HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  strlem1 Structured version   Visualization version   GIF version

Theorem strlem1 32152
Description: Lemma for strong state theorem: if closed subspace 𝐴 is not contained in 𝐵, there is a unit vector 𝑢 in their difference. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
strlem1.1 𝐴C
strlem1.2 𝐵C
Assertion
Ref Expression
strlem1 𝐴𝐵 → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵

Proof of Theorem strlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4311 . . 3 (¬ (𝐴𝐵) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
2 ssdif0 4325 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
31, 2xchnxbir 333 . 2 𝐴𝐵 ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
4 eldifi 4090 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
5 strlem1.1 . . . . . . . . . . . 12 𝐴C
65cheli 31134 . . . . . . . . . . 11 (𝑥𝐴𝑥 ∈ ℋ)
7 normcl 31027 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
84, 6, 73syl 18 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ∈ ℝ)
9 strlem1.2 . . . . . . . . . . . . . . . 16 𝐵C
10 ch0 31130 . . . . . . . . . . . . . . . 16 (𝐵C → 0𝐵)
119, 10ax-mp 5 . . . . . . . . . . . . . . 15 0𝐵
12 eldifn 4091 . . . . . . . . . . . . . . 15 (0 ∈ (𝐴𝐵) → ¬ 0𝐵)
1311, 12mt2 200 . . . . . . . . . . . . . 14 ¬ 0 ∈ (𝐴𝐵)
14 eleq1 2816 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑥 ∈ (𝐴𝐵) ↔ 0 ∈ (𝐴𝐵)))
1513, 14mtbiri 327 . . . . . . . . . . . . 13 (𝑥 = 0 → ¬ 𝑥 ∈ (𝐴𝐵))
1615con2i 139 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥 = 0)
17 norm-i 31031 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
184, 6, 173syl 18 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) = 0 ↔ 𝑥 = 0))
1916, 18mtbird 325 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → ¬ (norm𝑥) = 0)
2019neqned 2932 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ≠ 0)
218, 20rereccld 11985 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (1 / (norm𝑥)) ∈ ℝ)
2221recnd 11178 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → (1 / (norm𝑥)) ∈ ℂ)
235chshii 31129 . . . . . . . . . 10 𝐴S
24 shmulcl 31120 . . . . . . . . . 10 ((𝐴S ∧ (1 / (norm𝑥)) ∈ ℂ ∧ 𝑥𝐴) → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴)
2523, 24mp3an1 1450 . . . . . . . . 9 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥𝐴) → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴)
2625ex 412 . . . . . . . 8 ((1 / (norm𝑥)) ∈ ℂ → (𝑥𝐴 → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴))
2722, 26syl 17 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (𝑥𝐴 → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴))
288recnd 11178 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ∈ ℂ)
299chshii 31129 . . . . . . . . . . . 12 𝐵S
30 shmulcl 31120 . . . . . . . . . . . 12 ((𝐵S ∧ (norm𝑥) ∈ ℂ ∧ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵)
3129, 30mp3an1 1450 . . . . . . . . . . 11 (((norm𝑥) ∈ ℂ ∧ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵)
3231ex 412 . . . . . . . . . 10 ((norm𝑥) ∈ ℂ → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵 → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵))
3328, 32syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵 → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵))
3428, 20recidd 11929 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) · (1 / (norm𝑥))) = 1)
3534oveq1d 7384 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = (1 · 𝑥))
364, 6syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ ℋ)
37 ax-hvmulass 30909 . . . . . . . . . . . 12 (((norm𝑥) ∈ ℂ ∧ (1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)))
3828, 22, 36, 37syl3anc 1373 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)))
39 ax-hvmulid 30908 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
404, 6, 393syl 18 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (1 · 𝑥) = 𝑥)
4135, 38, 403eqtr3d 2772 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) = 𝑥)
4241eleq1d 2813 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵𝑥𝐵))
4333, 42sylibd 239 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵𝑥𝐵))
4443con3d 152 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (¬ 𝑥𝐵 → ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵))
4527, 44anim12d 609 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐴 ∧ ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵)))
46 eldif 3921 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
47 eldif 3921 . . . . . 6 (((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵) ↔ (((1 / (norm𝑥)) · 𝑥) ∈ 𝐴 ∧ ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵))
4845, 46, 473imtr4g 296 . . . . 5 (𝑥 ∈ (𝐴𝐵) → (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵)))
4948pm2.43i 52 . . . 4 (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵))
50 norm-iii 31042 . . . . . 6 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (norm𝑥)) · 𝑥)) = ((abs‘(1 / (norm𝑥))) · (norm𝑥)))
5122, 36, 50syl2anc 584 . . . . 5 (𝑥 ∈ (𝐴𝐵) → (norm‘((1 / (norm𝑥)) · 𝑥)) = ((abs‘(1 / (norm𝑥))) · (norm𝑥)))
5215necon2ai 2954 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → 𝑥 ≠ 0)
53 normgt0 31029 . . . . . . . . . 10 (𝑥 ∈ ℋ → (𝑥 ≠ 0 ↔ 0 < (norm𝑥)))
544, 6, 533syl 18 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (𝑥 ≠ 0 ↔ 0 < (norm𝑥)))
5552, 54mpbid 232 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → 0 < (norm𝑥))
56 1re 11150 . . . . . . . . 9 1 ∈ ℝ
57 0le1 11677 . . . . . . . . 9 0 ≤ 1
58 divge0 12028 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((norm𝑥) ∈ ℝ ∧ 0 < (norm𝑥))) → 0 ≤ (1 / (norm𝑥)))
5956, 57, 58mpanl12 702 . . . . . . . 8 (((norm𝑥) ∈ ℝ ∧ 0 < (norm𝑥)) → 0 ≤ (1 / (norm𝑥)))
608, 55, 59syl2anc 584 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → 0 ≤ (1 / (norm𝑥)))
6121, 60absidd 15365 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → (abs‘(1 / (norm𝑥))) = (1 / (norm𝑥)))
6261oveq1d 7384 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((abs‘(1 / (norm𝑥))) · (norm𝑥)) = ((1 / (norm𝑥)) · (norm𝑥)))
6328, 20recid2d 11930 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · (norm𝑥)) = 1)
6451, 62, 633eqtrd 2768 . . . 4 (𝑥 ∈ (𝐴𝐵) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
65 fveqeq2 6849 . . . . 5 (𝑢 = ((1 / (norm𝑥)) · 𝑥) → ((norm𝑢) = 1 ↔ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1))
6665rspcev 3585 . . . 4 ((((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵) ∧ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
6749, 64, 66syl2anc 584 . . 3 (𝑥 ∈ (𝐴𝐵) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
6867exlimiv 1930 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐵) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
693, 68sylbi 217 1 𝐴𝐵 → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  cdif 3908  wss 3911  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cle 11185   / cdiv 11811  abscabs 15176  chba 30821   · csm 30823  normcno 30825  0c0v 30826   S csh 30830   C cch 30831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-hilex 30901  ax-hfvadd 30902  ax-hv0cl 30905  ax-hfvmul 30907  ax-hvmulid 30908  ax-hvmulass 30909  ax-hvmul0 30912  ax-hfi 30981  ax-his1 30984  ax-his3 30986  ax-his4 30987
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-hnorm 30870  df-sh 31109  df-ch 31123
This theorem is referenced by:  stri  32159  hstri  32167
  Copyright terms: Public domain W3C validator