HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayete3i Structured version   Visualization version   GIF version

Theorem mayete3i 30090
Description: Mayet's equation E3. Part of Theorem 4.1 of [Mayet3] p. 1223. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayete3.a 𝐴C
mayete3.b 𝐵C
mayete3.c 𝐶C
mayete3.d 𝐷C
mayete3.f 𝐹C
mayete3.g 𝐺C
mayete3.ac 𝐴 ⊆ (⊥‘𝐶)
mayete3.af 𝐴 ⊆ (⊥‘𝐹)
mayete3.cf 𝐶 ⊆ (⊥‘𝐹)
mayete3.ab 𝐴 ⊆ (⊥‘𝐵)
mayete3.cd 𝐶 ⊆ (⊥‘𝐷)
mayete3.fg 𝐹 ⊆ (⊥‘𝐺)
mayete3.x 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
mayete3.y 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
mayete3.z 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
Assertion
Ref Expression
mayete3i (𝑋𝑌) ⊆ 𝑍

Proof of Theorem mayete3i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3903 . . . . . . . 8 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋𝑥𝑌))
2 mayete3.a . . . . . . . . . . . . 13 𝐴C
3 mayete3.c . . . . . . . . . . . . 13 𝐶C
42, 3chjcli 29819 . . . . . . . . . . . 12 (𝐴 𝐶) ∈ C
5 mayete3.f . . . . . . . . . . . 12 𝐹C
64, 5chjcli 29819 . . . . . . . . . . 11 ((𝐴 𝐶) ∨ 𝐹) ∈ C
76cheli 29594 . . . . . . . . . 10 (𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹) → 𝑥 ∈ ℋ)
8 mayete3.x . . . . . . . . . 10 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
97, 8eleq2s 2857 . . . . . . . . 9 (𝑥𝑋𝑥 ∈ ℋ)
109adantr 481 . . . . . . . 8 ((𝑥𝑋𝑥𝑌) → 𝑥 ∈ ℋ)
111, 10sylbi 216 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ ℋ)
12 ax-hvmulid 29368 . . . . . . . 8 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
13 2cn 12048 . . . . . . . . . . 11 2 ∈ ℂ
14 2ne0 12077 . . . . . . . . . . 11 2 ≠ 0
15 recid2 11648 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 ≠ 0) → ((1 / 2) · 2) = 1)
1613, 14, 15mp2an 689 . . . . . . . . . 10 ((1 / 2) · 2) = 1
1716oveq1i 7285 . . . . . . . . 9 (((1 / 2) · 2) · 𝑥) = (1 · 𝑥)
18 halfcn 12188 . . . . . . . . . 10 (1 / 2) ∈ ℂ
19 ax-hvmulass 29369 . . . . . . . . . 10 (((1 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (((1 / 2) · 2) · 𝑥) = ((1 / 2) · (2 · 𝑥)))
2018, 13, 19mp3an12 1450 . . . . . . . . 9 (𝑥 ∈ ℋ → (((1 / 2) · 2) · 𝑥) = ((1 / 2) · (2 · 𝑥)))
2117, 20eqtr3id 2792 . . . . . . . 8 (𝑥 ∈ ℋ → (1 · 𝑥) = ((1 / 2) · (2 · 𝑥)))
2212, 21eqtr3d 2780 . . . . . . 7 (𝑥 ∈ ℋ → 𝑥 = ((1 / 2) · (2 · 𝑥)))
2311, 22syl 17 . . . . . 6 (𝑥 ∈ (𝑋𝑌) → 𝑥 = ((1 / 2) · (2 · 𝑥)))
24 hv2times 29423 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (2 · 𝑥) = (𝑥 + 𝑥))
2524oveq1d 7290 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((2 · 𝑥) + 𝑥) = ((𝑥 + 𝑥) + 𝑥))
2611, 25syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → ((2 · 𝑥) + 𝑥) = ((𝑥 + 𝑥) + 𝑥))
27 inss2 4163 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ 𝑌
2827sseli 3917 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝑌) → 𝑥𝑌)
29 mayete3.y . . . . . . . . . . . . . . 15 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
3029elin2 4131 . . . . . . . . . . . . . 14 (𝑥𝑌 ↔ (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) ∧ 𝑥 ∈ (𝐹 𝐺)))
31 elin 3903 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) ↔ (𝑥 ∈ (𝐴 𝐵) ∧ 𝑥 ∈ (𝐶 𝐷)))
32 mayete3.ab . . . . . . . . . . . . . . . . . . 19 𝐴 ⊆ (⊥‘𝐵)
33 mayete3.b . . . . . . . . . . . . . . . . . . . 20 𝐵C
342, 33pjdsi 30074 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝐴 𝐵) ∧ 𝐴 ⊆ (⊥‘𝐵)) → 𝑥 = (((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)))
3532, 34mpan2 688 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴 𝐵) → 𝑥 = (((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)))
36 mayete3.cd . . . . . . . . . . . . . . . . . . 19 𝐶 ⊆ (⊥‘𝐷)
37 mayete3.d . . . . . . . . . . . . . . . . . . . 20 𝐷C
383, 37pjdsi 30074 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝐶 𝐷) ∧ 𝐶 ⊆ (⊥‘𝐷)) → 𝑥 = (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥)))
3936, 38mpan2 688 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐶 𝐷) → 𝑥 = (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥)))
4035, 39oveqan12d 7294 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝐴 𝐵) ∧ 𝑥 ∈ (𝐶 𝐷)) → (𝑥 + 𝑥) = ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))))
4131, 40sylbi 216 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → (𝑥 + 𝑥) = ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))))
42 inss1 4162 . . . . . . . . . . . . . . . . . 18 ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ (𝐴 𝐵)
4342sseli 3917 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → 𝑥 ∈ (𝐴 𝐵))
442, 33chjcli 29819 . . . . . . . . . . . . . . . . . 18 (𝐴 𝐵) ∈ C
4544cheli 29594 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 𝐵) → 𝑥 ∈ ℋ)
462pjhcli 29780 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐴)‘𝑥) ∈ ℋ)
4733pjhcli 29780 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐵)‘𝑥) ∈ ℋ)
483pjhcli 29780 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐶)‘𝑥) ∈ ℋ)
4937pjhcli 29780 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → ((proj𝐷)‘𝑥) ∈ ℋ)
50 hvadd4 29398 . . . . . . . . . . . . . . . . . 18 (((((proj𝐴)‘𝑥) ∈ ℋ ∧ ((proj𝐵)‘𝑥) ∈ ℋ) ∧ (((proj𝐶)‘𝑥) ∈ ℋ ∧ ((proj𝐷)‘𝑥) ∈ ℋ)) → ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
5146, 47, 48, 49, 50syl22anc 836 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℋ → ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
5243, 45, 513syl 18 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → ((((proj𝐴)‘𝑥) + ((proj𝐵)‘𝑥)) + (((proj𝐶)‘𝑥) + ((proj𝐷)‘𝑥))) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
5341, 52eqtrd 2778 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) → (𝑥 + 𝑥) = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))))
54 mayete3.fg . . . . . . . . . . . . . . . 16 𝐹 ⊆ (⊥‘𝐺)
55 mayete3.g . . . . . . . . . . . . . . . . 17 𝐺C
565, 55pjdsi 30074 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐹 𝐺) ∧ 𝐹 ⊆ (⊥‘𝐺)) → 𝑥 = (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥)))
5754, 56mpan2 688 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐹 𝐺) → 𝑥 = (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥)))
5853, 57oveqan12d 7294 . . . . . . . . . . . . . 14 ((𝑥 ∈ ((𝐴 𝐵) ∩ (𝐶 𝐷)) ∧ 𝑥 ∈ (𝐹 𝐺)) → ((𝑥 + 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))))
5930, 58sylbi 216 . . . . . . . . . . . . 13 (𝑥𝑌 → ((𝑥 + 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))))
6028, 59syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → ((𝑥 + 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))))
61 hvaddcl 29374 . . . . . . . . . . . . . . 15 ((((proj𝐴)‘𝑥) ∈ ℋ ∧ ((proj𝐶)‘𝑥) ∈ ℋ) → (((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ)
6246, 48, 61syl2anc 584 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ)
63 hvaddcl 29374 . . . . . . . . . . . . . . 15 ((((proj𝐵)‘𝑥) ∈ ℋ ∧ ((proj𝐷)‘𝑥) ∈ ℋ) → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ)
6447, 49, 63syl2anc 584 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ)
655pjhcli 29780 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → ((proj𝐹)‘𝑥) ∈ ℋ)
6655pjhcli 29780 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → ((proj𝐺)‘𝑥) ∈ ℋ)
67 hvadd4 29398 . . . . . . . . . . . . . 14 ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ ∧ (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ) ∧ (((proj𝐹)‘𝑥) ∈ ℋ ∧ ((proj𝐺)‘𝑥) ∈ ℋ)) → (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
6862, 64, 65, 66, 67syl22anc 836 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
6911, 68syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥))) + (((proj𝐹)‘𝑥) + ((proj𝐺)‘𝑥))) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
7026, 60, 693eqtrd 2782 . . . . . . . . . . 11 (𝑥 ∈ (𝑋𝑌) → ((2 · 𝑥) + 𝑥) = (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))))
71 inss1 4162 . . . . . . . . . . . . . 14 (𝑋𝑌) ⊆ 𝑋
7271sseli 3917 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝑌) → 𝑥𝑋)
7372, 8eleqtrdi 2849 . . . . . . . . . . . 12 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹))
74 mayete3.ac . . . . . . . . . . . 12 𝐴 ⊆ (⊥‘𝐶)
75 mayete3.af . . . . . . . . . . . . 13 𝐴 ⊆ (⊥‘𝐹)
76 mayete3.cf . . . . . . . . . . . . 13 𝐶 ⊆ (⊥‘𝐹)
772, 3, 5pjds3i 30075 . . . . . . . . . . . . 13 (((𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹) ∧ 𝐴 ⊆ (⊥‘𝐶)) ∧ (𝐴 ⊆ (⊥‘𝐹) ∧ 𝐶 ⊆ (⊥‘𝐹))) → 𝑥 = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)))
7875, 76, 77mpanr12 702 . . . . . . . . . . . 12 ((𝑥 ∈ ((𝐴 𝐶) ∨ 𝐹) ∧ 𝐴 ⊆ (⊥‘𝐶)) → 𝑥 = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)))
7973, 74, 78sylancl 586 . . . . . . . . . . 11 (𝑥 ∈ (𝑋𝑌) → 𝑥 = ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)))
8070, 79oveq12d 7293 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) → (((2 · 𝑥) + 𝑥) − 𝑥) = ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))))
81 hvmulcl 29375 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (2 · 𝑥) ∈ ℋ)
8213, 81mpan 687 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (2 · 𝑥) ∈ ℋ)
83 hvpncan 29401 . . . . . . . . . . . 12 (((2 · 𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((2 · 𝑥) + 𝑥) − 𝑥) = (2 · 𝑥))
8482, 83mpancom 685 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (((2 · 𝑥) + 𝑥) − 𝑥) = (2 · 𝑥))
8511, 84syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) → (((2 · 𝑥) + 𝑥) − 𝑥) = (2 · 𝑥))
8680, 85eqtr3d 2780 . . . . . . . . 9 (𝑥 ∈ (𝑋𝑌) → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = (2 · 𝑥))
87 hvaddcl 29374 . . . . . . . . . . . 12 (((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) ∈ ℋ ∧ ((proj𝐹)‘𝑥) ∈ ℋ) → ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) ∈ ℋ)
8862, 65, 87syl2anc 584 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) ∈ ℋ)
89 hvaddcl 29374 . . . . . . . . . . . 12 (((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ ℋ ∧ ((proj𝐺)‘𝑥) ∈ ℋ) → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ℋ)
9064, 66, 89syl2anc 584 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ℋ)
91 hvpncan2 29402 . . . . . . . . . . 11 ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) ∈ ℋ ∧ ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ℋ) → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9288, 90, 91syl2anc 584 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9311, 92syl 17 . . . . . . . . 9 (𝑥 ∈ (𝑋𝑌) → ((((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥)) + ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥))) − ((((proj𝐴)‘𝑥) + ((proj𝐶)‘𝑥)) + ((proj𝐹)‘𝑥))) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9486, 93eqtr3d 2780 . . . . . . . 8 (𝑥 ∈ (𝑋𝑌) → (2 · 𝑥) = ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)))
9533pjcli 29779 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((proj𝐵)‘𝑥) ∈ 𝐵)
9637pjcli 29779 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((proj𝐷)‘𝑥) ∈ 𝐷)
9733chshii 29589 . . . . . . . . . . . 12 𝐵S
9837chshii 29589 . . . . . . . . . . . 12 𝐷S
9997, 98shsvai 29726 . . . . . . . . . . 11 ((((proj𝐵)‘𝑥) ∈ 𝐵 ∧ ((proj𝐷)‘𝑥) ∈ 𝐷) → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ (𝐵 + 𝐷))
10095, 96, 99syl2anc 584 . . . . . . . . . 10 (𝑥 ∈ ℋ → (((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ (𝐵 + 𝐷))
10155pjcli 29779 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((proj𝐺)‘𝑥) ∈ 𝐺)
10297, 98shscli 29679 . . . . . . . . . . 11 (𝐵 + 𝐷) ∈ S
10355chshii 29589 . . . . . . . . . . 11 𝐺S
104102, 103shsvai 29726 . . . . . . . . . 10 (((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) ∈ (𝐵 + 𝐷) ∧ ((proj𝐺)‘𝑥) ∈ 𝐺) → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
105100, 101, 104syl2anc 584 . . . . . . . . 9 (𝑥 ∈ ℋ → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
10611, 105syl 17 . . . . . . . 8 (𝑥 ∈ (𝑋𝑌) → ((((proj𝐵)‘𝑥) + ((proj𝐷)‘𝑥)) + ((proj𝐺)‘𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
10794, 106eqeltrd 2839 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) → (2 · 𝑥) ∈ ((𝐵 + 𝐷) + 𝐺))
108102, 103shscli 29679 . . . . . . . 8 ((𝐵 + 𝐷) + 𝐺) ∈ S
109 shmulcl 29580 . . . . . . . 8 ((((𝐵 + 𝐷) + 𝐺) ∈ S ∧ (1 / 2) ∈ ℂ ∧ (2 · 𝑥) ∈ ((𝐵 + 𝐷) + 𝐺)) → ((1 / 2) · (2 · 𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
110108, 18, 109mp3an12 1450 . . . . . . 7 ((2 · 𝑥) ∈ ((𝐵 + 𝐷) + 𝐺) → ((1 / 2) · (2 · 𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
111107, 110syl 17 . . . . . 6 (𝑥 ∈ (𝑋𝑌) → ((1 / 2) · (2 · 𝑥)) ∈ ((𝐵 + 𝐷) + 𝐺))
11223, 111eqeltrd 2839 . . . . 5 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ ((𝐵 + 𝐷) + 𝐺))
113112ssriv 3925 . . . 4 (𝑋𝑌) ⊆ ((𝐵 + 𝐷) + 𝐺)
11433, 37chsleji 29820 . . . . 5 (𝐵 + 𝐷) ⊆ (𝐵 𝐷)
11533, 37chjcli 29819 . . . . . . 7 (𝐵 𝐷) ∈ C
116115chshii 29589 . . . . . 6 (𝐵 𝐷) ∈ S
117102, 116, 103shlessi 29739 . . . . 5 ((𝐵 + 𝐷) ⊆ (𝐵 𝐷) → ((𝐵 + 𝐷) + 𝐺) ⊆ ((𝐵 𝐷) + 𝐺))
118114, 117ax-mp 5 . . . 4 ((𝐵 + 𝐷) + 𝐺) ⊆ ((𝐵 𝐷) + 𝐺)
119113, 118sstri 3930 . . 3 (𝑋𝑌) ⊆ ((𝐵 𝐷) + 𝐺)
120115, 55chsleji 29820 . . 3 ((𝐵 𝐷) + 𝐺) ⊆ ((𝐵 𝐷) ∨ 𝐺)
121119, 120sstri 3930 . 2 (𝑋𝑌) ⊆ ((𝐵 𝐷) ∨ 𝐺)
122 mayete3.z . 2 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
123121, 122sseqtrri 3958 1 (𝑋𝑌) ⊆ 𝑍
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  wne 2943  cin 3886  wss 3887  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   · cmul 10876   / cdiv 11632  2c2 12028  chba 29281   + cva 29282   · csm 29283   cmv 29287   S csh 29290   C cch 29291  cort 29292   + cph 29293   chj 29295  projcpjh 29299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447  ax-hcompl 29564
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-lm 22380  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cfil 24419  df-cau 24420  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-dip 29063  df-ssp 29084  df-ph 29175  df-cbn 29225  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-hlim 29334  df-hcau 29335  df-sh 29569  df-ch 29583  df-oc 29614  df-ch0 29615  df-shs 29670  df-chj 29672  df-pjh 29757
This theorem is referenced by:  mayetes3i  30091
  Copyright terms: Public domain W3C validator