HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass5 Structured version   Visualization version   GIF version

Theorem kbass5 31338
Description: Dirac bra-ket associative law ( ∣ 𝐴⟩⟨𝐵 ∣ )( ∣ 𝐶⟩⟨𝐷 ∣ ) = (( ∣ 𝐴⟩⟨𝐵 ∣ ) ∣ 𝐶⟩)⟨𝐷. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷))

Proof of Theorem kbass5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kbval 31172 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
213expa 1119 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
32adantll 713 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
43fveq2d 6885 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)) = ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)))
5 simplll 774 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ)
6 simpllr 775 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
7 simpr 486 . . . . . . . 8 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
8 simplrr 777 . . . . . . . 8 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐷 ∈ ℋ)
9 hicl 30298 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝑥 ·ih 𝐷) ∈ ℂ)
107, 8, 9syl2anc 585 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐷) ∈ ℂ)
11 simplrl 776 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
12 hvmulcl 30231 . . . . . . 7 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ)
1310, 11, 12syl2anc 585 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ)
14 kbval 31172 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
155, 6, 13, 14syl3anc 1372 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
164, 15eqtrd 2773 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
17 kbop 31171 . . . . . 6 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 ketbra 𝐷): ℋ⟶ ℋ)
1817adantl 483 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ketbra 𝐷): ℋ⟶ ℋ)
19 fvco3 6979 . . . . 5 (((𝐶 ketbra 𝐷): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)))
2018, 19sylan 581 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)))
21 kbval 31172 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
225, 6, 11, 21syl3anc 1372 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
2322oveq2d 7412 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
24 kbop 31171 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ)
2524ffvelcdmda 7074 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
2625adantrr 716 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
2726adantr 482 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
28 kbval 31172 . . . . . 6 ((((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ ∧ 𝐷 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)))
2927, 8, 7, 28syl3anc 1372 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)))
30 ax-his3 30302 . . . . . . . 8 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) = ((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)))
3110, 11, 6, 30syl3anc 1372 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) = ((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)))
3231oveq1d 7411 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴) = (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴))
33 hicl 30298 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 ·ih 𝐵) ∈ ℂ)
3411, 6, 33syl2anc 585 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (𝐶 ·ih 𝐵) ∈ ℂ)
35 ax-hvmulass 30225 . . . . . . 7 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ (𝐶 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3610, 34, 5, 35syl3anc 1372 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3732, 36eqtrd 2773 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3823, 29, 373eqtr4d 2783 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
3916, 20, 383eqtr4d 2783 . . 3 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥))
4039ralrimiva 3147 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥))
41 fco 6731 . . . 4 (((𝐴 ketbra 𝐵): ℋ⟶ ℋ ∧ (𝐶 ketbra 𝐷): ℋ⟶ ℋ) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ)
4224, 17, 41syl2an 597 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ)
43 kbop 31171 . . . . 5 ((((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
4425, 43sylan 581 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) ∧ 𝐷 ∈ ℋ) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
4544anasss 468 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
46 ffn 6707 . . . 4 (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) Fn ℋ)
47 ffn 6707 . . . 4 ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) Fn ℋ)
48 eqfnfv 7021 . . . 4 ((((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) Fn ℋ ∧ (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) Fn ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
4946, 47, 48syl2an 597 . . 3 ((((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ ∧ (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
5042, 45, 49syl2anc 585 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
5140, 50mpbird 257 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  ccom 5676   Fn wfn 6530  wf 6531  cfv 6535  (class class class)co 7396  cc 11095   · cmul 11102  chba 30137   · csm 30139   ·ih csp 30140   ketbra ck 30175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5423  ax-hilex 30217  ax-hfvmul 30223  ax-hvmulass 30225  ax-hfi 30297  ax-his3 30302
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-ov 7399  df-oprab 7400  df-mpo 7401  df-kb 31069
This theorem is referenced by:  kbass6  31339
  Copyright terms: Public domain W3C validator