HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homulass Structured version   Visualization version   GIF version

Theorem homulass 30164
Description: Scalar product associative law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇)))

Proof of Theorem homulass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mulcl 10955 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
2 homval 30103 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
31, 2syl3an1 1162 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
433expia 1120 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥))))
543impa 1109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥))))
65imp 407 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
7 homval 30103 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
87oveq2d 7291 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
983expa 1117 . . . . . . 7 (((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1093adantl1 1165 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
11 ffvelrn 6959 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
12 ax-hvmulass 29369 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1311, 12syl3an3 1164 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
14133expa 1117 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1514exp43 437 . . . . . . 7 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥)))))))
16153imp1 1346 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1710, 16eqtr4d 2781 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 · 𝐵) · (𝑇𝑥)))
186, 17eqtr4d 2781 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
19 homulcl 30121 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐵 ·op 𝑇): ℋ⟶ ℋ)
20 homval 30103 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
2119, 20syl3an2 1163 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
22213expia 1120 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥))))
23223impb 1114 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥))))
2423imp 407 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
2518, 24eqtr4d 2781 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥))
2625ralrimiva 3103 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥))
27 homulcl 30121 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ)
281, 27stoic3 1779 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ)
29 homulcl 30121 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
3019, 29sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
31303impb 1114 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
32 hoeq 30122 . . 3 ((((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))))
3328, 31, 32syl2anc 584 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))))
3426, 33mpbid 231 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wf 6429  cfv 6433  (class class class)co 7275  cc 10869   · cmul 10876  chba 29281   · csm 29283   ·op chot 29301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-mulcl 10933  ax-hilex 29361  ax-hfvmul 29367  ax-hvmulass 29369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-homul 30093
This theorem is referenced by:  homul12  30167  honegneg  30168  leopmul  30496  nmopleid  30501  opsqrlem1  30502  opsqrlem6  30507
  Copyright terms: Public domain W3C validator