HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvm1neg Structured version   Visualization version   GIF version

Theorem hvm1neg 29113
Description: Convert minus one times a scalar product to the negative of the scalar. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
hvm1neg ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · (𝐴 · 𝐵)) = (-𝐴 · 𝐵))

Proof of Theorem hvm1neg
StepHypRef Expression
1 neg1cn 11944 . . 3 -1 ∈ ℂ
2 ax-hvmulass 29088 . . 3 ((-1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((-1 · 𝐴) · 𝐵) = (-1 · (𝐴 · 𝐵)))
31, 2mp3an1 1450 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((-1 · 𝐴) · 𝐵) = (-1 · (𝐴 · 𝐵)))
4 mulm1 11273 . . . 4 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
54adantr 484 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · 𝐴) = -𝐴)
65oveq1d 7228 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((-1 · 𝐴) · 𝐵) = (-𝐴 · 𝐵))
73, 6eqtr3d 2779 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · (𝐴 · 𝐵)) = (-𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  (class class class)co 7213  cc 10727  1c1 10730   · cmul 10734  -cneg 11063  chba 29000   · csm 29002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-hvmulass 29088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-ltxr 10872  df-sub 11064  df-neg 11065
This theorem is referenced by:  hvaddsubval  29114  spanunsni  29660
  Copyright terms: Public domain W3C validator