HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  strlem1 Structured version   Visualization version   GIF version

Theorem strlem1 32212
Description: Lemma for strong state theorem: if closed subspace 𝐴 is not contained in 𝐵, there is a unit vector 𝑢 in their difference. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
strlem1.1 𝐴C
strlem1.2 𝐵C
Assertion
Ref Expression
strlem1 𝐴𝐵 → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵

Proof of Theorem strlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4305 . . 3 (¬ (𝐴𝐵) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
2 ssdif0 4319 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
31, 2xchnxbir 333 . 2 𝐴𝐵 ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
4 eldifi 4084 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
5 strlem1.1 . . . . . . . . . . . 12 𝐴C
65cheli 31194 . . . . . . . . . . 11 (𝑥𝐴𝑥 ∈ ℋ)
7 normcl 31087 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
84, 6, 73syl 18 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ∈ ℝ)
9 strlem1.2 . . . . . . . . . . . . . . . 16 𝐵C
10 ch0 31190 . . . . . . . . . . . . . . . 16 (𝐵C → 0𝐵)
119, 10ax-mp 5 . . . . . . . . . . . . . . 15 0𝐵
12 eldifn 4085 . . . . . . . . . . . . . . 15 (0 ∈ (𝐴𝐵) → ¬ 0𝐵)
1311, 12mt2 200 . . . . . . . . . . . . . 14 ¬ 0 ∈ (𝐴𝐵)
14 eleq1 2816 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑥 ∈ (𝐴𝐵) ↔ 0 ∈ (𝐴𝐵)))
1513, 14mtbiri 327 . . . . . . . . . . . . 13 (𝑥 = 0 → ¬ 𝑥 ∈ (𝐴𝐵))
1615con2i 139 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥 = 0)
17 norm-i 31091 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
184, 6, 173syl 18 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) = 0 ↔ 𝑥 = 0))
1916, 18mtbird 325 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → ¬ (norm𝑥) = 0)
2019neqned 2932 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ≠ 0)
218, 20rereccld 11969 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (1 / (norm𝑥)) ∈ ℝ)
2221recnd 11162 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → (1 / (norm𝑥)) ∈ ℂ)
235chshii 31189 . . . . . . . . . 10 𝐴S
24 shmulcl 31180 . . . . . . . . . 10 ((𝐴S ∧ (1 / (norm𝑥)) ∈ ℂ ∧ 𝑥𝐴) → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴)
2523, 24mp3an1 1450 . . . . . . . . 9 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥𝐴) → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴)
2625ex 412 . . . . . . . 8 ((1 / (norm𝑥)) ∈ ℂ → (𝑥𝐴 → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴))
2722, 26syl 17 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (𝑥𝐴 → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴))
288recnd 11162 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ∈ ℂ)
299chshii 31189 . . . . . . . . . . . 12 𝐵S
30 shmulcl 31180 . . . . . . . . . . . 12 ((𝐵S ∧ (norm𝑥) ∈ ℂ ∧ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵)
3129, 30mp3an1 1450 . . . . . . . . . . 11 (((norm𝑥) ∈ ℂ ∧ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵)
3231ex 412 . . . . . . . . . 10 ((norm𝑥) ∈ ℂ → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵 → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵))
3328, 32syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵 → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵))
3428, 20recidd 11913 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) · (1 / (norm𝑥))) = 1)
3534oveq1d 7368 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = (1 · 𝑥))
364, 6syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ ℋ)
37 ax-hvmulass 30969 . . . . . . . . . . . 12 (((norm𝑥) ∈ ℂ ∧ (1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)))
3828, 22, 36, 37syl3anc 1373 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)))
39 ax-hvmulid 30968 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
404, 6, 393syl 18 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (1 · 𝑥) = 𝑥)
4135, 38, 403eqtr3d 2772 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) = 𝑥)
4241eleq1d 2813 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵𝑥𝐵))
4333, 42sylibd 239 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵𝑥𝐵))
4443con3d 152 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (¬ 𝑥𝐵 → ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵))
4527, 44anim12d 609 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐴 ∧ ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵)))
46 eldif 3915 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
47 eldif 3915 . . . . . 6 (((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵) ↔ (((1 / (norm𝑥)) · 𝑥) ∈ 𝐴 ∧ ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵))
4845, 46, 473imtr4g 296 . . . . 5 (𝑥 ∈ (𝐴𝐵) → (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵)))
4948pm2.43i 52 . . . 4 (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵))
50 norm-iii 31102 . . . . . 6 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (norm𝑥)) · 𝑥)) = ((abs‘(1 / (norm𝑥))) · (norm𝑥)))
5122, 36, 50syl2anc 584 . . . . 5 (𝑥 ∈ (𝐴𝐵) → (norm‘((1 / (norm𝑥)) · 𝑥)) = ((abs‘(1 / (norm𝑥))) · (norm𝑥)))
5215necon2ai 2954 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → 𝑥 ≠ 0)
53 normgt0 31089 . . . . . . . . . 10 (𝑥 ∈ ℋ → (𝑥 ≠ 0 ↔ 0 < (norm𝑥)))
544, 6, 533syl 18 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (𝑥 ≠ 0 ↔ 0 < (norm𝑥)))
5552, 54mpbid 232 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → 0 < (norm𝑥))
56 1re 11134 . . . . . . . . 9 1 ∈ ℝ
57 0le1 11661 . . . . . . . . 9 0 ≤ 1
58 divge0 12012 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((norm𝑥) ∈ ℝ ∧ 0 < (norm𝑥))) → 0 ≤ (1 / (norm𝑥)))
5956, 57, 58mpanl12 702 . . . . . . . 8 (((norm𝑥) ∈ ℝ ∧ 0 < (norm𝑥)) → 0 ≤ (1 / (norm𝑥)))
608, 55, 59syl2anc 584 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → 0 ≤ (1 / (norm𝑥)))
6121, 60absidd 15348 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → (abs‘(1 / (norm𝑥))) = (1 / (norm𝑥)))
6261oveq1d 7368 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((abs‘(1 / (norm𝑥))) · (norm𝑥)) = ((1 / (norm𝑥)) · (norm𝑥)))
6328, 20recid2d 11914 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · (norm𝑥)) = 1)
6451, 62, 633eqtrd 2768 . . . 4 (𝑥 ∈ (𝐴𝐵) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
65 fveqeq2 6835 . . . . 5 (𝑢 = ((1 / (norm𝑥)) · 𝑥) → ((norm𝑢) = 1 ↔ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1))
6665rspcev 3579 . . . 4 ((((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵) ∧ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
6749, 64, 66syl2anc 584 . . 3 (𝑥 ∈ (𝐴𝐵) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
6867exlimiv 1930 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐵) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
693, 68sylbi 217 1 𝐴𝐵 → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  cdif 3902  wss 3905  c0 4286   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033   < clt 11168  cle 11169   / cdiv 11795  abscabs 15159  chba 30881   · csm 30883  normcno 30885  0c0v 30886   S csh 30890   C cch 30891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-hilex 30961  ax-hfvadd 30962  ax-hv0cl 30965  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvmul0 30972  ax-hfi 31041  ax-his1 31044  ax-his3 31046  ax-his4 31047
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-hnorm 30930  df-sh 31169  df-ch 31183
This theorem is referenced by:  stri  32219  hstri  32227
  Copyright terms: Public domain W3C validator