HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayete3i Structured version   Visualization version   GIF version

Theorem mayete3i 31707
Description: Mayet's equation E3. Part of Theorem 4.1 of [Mayet3] p. 1223. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayete3.a 𝐴C
mayete3.b 𝐵C
mayete3.c 𝐶C
mayete3.d 𝐷C
mayete3.f 𝐹C
mayete3.g 𝐺C
mayete3.ac 𝐴 ⊆ (⊥‘𝐶)
mayete3.af 𝐴 ⊆ (⊥‘𝐹)
mayete3.cf 𝐶 ⊆ (⊥‘𝐹)
mayete3.ab 𝐴 ⊆ (⊥‘𝐵)
mayete3.cd 𝐶 ⊆ (⊥‘𝐷)
mayete3.fg 𝐹 ⊆ (⊥‘𝐺)
mayete3.x 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
mayete3.y 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
mayete3.z 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
Assertion
Ref Expression
mayete3i (𝑋𝑌) ⊆ 𝑍

Proof of Theorem mayete3i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3927 . . . . . . . 8 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋𝑥𝑌))
2 mayete3.a . . . . . . . . . . . . 13 𝐴C
3 mayete3.c . . . . . . . . . . . . 13 𝐶C
42, 3chjcli 31436 . . . . . . . . . . . 12 (𝐴 𝐶) ∈ C
5 mayete3.f . . . . . . . . . . . 12 𝐹C
64, 5chjcli 31436 . . . . . . . . . . 11 ((𝐴 𝐶) ∨ 𝐹) ∈ C
76cheli 31211 . . . . . . . . . 10 (𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹) → 𝑥 ∈ ℋ)
8 mayete3.x . . . . . . . . . 10 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
97, 8eleq2s 2846 . . . . . . . . 9 (𝑥𝑋𝑥 ∈ ℋ)
109adantr 480 . . . . . . . 8 ((𝑥𝑋𝑥𝑌) → 𝑥 ∈ ℋ)
111, 10sylbi 217 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ ℋ)
12 ax-hvmulid 30985 . . . . . . . 8 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
13 2cn 12237 . . . . . . . . . . 11 2 ∈ ℂ
14 2ne0 12266 . . . . . . . . . . 11 2 ≠ 0
15 recid2 11828 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 ≠ 0) → ((1 / 2) · 2) = 1)
1613, 14, 15mp2an 692 . . . . . . . . . 10 ((1 / 2) · 2) = 1
1716oveq1i 7379 . . . . . . . . 9 (((1 / 2) · 2) · 𝑥) = (1 · 𝑥)
18 halfcn 12372 . . . . . . . . . 10 (1 / 2) ∈ ℂ
19 ax-hvmulass 30986 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (((1 / 2) · 2) · 𝑥) = ((1 / 2) · (2 · 𝑥)))
2018, 13, 19mp3an12 1453 . . . . . . . . 9 (𝑥 ∈ ℋ → (((1 / 2) · 2) · 𝑥) = ((1 / 2) · (2 · 𝑥)))
2117, 20eqtr3id 2778 . . . . . . . 8 (𝑥 ∈ ℋ → (1 · 𝑥) = ((1 / 2) · (2 · 𝑥)))
2212, 21eqtr3d 2766 . . . . . . 7 (𝑥 ∈ ℋ → 𝑥 = ((1 / 2) · (2 · 𝑥)))
2311, 22syl 17 . . . . . 6 (𝑥 ∈ (𝑋𝑌) → 𝑥 = ((1 / 2) · (2 · 𝑥)))
24 hv2times 31040 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (2 · 𝑥) = (𝑥 + 𝑥))
2524oveq1d 7384 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((2 · 𝑥) + 𝑥) = ((𝑥 + 𝑥) + 𝑥))
2611, 25syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → ((2 · 𝑥) + 𝑥) = ((𝑥 + 𝑥) + 𝑥))
27 inss2 4197 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ 𝑌
2827sseli 3939 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝑌) → 𝑥𝑌)
29 mayete3.y . . . . . . . . . . . . . . 15 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
3029elin2 4162 . . . . . . . . . . . . . 14 (𝑥𝑌 ↔ (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) ∧ 𝑥 ∈ (𝐹 𝐺)))
31 elin 3927 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) ↔ (𝑥 ∈ (𝐴 𝐵) ∧ 𝑥 ∈ (𝐶 𝐷)))
32 mayete3.ab . . . . . . . . . . . . . . . . . . 19 𝐴 ⊆ (⊥‘𝐵)
33 mayete3.b . . . . . . . . . . . . . . . . . . . 20 𝐵C
342, 33pjdsi 31691 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝐴 𝐵) ∧ 𝐴 ⊆ (⊥‘𝐵)) → 𝑥 = (((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)))
3532, 34mpan2 691 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴 𝐵) → 𝑥 = (((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)))
36 mayete3.cd . . . . . . . . . . . . . . . . . . 19 𝐶 ⊆ (⊥‘𝐷)
37 mayete3.d . . . . . . . . . . . . . . . . . . . 20 𝐷C
383, 37pjdsi 31691 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝐶 𝐷) ∧ 𝐶 ⊆ (⊥‘𝐷)) → 𝑥 = (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥)))
3936, 38mpan2 691 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐶 𝐷) → 𝑥 = (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥)))
4035, 39oveqan12d 7388 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝐴 𝐵) ∧ 𝑥 ∈ (𝐶 𝐷)) → (𝑥 + 𝑥) = ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))))
4131, 40sylbi 217 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → (𝑥 + 𝑥) = ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))))
42 inss1 4196 . . . . . . . . . . . . . . . . . 18 ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ (𝐴 𝐵)
4342sseli 3939 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → 𝑥 ∈ (𝐴 𝐵))
442, 33chjcli 31436 . . . . . . . . . . . . . . . . . 18 (𝐴 𝐵) ∈ C
4544cheli 31211 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 𝐵) → 𝑥 ∈ ℋ)
462pjhcli 31397 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐴)‘𝑥) ∈ ℋ)
4733pjhcli 31397 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐵)‘𝑥) ∈ ℋ)
483pjhcli 31397 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐶)‘𝑥) ∈ ℋ)
4937pjhcli 31397 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐷)‘𝑥) ∈ ℋ)
50 hvadd4 31015 . . . . . . . . . . . . . . . . . 18 (((((proj𝐴)‘𝑥) ∈ ℋ ∧ ((proj𝐵)‘𝑥) ∈ ℋ) ∧ (((proj𝐶)‘𝑥) ∈ ℋ ∧ ((proj𝐷)‘𝑥) ∈ ℋ)) → ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
5146, 47, 48, 49, 50syl22anc 838 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℋ → ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
5243, 45, 513syl 18 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
5341, 52eqtrd 2764 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → (𝑥 + 𝑥) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
54 mayete3.fg . . . . . . . . . . . . . . . 16 𝐹 ⊆ (⊥‘𝐺)
55 mayete3.g . . . . . . . . . . . . . . . . 17 𝐺C
565, 55pjdsi 31691 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐹 𝐺) ∧ 𝐹 ⊆ (⊥‘𝐺)) → 𝑥 = (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥)))
5754, 56mpan2 691 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐹 𝐺) → 𝑥 = (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥)))
5853, 57oveqan12d 7388 . . . . . . . . . . . . . 14 ((𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) ∧ 𝑥 ∈ (𝐹 𝐺)) → ((𝑥 + 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))))
5930, 58sylbi 217 . . . . . . . . . . . . 13 (𝑥𝑌 → ((𝑥 + 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))))
6028, 59syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → ((𝑥 + 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))))
61 hvaddcl 30991 . . . . . . . . . . . . . . 15 ((((proj𝐴)‘𝑥) ∈ ℋ ∧ ((proj𝐶)‘𝑥) ∈ ℋ) → (((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ)
6246, 48, 61syl2anc 584 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ)
63 hvaddcl 30991 . . . . . . . . . . . . . . 15 ((((proj𝐵)‘𝑥) ∈ ℋ ∧ ((proj𝐷)‘𝑥) ∈ ℋ) → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ)
6447, 49, 63syl2anc 584 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ)
655pjhcli 31397 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → ((proj𝐹)‘𝑥) ∈ ℋ)
6655pjhcli 31397 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → ((proj𝐺)‘𝑥) ∈ ℋ)
67 hvadd4 31015 . . . . . . . . . . . . . 14 ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ ∧ (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ) ∧ (((proj𝐹)‘𝑥) ∈ ℋ ∧ ((proj𝐺)‘𝑥) ∈ ℋ)) → (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
6862, 64, 65, 66, 67syl22anc 838 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
6911, 68syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
7026, 60, 693eqtrd 2768 . . . . . . . . . . 11 (𝑥 ∈ (𝑋𝑌) → ((2 · 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
71 inss1 4196 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ 𝑋
7271sseli 3939 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝑌) → 𝑥𝑋)
7372, 8eleqtrdi 2838 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹))
74 mayete3.ac . . . . . . . . . . . 12 𝐴 ⊆ (⊥‘𝐶)
75 mayete3.af . . . . . . . . . . . . 13 𝐴 ⊆ (⊥‘𝐹)
76 mayete3.cf . . . . . . . . . . . . 13 𝐶 ⊆ (⊥‘𝐹)
772, 3, 5pjds3i 31692 . . . . . . . . . . . . 13 (((𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹) ∧ 𝐴 ⊆ (⊥‘𝐶)) ∧ (𝐴 ⊆ (⊥‘𝐹) ∧ 𝐶 ⊆ (⊥‘𝐹))) → 𝑥 = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)))
7875, 76, 77mpanr12 705 . . . . . . . . . . . 12 ((𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹) ∧ 𝐴 ⊆ (⊥‘𝐶)) → 𝑥 = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)))
7973, 74, 78sylancl 586 . . . . . . . . . . 11 (𝑥 ∈ (𝑋𝑌) → 𝑥 = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)))
8070, 79oveq12d 7387 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) → (((2 · 𝑥) + 𝑥) − 𝑥) = ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))))
81 hvmulcl 30992 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (2 · 𝑥) ∈ ℋ)
8213, 81mpan 690 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (2 · 𝑥) ∈ ℋ)
83 hvpncan 31018 . . . . . . . . . . . 12 (((2 · 𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((2 · 𝑥) + 𝑥) − 𝑥) = (2 · 𝑥))
8482, 83mpancom 688 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (((2 · 𝑥) + 𝑥) − 𝑥) = (2 · 𝑥))
8511, 84syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) → (((2 · 𝑥) + 𝑥) − 𝑥) = (2 · 𝑥))
8680, 85eqtr3d 2766 . . . . . . . . 9 (𝑥 ∈ (𝑋𝑌) → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = (2 · 𝑥))
87 hvaddcl 30991 . . . . . . . . . . . 12 (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ ∧ ((proj𝐹)‘𝑥) ∈ ℋ) → ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) ∈ ℋ)
8862, 65, 87syl2anc 584 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) ∈ ℋ)
89 hvaddcl 30991 . . . . . . . . . . . 12 (((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ ∧ ((proj𝐺)‘𝑥) ∈ ℋ) → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ℋ)
9064, 66, 89syl2anc 584 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ℋ)
91 hvpncan2 31019 . . . . . . . . . . 11 ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) ∈ ℋ ∧ ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ℋ) → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9288, 90, 91syl2anc 584 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9311, 92syl 17 . . . . . . . . 9 (𝑥 ∈ (𝑋𝑌) → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9486, 93eqtr3d 2766 . . . . . . . 8 (𝑥 ∈ (𝑋𝑌) → (2 · 𝑥) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9533pjcli 31396 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((proj𝐵)‘𝑥) ∈ 𝐵)
9637pjcli 31396 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((proj𝐷)‘𝑥) ∈ 𝐷)
9733chshii 31206 . . . . . . . . . . . 12 𝐵S
9837chshii 31206 . . . . . . . . . . . 12 𝐷S
9997, 98shsvai 31343 . . . . . . . . . . 11 ((((proj𝐵)‘𝑥) ∈ 𝐵 ∧ ((proj𝐷)‘𝑥) ∈ 𝐷) → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ (𝐵 + 𝐷))
10095, 96, 99syl2anc 584 . . . . . . . . . 10 (𝑥 ∈ ℋ → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ (𝐵 + 𝐷))
10155pjcli 31396 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((proj𝐺)‘𝑥) ∈ 𝐺)
10297, 98shscli 31296 . . . . . . . . . . 11 (𝐵 + 𝐷) ∈ S
10355chshii 31206 . . . . . . . . . . 11 𝐺S
104102, 103shsvai 31343 . . . . . . . . . 10 (((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ (𝐵 + 𝐷) ∧ ((proj𝐺)‘𝑥) ∈ 𝐺) → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
105100, 101, 104syl2anc 584 . . . . . . . . 9 (𝑥 ∈ ℋ → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
10611, 105syl 17 . . . . . . . 8 (𝑥 ∈ (𝑋𝑌) → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
10794, 106eqeltrd 2828 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) → (2 · 𝑥) ∈ ((𝐵 + 𝐷) + 𝐺))
108102, 103shscli 31296 . . . . . . . 8 ((𝐵 + 𝐷) + 𝐺) ∈ S
109 shmulcl 31197 . . . . . . . 8 ((((𝐵 + 𝐷) + 𝐺) ∈ S ∧ (1 / 2) ∈ ℂ ∧ (2 · 𝑥) ∈ ((𝐵 + 𝐷) + 𝐺)) → ((1 / 2) · (2 · 𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
110108, 18, 109mp3an12 1453 . . . . . . 7 ((2 · 𝑥) ∈ ((𝐵 + 𝐷) + 𝐺) → ((1 / 2) · (2 · 𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
111107, 110syl 17 . . . . . 6 (𝑥 ∈ (𝑋𝑌) → ((1 / 2) · (2 · 𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
11223, 111eqeltrd 2828 . . . . 5 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ ((𝐵 + 𝐷) + 𝐺))
113112ssriv 3947 . . . 4 (𝑋𝑌) ⊆ ((𝐵 + 𝐷) + 𝐺)
11433, 37chsleji 31437 . . . . 5 (𝐵 + 𝐷) ⊆ (𝐵 𝐷)
11533, 37chjcli 31436 . . . . . . 7 (𝐵 𝐷) ∈ C
116115chshii 31206 . . . . . 6 (𝐵 𝐷) ∈ S
117102, 116, 103shlessi 31356 . . . . 5 ((𝐵 + 𝐷) ⊆ (𝐵 𝐷) → ((𝐵 + 𝐷) + 𝐺) ⊆ ((𝐵 𝐷) + 𝐺))
118114, 117ax-mp 5 . . . 4 ((𝐵 + 𝐷) + 𝐺) ⊆ ((𝐵 𝐷) + 𝐺)
119113, 118sstri 3953 . . 3 (𝑋𝑌) ⊆ ((𝐵 𝐷) + 𝐺)
120115, 55chsleji 31437 . . 3 ((𝐵 𝐷) + 𝐺) ⊆ ((𝐵 𝐷) ∨ 𝐺)
121119, 120sstri 3953 . 2 (𝑋𝑌) ⊆ ((𝐵 𝐷) ∨ 𝐺)
122 mayete3.z . 2 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
123121, 122sseqtrri 3993 1 (𝑋𝑌) ⊆ 𝑍
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2925  cin 3910  wss 3911  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   · cmul 11049   / cdiv 11811  2c2 12217  chba 30898   + cva 30899   · csm 30900   cmv 30904   S csh 30907   C cch 30908  cort 30909   + cph 30910   chj 30912  projcpjh 30916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124  ax-hilex 30978  ax-hfvadd 30979  ax-hvcom 30980  ax-hvass 30981  ax-hv0cl 30982  ax-hvaddid 30983  ax-hfvmul 30984  ax-hvmulid 30985  ax-hvmulass 30986  ax-hvdistr1 30987  ax-hvdistr2 30988  ax-hvmul0 30989  ax-hfi 31058  ax-his1 31061  ax-his2 31062  ax-his3 31063  ax-his4 31064  ax-hcompl 31181
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-cn 23147  df-cnp 23148  df-lm 23149  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cfil 25188  df-cau 25189  df-cmet 25190  df-grpo 30472  df-gid 30473  df-ginv 30474  df-gdiv 30475  df-ablo 30524  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-vs 30578  df-nmcv 30579  df-ims 30580  df-dip 30680  df-ssp 30701  df-ph 30792  df-cbn 30842  df-hnorm 30947  df-hba 30948  df-hvsub 30950  df-hlim 30951  df-hcau 30952  df-sh 31186  df-ch 31200  df-oc 31231  df-ch0 31232  df-shs 31287  df-chj 31289  df-pjh 31374
This theorem is referenced by:  mayetes3i  31708
  Copyright terms: Public domain W3C validator