HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass5 Structured version   Visualization version   GIF version

Theorem kbass5 29891
Description: Dirac bra-ket associative law ( ∣ 𝐴 𝐵 ∣ )( ∣ 𝐶 𝐷 ∣ ) = (( ∣ 𝐴 𝐵 ∣ ) ∣ 𝐶⟩)⟨𝐷. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷))

Proof of Theorem kbass5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kbval 29725 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
213expa 1114 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
32adantll 712 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
43fveq2d 6669 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)) = ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)))
5 simplll 773 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ)
6 simpllr 774 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
7 simpr 487 . . . . . . . 8 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
8 simplrr 776 . . . . . . . 8 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐷 ∈ ℋ)
9 hicl 28851 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝑥 ·ih 𝐷) ∈ ℂ)
107, 8, 9syl2anc 586 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐷) ∈ ℂ)
11 simplrl 775 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
12 hvmulcl 28784 . . . . . . 7 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ)
1310, 11, 12syl2anc 586 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ)
14 kbval 29725 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
155, 6, 13, 14syl3anc 1367 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
164, 15eqtrd 2856 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
17 kbop 29724 . . . . . 6 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 ketbra 𝐷): ℋ⟶ ℋ)
1817adantl 484 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ketbra 𝐷): ℋ⟶ ℋ)
19 fvco3 6755 . . . . 5 (((𝐶 ketbra 𝐷): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)))
2018, 19sylan 582 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)))
21 kbval 29725 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
225, 6, 11, 21syl3anc 1367 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
2322oveq2d 7166 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
24 kbop 29724 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ)
2524ffvelrnda 6846 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
2625adantrr 715 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
2726adantr 483 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
28 kbval 29725 . . . . . 6 ((((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ ∧ 𝐷 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)))
2927, 8, 7, 28syl3anc 1367 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)))
30 ax-his3 28855 . . . . . . . 8 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) = ((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)))
3110, 11, 6, 30syl3anc 1367 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) = ((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)))
3231oveq1d 7165 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴) = (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴))
33 hicl 28851 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 ·ih 𝐵) ∈ ℂ)
3411, 6, 33syl2anc 586 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (𝐶 ·ih 𝐵) ∈ ℂ)
35 ax-hvmulass 28778 . . . . . . 7 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ (𝐶 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3610, 34, 5, 35syl3anc 1367 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3732, 36eqtrd 2856 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3823, 29, 373eqtr4d 2866 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
3916, 20, 383eqtr4d 2866 . . 3 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥))
4039ralrimiva 3182 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥))
41 fco 6526 . . . 4 (((𝐴 ketbra 𝐵): ℋ⟶ ℋ ∧ (𝐶 ketbra 𝐷): ℋ⟶ ℋ) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ)
4224, 17, 41syl2an 597 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ)
43 kbop 29724 . . . . 5 ((((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
4425, 43sylan 582 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) ∧ 𝐷 ∈ ℋ) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
4544anasss 469 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
46 ffn 6509 . . . 4 (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) Fn ℋ)
47 ffn 6509 . . . 4 ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) Fn ℋ)
48 eqfnfv 6797 . . . 4 ((((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) Fn ℋ ∧ (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) Fn ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
4946, 47, 48syl2an 597 . . 3 ((((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ ∧ (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
5042, 45, 49syl2anc 586 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
5140, 50mpbird 259 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  ccom 5554   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  cc 10529   · cmul 10536  chba 28690   · csm 28692   ·ih csp 28693   ketbra ck 28728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-hilex 28770  ax-hfvmul 28776  ax-hvmulass 28778  ax-hfi 28850  ax-his3 28855
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-kb 29622
This theorem is referenced by:  kbass6  29892
  Copyright terms: Public domain W3C validator