HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  strlem1 Structured version   Visualization version   GIF version

Theorem strlem1 32282
Description: Lemma for strong state theorem: if closed subspace 𝐴 is not contained in 𝐵, there is a unit vector 𝑢 in their difference. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
strlem1.1 𝐴C
strlem1.2 𝐵C
Assertion
Ref Expression
strlem1 𝐴𝐵 → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵

Proof of Theorem strlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4375 . . 3 (¬ (𝐴𝐵) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
2 ssdif0 4389 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
31, 2xchnxbir 333 . 2 𝐴𝐵 ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
4 eldifi 4154 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
5 strlem1.1 . . . . . . . . . . . 12 𝐴C
65cheli 31264 . . . . . . . . . . 11 (𝑥𝐴𝑥 ∈ ℋ)
7 normcl 31157 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
84, 6, 73syl 18 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ∈ ℝ)
9 strlem1.2 . . . . . . . . . . . . . . . 16 𝐵C
10 ch0 31260 . . . . . . . . . . . . . . . 16 (𝐵C → 0𝐵)
119, 10ax-mp 5 . . . . . . . . . . . . . . 15 0𝐵
12 eldifn 4155 . . . . . . . . . . . . . . 15 (0 ∈ (𝐴𝐵) → ¬ 0𝐵)
1311, 12mt2 200 . . . . . . . . . . . . . 14 ¬ 0 ∈ (𝐴𝐵)
14 eleq1 2832 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑥 ∈ (𝐴𝐵) ↔ 0 ∈ (𝐴𝐵)))
1513, 14mtbiri 327 . . . . . . . . . . . . 13 (𝑥 = 0 → ¬ 𝑥 ∈ (𝐴𝐵))
1615con2i 139 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥 = 0)
17 norm-i 31161 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
184, 6, 173syl 18 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) = 0 ↔ 𝑥 = 0))
1916, 18mtbird 325 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → ¬ (norm𝑥) = 0)
2019neqned 2953 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ≠ 0)
218, 20rereccld 12121 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (1 / (norm𝑥)) ∈ ℝ)
2221recnd 11318 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → (1 / (norm𝑥)) ∈ ℂ)
235chshii 31259 . . . . . . . . . 10 𝐴S
24 shmulcl 31250 . . . . . . . . . 10 ((𝐴S ∧ (1 / (norm𝑥)) ∈ ℂ ∧ 𝑥𝐴) → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴)
2523, 24mp3an1 1448 . . . . . . . . 9 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥𝐴) → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴)
2625ex 412 . . . . . . . 8 ((1 / (norm𝑥)) ∈ ℂ → (𝑥𝐴 → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴))
2722, 26syl 17 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (𝑥𝐴 → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴))
288recnd 11318 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ∈ ℂ)
299chshii 31259 . . . . . . . . . . . 12 𝐵S
30 shmulcl 31250 . . . . . . . . . . . 12 ((𝐵S ∧ (norm𝑥) ∈ ℂ ∧ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵)
3129, 30mp3an1 1448 . . . . . . . . . . 11 (((norm𝑥) ∈ ℂ ∧ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵)
3231ex 412 . . . . . . . . . 10 ((norm𝑥) ∈ ℂ → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵 → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵))
3328, 32syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵 → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵))
3428, 20recidd 12065 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) · (1 / (norm𝑥))) = 1)
3534oveq1d 7463 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = (1 · 𝑥))
364, 6syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ ℋ)
37 ax-hvmulass 31039 . . . . . . . . . . . 12 (((norm𝑥) ∈ ℂ ∧ (1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)))
3828, 22, 36, 37syl3anc 1371 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)))
39 ax-hvmulid 31038 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
404, 6, 393syl 18 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (1 · 𝑥) = 𝑥)
4135, 38, 403eqtr3d 2788 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) = 𝑥)
4241eleq1d 2829 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵𝑥𝐵))
4333, 42sylibd 239 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵𝑥𝐵))
4443con3d 152 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (¬ 𝑥𝐵 → ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵))
4527, 44anim12d 608 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐴 ∧ ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵)))
46 eldif 3986 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
47 eldif 3986 . . . . . 6 (((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵) ↔ (((1 / (norm𝑥)) · 𝑥) ∈ 𝐴 ∧ ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵))
4845, 46, 473imtr4g 296 . . . . 5 (𝑥 ∈ (𝐴𝐵) → (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵)))
4948pm2.43i 52 . . . 4 (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵))
50 norm-iii 31172 . . . . . 6 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (norm𝑥)) · 𝑥)) = ((abs‘(1 / (norm𝑥))) · (norm𝑥)))
5122, 36, 50syl2anc 583 . . . . 5 (𝑥 ∈ (𝐴𝐵) → (norm‘((1 / (norm𝑥)) · 𝑥)) = ((abs‘(1 / (norm𝑥))) · (norm𝑥)))
5215necon2ai 2976 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → 𝑥 ≠ 0)
53 normgt0 31159 . . . . . . . . . 10 (𝑥 ∈ ℋ → (𝑥 ≠ 0 ↔ 0 < (norm𝑥)))
544, 6, 533syl 18 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (𝑥 ≠ 0 ↔ 0 < (norm𝑥)))
5552, 54mpbid 232 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → 0 < (norm𝑥))
56 1re 11290 . . . . . . . . 9 1 ∈ ℝ
57 0le1 11813 . . . . . . . . 9 0 ≤ 1
58 divge0 12164 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((norm𝑥) ∈ ℝ ∧ 0 < (norm𝑥))) → 0 ≤ (1 / (norm𝑥)))
5956, 57, 58mpanl12 701 . . . . . . . 8 (((norm𝑥) ∈ ℝ ∧ 0 < (norm𝑥)) → 0 ≤ (1 / (norm𝑥)))
608, 55, 59syl2anc 583 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → 0 ≤ (1 / (norm𝑥)))
6121, 60absidd 15471 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → (abs‘(1 / (norm𝑥))) = (1 / (norm𝑥)))
6261oveq1d 7463 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((abs‘(1 / (norm𝑥))) · (norm𝑥)) = ((1 / (norm𝑥)) · (norm𝑥)))
6328, 20recid2d 12066 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · (norm𝑥)) = 1)
6451, 62, 633eqtrd 2784 . . . 4 (𝑥 ∈ (𝐴𝐵) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
65 fveqeq2 6929 . . . . 5 (𝑢 = ((1 / (norm𝑥)) · 𝑥) → ((norm𝑢) = 1 ↔ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1))
6665rspcev 3635 . . . 4 ((((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵) ∧ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
6749, 64, 66syl2anc 583 . . 3 (𝑥 ∈ (𝐴𝐵) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
6867exlimiv 1929 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐵) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
693, 68sylbi 217 1 𝐴𝐵 → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  cdif 3973  wss 3976  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189   < clt 11324  cle 11325   / cdiv 11947  abscabs 15283  chba 30951   · csm 30953  normcno 30955  0c0v 30956   S csh 30960   C cch 30961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-hilex 31031  ax-hfvadd 31032  ax-hv0cl 31035  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his3 31116  ax-his4 31117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-hnorm 31000  df-sh 31239  df-ch 31253
This theorem is referenced by:  stri  32289  hstri  32297
  Copyright terms: Public domain W3C validator