theorem is referenced by:  cmmdi  30528  sumdmdi  30532
  Copyright terms: Public domain W3C validator