HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homulass Structured version   Visualization version   GIF version

Theorem homulass 31043
Description: Scalar product associative law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇)))

Proof of Theorem homulass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mulcl 11191 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
2 homval 30982 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
31, 2syl3an1 1164 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
433expia 1122 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥))))
543impa 1111 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥))))
65imp 408 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
7 homval 30982 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
87oveq2d 7422 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
983expa 1119 . . . . . . 7 (((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1093adantl1 1167 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
11 ffvelcdm 7081 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
12 ax-hvmulass 30248 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1311, 12syl3an3 1166 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
14133expa 1119 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1514exp43 438 . . . . . . 7 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥)))))))
16153imp1 1348 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1710, 16eqtr4d 2776 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 · 𝐵) · (𝑇𝑥)))
186, 17eqtr4d 2776 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
19 homulcl 31000 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐵 ·op 𝑇): ℋ⟶ ℋ)
20 homval 30982 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
2119, 20syl3an2 1165 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
22213expia 1122 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥))))
23223impb 1116 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥))))
2423imp 408 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
2518, 24eqtr4d 2776 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥))
2625ralrimiva 3147 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥))
27 homulcl 31000 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ)
281, 27stoic3 1779 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ)
29 homulcl 31000 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
3019, 29sylan2 594 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
31303impb 1116 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
32 hoeq 31001 . . 3 ((((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))))
3328, 31, 32syl2anc 585 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))))
3426, 33mpbid 231 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wf 6537  cfv 6541  (class class class)co 7406  cc 11105   · cmul 11112  chba 30160   · csm 30162   ·op chot 30180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-mulcl 11169  ax-hilex 30240  ax-hfvmul 30246  ax-hvmulass 30248
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-map 8819  df-homul 30972
This theorem is referenced by:  homul12  31046  honegneg  31047  leopmul  31375  nmopleid  31380  opsqrlem1  31381  opsqrlem6  31386
  Copyright terms: Public domain W3C validator