HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  strlem1 Structured version   Visualization version   GIF version

Theorem strlem1 32269
Description: Lemma for strong state theorem: if closed subspace 𝐴 is not contained in 𝐵, there is a unit vector 𝑢 in their difference. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
strlem1.1 𝐴C
strlem1.2 𝐵C
Assertion
Ref Expression
strlem1 𝐴𝐵 → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵

Proof of Theorem strlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4352 . . 3 (¬ (𝐴𝐵) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
2 ssdif0 4366 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
31, 2xchnxbir 333 . 2 𝐴𝐵 ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
4 eldifi 4131 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
5 strlem1.1 . . . . . . . . . . . 12 𝐴C
65cheli 31251 . . . . . . . . . . 11 (𝑥𝐴𝑥 ∈ ℋ)
7 normcl 31144 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
84, 6, 73syl 18 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ∈ ℝ)
9 strlem1.2 . . . . . . . . . . . . . . . 16 𝐵C
10 ch0 31247 . . . . . . . . . . . . . . . 16 (𝐵C → 0𝐵)
119, 10ax-mp 5 . . . . . . . . . . . . . . 15 0𝐵
12 eldifn 4132 . . . . . . . . . . . . . . 15 (0 ∈ (𝐴𝐵) → ¬ 0𝐵)
1311, 12mt2 200 . . . . . . . . . . . . . 14 ¬ 0 ∈ (𝐴𝐵)
14 eleq1 2829 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑥 ∈ (𝐴𝐵) ↔ 0 ∈ (𝐴𝐵)))
1513, 14mtbiri 327 . . . . . . . . . . . . 13 (𝑥 = 0 → ¬ 𝑥 ∈ (𝐴𝐵))
1615con2i 139 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥 = 0)
17 norm-i 31148 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
184, 6, 173syl 18 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) = 0 ↔ 𝑥 = 0))
1916, 18mtbird 325 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → ¬ (norm𝑥) = 0)
2019neqned 2947 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ≠ 0)
218, 20rereccld 12094 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (1 / (norm𝑥)) ∈ ℝ)
2221recnd 11289 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → (1 / (norm𝑥)) ∈ ℂ)
235chshii 31246 . . . . . . . . . 10 𝐴S
24 shmulcl 31237 . . . . . . . . . 10 ((𝐴S ∧ (1 / (norm𝑥)) ∈ ℂ ∧ 𝑥𝐴) → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴)
2523, 24mp3an1 1450 . . . . . . . . 9 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥𝐴) → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴)
2625ex 412 . . . . . . . 8 ((1 / (norm𝑥)) ∈ ℂ → (𝑥𝐴 → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴))
2722, 26syl 17 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (𝑥𝐴 → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴))
288recnd 11289 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ∈ ℂ)
299chshii 31246 . . . . . . . . . . . 12 𝐵S
30 shmulcl 31237 . . . . . . . . . . . 12 ((𝐵S ∧ (norm𝑥) ∈ ℂ ∧ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵)
3129, 30mp3an1 1450 . . . . . . . . . . 11 (((norm𝑥) ∈ ℂ ∧ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵)
3231ex 412 . . . . . . . . . 10 ((norm𝑥) ∈ ℂ → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵 → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵))
3328, 32syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵 → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵))
3428, 20recidd 12038 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) · (1 / (norm𝑥))) = 1)
3534oveq1d 7446 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = (1 · 𝑥))
364, 6syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ ℋ)
37 ax-hvmulass 31026 . . . . . . . . . . . 12 (((norm𝑥) ∈ ℂ ∧ (1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)))
3828, 22, 36, 37syl3anc 1373 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)))
39 ax-hvmulid 31025 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
404, 6, 393syl 18 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (1 · 𝑥) = 𝑥)
4135, 38, 403eqtr3d 2785 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) = 𝑥)
4241eleq1d 2826 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵𝑥𝐵))
4333, 42sylibd 239 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵𝑥𝐵))
4443con3d 152 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (¬ 𝑥𝐵 → ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵))
4527, 44anim12d 609 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐴 ∧ ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵)))
46 eldif 3961 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
47 eldif 3961 . . . . . 6 (((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵) ↔ (((1 / (norm𝑥)) · 𝑥) ∈ 𝐴 ∧ ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵))
4845, 46, 473imtr4g 296 . . . . 5 (𝑥 ∈ (𝐴𝐵) → (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵)))
4948pm2.43i 52 . . . 4 (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵))
50 norm-iii 31159 . . . . . 6 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (norm𝑥)) · 𝑥)) = ((abs‘(1 / (norm𝑥))) · (norm𝑥)))
5122, 36, 50syl2anc 584 . . . . 5 (𝑥 ∈ (𝐴𝐵) → (norm‘((1 / (norm𝑥)) · 𝑥)) = ((abs‘(1 / (norm𝑥))) · (norm𝑥)))
5215necon2ai 2970 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → 𝑥 ≠ 0)
53 normgt0 31146 . . . . . . . . . 10 (𝑥 ∈ ℋ → (𝑥 ≠ 0 ↔ 0 < (norm𝑥)))
544, 6, 533syl 18 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (𝑥 ≠ 0 ↔ 0 < (norm𝑥)))
5552, 54mpbid 232 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → 0 < (norm𝑥))
56 1re 11261 . . . . . . . . 9 1 ∈ ℝ
57 0le1 11786 . . . . . . . . 9 0 ≤ 1
58 divge0 12137 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((norm𝑥) ∈ ℝ ∧ 0 < (norm𝑥))) → 0 ≤ (1 / (norm𝑥)))
5956, 57, 58mpanl12 702 . . . . . . . 8 (((norm𝑥) ∈ ℝ ∧ 0 < (norm𝑥)) → 0 ≤ (1 / (norm𝑥)))
608, 55, 59syl2anc 584 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → 0 ≤ (1 / (norm𝑥)))
6121, 60absidd 15461 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → (abs‘(1 / (norm𝑥))) = (1 / (norm𝑥)))
6261oveq1d 7446 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((abs‘(1 / (norm𝑥))) · (norm𝑥)) = ((1 / (norm𝑥)) · (norm𝑥)))
6328, 20recid2d 12039 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · (norm𝑥)) = 1)
6451, 62, 633eqtrd 2781 . . . 4 (𝑥 ∈ (𝐴𝐵) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
65 fveqeq2 6915 . . . . 5 (𝑢 = ((1 / (norm𝑥)) · 𝑥) → ((norm𝑢) = 1 ↔ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1))
6665rspcev 3622 . . . 4 ((((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵) ∧ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
6749, 64, 66syl2anc 584 . . 3 (𝑥 ∈ (𝐴𝐵) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
6867exlimiv 1930 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐵) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
693, 68sylbi 217 1 𝐴𝐵 → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  wrex 3070  cdif 3948  wss 3951  c0 4333   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296   / cdiv 11920  abscabs 15273  chba 30938   · csm 30940  normcno 30942  0c0v 30943   S csh 30947   C cch 30948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-hilex 31018  ax-hfvadd 31019  ax-hv0cl 31022  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his3 31103  ax-his4 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-hnorm 30987  df-sh 31226  df-ch 31240
This theorem is referenced by:  stri  32276  hstri  32284
  Copyright terms: Public domain W3C validator