HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass5 Structured version   Visualization version   GIF version

Theorem kbass5 30527
Description: Dirac bra-ket associative law ( ∣ 𝐴⟩⟨𝐵 ∣ )( ∣ 𝐶⟩⟨𝐷 ∣ ) = (( ∣ 𝐴⟩⟨𝐵 ∣ ) ∣ 𝐶⟩)⟨𝐷. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷))

Proof of Theorem kbass5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kbval 30361 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
213expa 1118 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
32adantll 712 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
43fveq2d 6808 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)) = ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)))
5 simplll 773 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ)
6 simpllr 774 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
7 simpr 486 . . . . . . . 8 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
8 simplrr 776 . . . . . . . 8 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐷 ∈ ℋ)
9 hicl 29487 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝑥 ·ih 𝐷) ∈ ℂ)
107, 8, 9syl2anc 585 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐷) ∈ ℂ)
11 simplrl 775 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
12 hvmulcl 29420 . . . . . . 7 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ)
1310, 11, 12syl2anc 585 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ)
14 kbval 30361 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
155, 6, 13, 14syl3anc 1371 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
164, 15eqtrd 2776 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
17 kbop 30360 . . . . . 6 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 ketbra 𝐷): ℋ⟶ ℋ)
1817adantl 483 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ketbra 𝐷): ℋ⟶ ℋ)
19 fvco3 6899 . . . . 5 (((𝐶 ketbra 𝐷): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)))
2018, 19sylan 581 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)))
21 kbval 30361 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
225, 6, 11, 21syl3anc 1371 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
2322oveq2d 7323 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
24 kbop 30360 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ)
2524ffvelcdmda 6993 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
2625adantrr 715 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
2726adantr 482 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
28 kbval 30361 . . . . . 6 ((((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ ∧ 𝐷 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)))
2927, 8, 7, 28syl3anc 1371 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)))
30 ax-his3 29491 . . . . . . . 8 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) = ((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)))
3110, 11, 6, 30syl3anc 1371 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) = ((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)))
3231oveq1d 7322 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴) = (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴))
33 hicl 29487 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 ·ih 𝐵) ∈ ℂ)
3411, 6, 33syl2anc 585 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (𝐶 ·ih 𝐵) ∈ ℂ)
35 ax-hvmulass 29414 . . . . . . 7 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ (𝐶 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3610, 34, 5, 35syl3anc 1371 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3732, 36eqtrd 2776 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3823, 29, 373eqtr4d 2786 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
3916, 20, 383eqtr4d 2786 . . 3 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥))
4039ralrimiva 3140 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥))
41 fco 6654 . . . 4 (((𝐴 ketbra 𝐵): ℋ⟶ ℋ ∧ (𝐶 ketbra 𝐷): ℋ⟶ ℋ) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ)
4224, 17, 41syl2an 597 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ)
43 kbop 30360 . . . . 5 ((((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
4425, 43sylan 581 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) ∧ 𝐷 ∈ ℋ) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
4544anasss 468 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
46 ffn 6630 . . . 4 (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) Fn ℋ)
47 ffn 6630 . . . 4 ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) Fn ℋ)
48 eqfnfv 6941 . . . 4 ((((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) Fn ℋ ∧ (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) Fn ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
4946, 47, 48syl2an 597 . . 3 ((((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ ∧ (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
5042, 45, 49syl2anc 585 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
5140, 50mpbird 257 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wral 3062  ccom 5604   Fn wfn 6453  wf 6454  cfv 6458  (class class class)co 7307  cc 10915   · cmul 10922  chba 29326   · csm 29328   ·ih csp 29329   ketbra ck 29364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-hilex 29406  ax-hfvmul 29412  ax-hvmulass 29414  ax-hfi 29486  ax-his3 29491
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-kb 30258
This theorem is referenced by:  kbass6  30528
  Copyright terms: Public domain W3C validator