HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homulass Structured version   Visualization version   GIF version

Theorem homulass 29581
Description: Scalar product associative law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇)))

Proof of Theorem homulass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mulcl 10623 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
2 homval 29520 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
31, 2syl3an1 1159 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
433expia 1117 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥))))
543impa 1106 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥))))
65imp 409 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
7 homval 29520 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
87oveq2d 7174 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
983expa 1114 . . . . . . 7 (((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1093adantl1 1162 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
11 ffvelrn 6851 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
12 ax-hvmulass 28786 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1311, 12syl3an3 1161 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
14133expa 1114 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1514exp43 439 . . . . . . 7 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥)))))))
16153imp1 1343 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1710, 16eqtr4d 2861 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 · 𝐵) · (𝑇𝑥)))
186, 17eqtr4d 2861 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
19 homulcl 29538 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐵 ·op 𝑇): ℋ⟶ ℋ)
20 homval 29520 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
2119, 20syl3an2 1160 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
22213expia 1117 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥))))
23223impb 1111 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥))))
2423imp 409 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
2518, 24eqtr4d 2861 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥))
2625ralrimiva 3184 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥))
27 homulcl 29538 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ)
281, 27stoic3 1777 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ)
29 homulcl 29538 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
3019, 29sylan2 594 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
31303impb 1111 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
32 hoeq 29539 . . 3 ((((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))))
3328, 31, 32syl2anc 586 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))))
3426, 33mpbid 234 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wf 6353  cfv 6357  (class class class)co 7158  cc 10537   · cmul 10544  chba 28698   · csm 28700   ·op chot 28718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-mulcl 10601  ax-hilex 28778  ax-hfvmul 28784  ax-hvmulass 28786
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-homul 29510
This theorem is referenced by:  homul12  29584  honegneg  29585  leopmul  29913  nmopleid  29918  opsqrlem1  29919  opsqrlem6  29924
  Copyright terms: Public domain W3C validator