HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass5 Structured version   Visualization version   GIF version

Theorem kbass5 30007
Description: Dirac bra-ket associative law ( ∣ 𝐴⟩⟨𝐵 ∣ )( ∣ 𝐶⟩⟨𝐷 ∣ ) = (( ∣ 𝐴⟩⟨𝐵 ∣ ) ∣ 𝐶⟩)⟨𝐷. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷))

Proof of Theorem kbass5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kbval 29841 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
213expa 1115 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
32adantll 713 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
43fveq2d 6666 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)) = ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)))
5 simplll 774 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ)
6 simpllr 775 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
7 simpr 488 . . . . . . . 8 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
8 simplrr 777 . . . . . . . 8 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐷 ∈ ℋ)
9 hicl 28967 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝑥 ·ih 𝐷) ∈ ℂ)
107, 8, 9syl2anc 587 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐷) ∈ ℂ)
11 simplrl 776 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
12 hvmulcl 28900 . . . . . . 7 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ)
1310, 11, 12syl2anc 587 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ)
14 kbval 29841 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
155, 6, 13, 14syl3anc 1368 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
164, 15eqtrd 2793 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
17 kbop 29840 . . . . . 6 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 ketbra 𝐷): ℋ⟶ ℋ)
1817adantl 485 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ketbra 𝐷): ℋ⟶ ℋ)
19 fvco3 6755 . . . . 5 (((𝐶 ketbra 𝐷): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)))
2018, 19sylan 583 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)))
21 kbval 29841 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
225, 6, 11, 21syl3anc 1368 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
2322oveq2d 7171 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
24 kbop 29840 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ)
2524ffvelrnda 6847 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
2625adantrr 716 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
2726adantr 484 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
28 kbval 29841 . . . . . 6 ((((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ ∧ 𝐷 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)))
2927, 8, 7, 28syl3anc 1368 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)))
30 ax-his3 28971 . . . . . . . 8 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) = ((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)))
3110, 11, 6, 30syl3anc 1368 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) = ((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)))
3231oveq1d 7170 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴) = (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴))
33 hicl 28967 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 ·ih 𝐵) ∈ ℂ)
3411, 6, 33syl2anc 587 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (𝐶 ·ih 𝐵) ∈ ℂ)
35 ax-hvmulass 28894 . . . . . . 7 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ (𝐶 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3610, 34, 5, 35syl3anc 1368 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3732, 36eqtrd 2793 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3823, 29, 373eqtr4d 2803 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
3916, 20, 383eqtr4d 2803 . . 3 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥))
4039ralrimiva 3113 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥))
41 fco 6520 . . . 4 (((𝐴 ketbra 𝐵): ℋ⟶ ℋ ∧ (𝐶 ketbra 𝐷): ℋ⟶ ℋ) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ)
4224, 17, 41syl2an 598 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ)
43 kbop 29840 . . . . 5 ((((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
4425, 43sylan 583 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) ∧ 𝐷 ∈ ℋ) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
4544anasss 470 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
46 ffn 6502 . . . 4 (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) Fn ℋ)
47 ffn 6502 . . . 4 ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) Fn ℋ)
48 eqfnfv 6797 . . . 4 ((((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) Fn ℋ ∧ (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) Fn ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
4946, 47, 48syl2an 598 . . 3 ((((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ ∧ (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
5042, 45, 49syl2anc 587 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
5140, 50mpbird 260 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  ccom 5531   Fn wfn 6334  wf 6335  cfv 6339  (class class class)co 7155  cc 10578   · cmul 10585  chba 28806   · csm 28808   ·ih csp 28809   ketbra ck 28844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pr 5301  ax-hilex 28886  ax-hfvmul 28892  ax-hvmulass 28894  ax-hfi 28966  ax-his3 28971
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-kb 29738
This theorem is referenced by:  kbass6  30008
  Copyright terms: Public domain W3C validator