| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mulcl 11240 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | 
| 2 |  | homval 31761 | . . . . . . . . 9
⊢ (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) ·ℎ (𝑇‘𝑥))) | 
| 3 | 1, 2 | syl3an1 1163 | . . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ) →
(((𝐴 · 𝐵) ·op
𝑇)‘𝑥) = ((𝐴 · 𝐵) ·ℎ (𝑇‘𝑥))) | 
| 4 | 3 | 3expia 1121 | . . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ)
→ (𝑥 ∈ ℋ
→ (((𝐴 · 𝐵) ·op
𝑇)‘𝑥) = ((𝐴 · 𝐵) ·ℎ (𝑇‘𝑥)))) | 
| 5 | 4 | 3impa 1109 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)
→ (𝑥 ∈ ℋ
→ (((𝐴 · 𝐵) ·op
𝑇)‘𝑥) = ((𝐴 · 𝐵) ·ℎ (𝑇‘𝑥)))) | 
| 6 | 5 | imp 406 | . . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧
𝑥 ∈ ℋ) →
(((𝐴 · 𝐵) ·op
𝑇)‘𝑥) = ((𝐴 · 𝐵) ·ℎ (𝑇‘𝑥))) | 
| 7 |  | homval 31761 | . . . . . . . . 9
⊢ ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ) →
((𝐵
·op 𝑇)‘𝑥) = (𝐵 ·ℎ (𝑇‘𝑥))) | 
| 8 | 7 | oveq2d 7448 | . . . . . . . 8
⊢ ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ) →
(𝐴
·ℎ ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 ·ℎ (𝐵
·ℎ (𝑇‘𝑥)))) | 
| 9 | 8 | 3expa 1118 | . . . . . . 7
⊢ (((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧
𝑥 ∈ ℋ) →
(𝐴
·ℎ ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 ·ℎ (𝐵
·ℎ (𝑇‘𝑥)))) | 
| 10 | 9 | 3adantl1 1166 | . . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧
𝑥 ∈ ℋ) →
(𝐴
·ℎ ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 ·ℎ (𝐵
·ℎ (𝑇‘𝑥)))) | 
| 11 |  | ffvelcdm 7100 | . . . . . . . . . 10
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ) →
(𝑇‘𝑥) ∈ ℋ) | 
| 12 |  | ax-hvmulass 31027 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ (𝑇‘𝑥)) = (𝐴 ·ℎ (𝐵
·ℎ (𝑇‘𝑥)))) | 
| 13 | 11, 12 | syl3an3 1165 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ)) →
((𝐴 · 𝐵)
·ℎ (𝑇‘𝑥)) = (𝐴 ·ℎ (𝐵
·ℎ (𝑇‘𝑥)))) | 
| 14 | 13 | 3expa 1118 | . . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ)) →
((𝐴 · 𝐵)
·ℎ (𝑇‘𝑥)) = (𝐴 ·ℎ (𝐵
·ℎ (𝑇‘𝑥)))) | 
| 15 | 14 | exp43 436 | . . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑇: ℋ⟶ ℋ →
(𝑥 ∈ ℋ →
((𝐴 · 𝐵)
·ℎ (𝑇‘𝑥)) = (𝐴 ·ℎ (𝐵
·ℎ (𝑇‘𝑥))))))) | 
| 16 | 15 | 3imp1 1347 | . . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧
𝑥 ∈ ℋ) →
((𝐴 · 𝐵)
·ℎ (𝑇‘𝑥)) = (𝐴 ·ℎ (𝐵
·ℎ (𝑇‘𝑥)))) | 
| 17 | 10, 16 | eqtr4d 2779 | . . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧
𝑥 ∈ ℋ) →
(𝐴
·ℎ ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 · 𝐵) ·ℎ (𝑇‘𝑥))) | 
| 18 | 6, 17 | eqtr4d 2779 | . . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧
𝑥 ∈ ℋ) →
(((𝐴 · 𝐵) ·op
𝑇)‘𝑥) = (𝐴 ·ℎ ((𝐵 ·op
𝑇)‘𝑥))) | 
| 19 |  | homulcl 31779 | . . . . . . . 8
⊢ ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)
→ (𝐵
·op 𝑇): ℋ⟶ ℋ) | 
| 20 |  | homval 31761 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ·op
𝑇): ℋ⟶ ℋ
∧ 𝑥 ∈ ℋ)
→ ((𝐴
·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 ·ℎ ((𝐵 ·op
𝑇)‘𝑥))) | 
| 21 | 19, 20 | syl3an2 1164 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧
𝑥 ∈ ℋ) →
((𝐴
·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 ·ℎ ((𝐵 ·op
𝑇)‘𝑥))) | 
| 22 | 21 | 3expia 1121 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
→ (𝑥 ∈ ℋ
→ ((𝐴
·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 ·ℎ ((𝐵 ·op
𝑇)‘𝑥)))) | 
| 23 | 22 | 3impb 1114 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)
→ (𝑥 ∈ ℋ
→ ((𝐴
·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 ·ℎ ((𝐵 ·op
𝑇)‘𝑥)))) | 
| 24 | 23 | imp 406 | . . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧
𝑥 ∈ ℋ) →
((𝐴
·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 ·ℎ ((𝐵 ·op
𝑇)‘𝑥))) | 
| 25 | 18, 24 | eqtr4d 2779 | . . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧
𝑥 ∈ ℋ) →
(((𝐴 · 𝐵) ·op
𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op
𝑇))‘𝑥)) | 
| 26 | 25 | ralrimiva 3145 | . 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)
→ ∀𝑥 ∈
ℋ (((𝐴 · 𝐵) ·op
𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op
𝑇))‘𝑥)) | 
| 27 |  | homulcl 31779 | . . . 4
⊢ (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇): ℋ⟶
ℋ) | 
| 28 | 1, 27 | stoic3 1775 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)
→ ((𝐴 · 𝐵) ·op
𝑇): ℋ⟶
ℋ) | 
| 29 |  | homulcl 31779 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ·op
𝑇): ℋ⟶
ℋ) → (𝐴
·op (𝐵 ·op 𝑇)): ℋ⟶
ℋ) | 
| 30 | 19, 29 | sylan2 593 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
→ (𝐴
·op (𝐵 ·op 𝑇)): ℋ⟶
ℋ) | 
| 31 | 30 | 3impb 1114 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)
→ (𝐴
·op (𝐵 ·op 𝑇)): ℋ⟶
ℋ) | 
| 32 |  | hoeq 31780 | . . 3
⊢ ((((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ ∧
(𝐴
·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
→ (∀𝑥 ∈
ℋ (((𝐴 · 𝐵) ·op
𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op
𝑇))‘𝑥) ↔ ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op
𝑇)))) | 
| 33 | 28, 31, 32 | syl2anc 584 | . 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)
→ (∀𝑥 ∈
ℋ (((𝐴 · 𝐵) ·op
𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op
𝑇))‘𝑥) ↔ ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op
𝑇)))) | 
| 34 | 26, 33 | mpbid 232 | 1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)
→ ((𝐴 · 𝐵) ·op
𝑇) = (𝐴 ·op (𝐵 ·op
𝑇))) |